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RESEARCH ARTICLE

Color map design for visualization in flood risk assessment
S. Seipel a,b and N. J. Lim a

aDepartment of Industrial Development, IT and Land Management, University of Gävle, Gävle, Sweden;
bDivision of Visual Information and Interaction, Department of Information Technology, Uppsala
University, Uppsala, Sweden

ABSTRACT
Visualizations of flood maps from simulation models are widely
used for assessing the likelihood of flood hazards in spatial plan-
ning. The choice of a suitable type of visualization as well as
efficient color maps is critical to avoid errors or bias when inter-
preting the data. Based on a review of previous flood uncertainty
visualization techniques, this paper identifies areas of improve-
ments and suggests criteria for the design of a task-specific color
scale in flood map visualization. We contribute a novel color map
design for visualizing probabilities and uncertainties from flood
simulation ensembles. A user study encompassing 83 participants
was carried out to evaluate the effects of this new color map on
user’s decisions in a spatial planning task. We found that the type
of visualization makes a difference when it comes to identification
of non-hazardous sites in the flood risk map and when accepting
risks in more uncertain areas. In comparison with two other exist-
ing visualization techniques, we observed that the new design was
superior both in terms of task compliance and efficiency. In
regions with uncertain flood statuses, users were biased toward
accepting less risky locations with our new color map design.
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1. Introduction

Progressing changes in world climate make spatial planners increasingly aware of the
need to assess potential threats from natural hazards, such as floods. Various computa-
tional approaches for simulation of floods are readily available; yet their outcome, in
terms of predicted flood regions, can vary substantially depending on, among others,
the chosen parameterization of the simulation model and on the quality of the under-
lying data. Generally, the inclusion of uncertainty information into the visualization has
been found to be important to communicate the limitations of the underlying model
(Johnson and Sanderson 2003). It is also considered necessary in the decision process
(Pang et al. 1997).

Evaluating the influence of uncertainty in predictions resulting from models is still
considered to be comparably recent development in hydrologic and hydraulic studies
(Beven et al. 2015). Recent research in visualization of uncertainties from flood simulations
has shown that the kind of uncertainty information conveyed, as well as the form of
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visualization has an impact on users’ decisions when identifying geographical locations,
which are critical with regard to being flooded. For map representations of aggregated
uncertainty measures, when visualized as 2D colorized maps, the choice of color mapping
function is assumed to be an influential factor to the assessment of the conveyed informa-
tion (Silva et al. 2007). The objective of this work has been to further explore the influence
of optimized color map designs for conveying uncertainty entailed by flood simulations.
More specifically, we contribute: a) a novel map visualization of uncertainties from flood
simulations by devising a new color transfer function and b) empirical findings on how this
choice of visual mapping affects human assessment of flood risks.

In section 2, we provide the theoretical background for this research including flood
risk modeling and uncertainty visualization to motivate our contributions. In section 3,
we present the design of our new color transfer function, and then in section 4, we
describe an experiment to evaluate this new visualization. Section 5 summarizes the
main findings of our study, which are discussed in section 6.

2. Related work

2.1. Uncertainty in flood risk modeling

A common approach incorporated in the assessment of flood risks by e.g. insurance compa-
nies and spatial planners is to predict and visualize geographic areas to be flooded in terms of
100-years or highest possible flood maps (Smemoe et al. 2004). This kind of visualization
implies a crisp delineation (contour) of regions predicted to be inundated on a given return
period. It can be problematic since the uncertainties that are intrinsic to any flood modeling
process are not explicitly conveyed (Di Baldassarre 2012). Hence, other forms of visualizations
are needed to make decision makers aware of the reliability of the flood maps generated by
flood models. One strategy to alleviate the aforementioned problem is running multiple
simulations using varying parameters to predict inundated regions. This can result in the
creation of maps with different contours showing the possibility of flooding (Smemoe et al.
2004). Other works, e.g. Aronica et al. (2002), Horritt (2006), Di Baldassarre (2012) and Mason
et al. (2009), aim at even more continuous representations of uncertainties, by overlaying
Monte Carlo simulation results from a range of input parameters and by determining model
performance using validation datasets from known flood events. With this type of ensemble
modeling, continuous levels of probabilities of a flood event are derived for each cell j in a flood
map by weighting the outputs for each cell obtained from every model parameterization i
according to the model performance (Horritt 2006). Equation (1) exemplifies this aggregation
process, wherewij is the binary output for cell j from simulation i and Li is the performance of
the model after validation against a reference dataset, given the parameterization in simula-
tion i. Li can be any measure that quantifies how well the model performs when compared
with reference data. The resulting Cj is the expected value (i.e. likelihood or kind of a
probability) for the flood condition in cell j where 0 means dry and 1 means flooded.

Cj ¼
P

LiwijP
Li

(1)

The notion of Cj implies two certain, but opposing states at either end of the value range
(i.e. flooded or not flooded), whereas intermediate values reflect some uncertainty with
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regard to the cell’s predicted flooding status with Cj=0.5 representing maximum uncer-
tainty. To explicitly model the uncertainty of the predicted flooding status, Horritt (2006)
suggested treating the predicted flooding status as a discrete random variable.
Uncertainty of the flood prediction can then be expressed in terms of Shannon entropy
(Equation 2):

H ¼
X
i¼0

pilog2pi (2)

Since the flooding status is a binary random variable with estimated probabilities p0=Cj
and pi=1� Cj , Equation (2) can be reformulated to denote Sj , an entropy like uncertainty
measure for the flood status prediction (Equation 3). For a normalized input value range,
Equation (3) results in uncertainties in the range between 0 and 1. For example, cells
predicted to be flooded with very high probability (Cj=1) or to be dry with high
probability (Cj=0) will result in uncertainty Sj=0 according to Equation (3). At Cj=0.5,
when the likelihood of a cell to be flooded is just as big as being not flooded, Equation
(3) evaluates to maximum uncertainty Sj.

Sj ¼ � Cjlog2Cj þ 1� Cj
� �

log2 1� Cj
� �� �

(3)

Visualizations of estimated flood probabilities Cj or uncertainties of predicted flooding
status Sj are commonly realized with e.g. colorized or gray-level uncertainty maps
(Horritt 2006). Figure 1(b,c) shows the typical correspondence between the two mea-
sures Cjand Sj. The next subsection gives a brief review of other techniques for present-
ing uncertainty in related areas.

2.2. Uncertainty visualization

When designing graphical representations of uncertainty, standard graphic and carto-
graphic guidelines must, according to MacEachren et al. (2005), be applied to avoid that

Figure 1. A comparison of three alternative flood visualizations in a specific study area (a).
Visualization of probability of being flooded (b) (Mason et al. 2009); visualization of uncertainty
(entropy) in regarded to the predicted status of being flooded or not (c) (Horritt 2006); extrinsic
visualization of results from ensemble studies for a selected position in the map (d) (Lim et al. 2016).
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the visualization leads to more rather than less uncertainty about the depicted data. It is
therefore not surprising to see a large number of papers about visualization of uncer-
tainty in related fields such as geography and cartography. Various attempts have been
made to categorize uncertainty visualization techniques. Pang et al. (1997) classified in
their taxonomy different visualization methods based on the type of the data that is
visualized and their domain representation. A comprehensive survey of uncertainty
visualization techniques can be found in a more recently published classification by
Kinkeldey et al. (2014). To position the work described herein, we delimit our review of
uncertainty visualization techniques to extrinsic and intrinsic methods as referred to by
many other previous authors, e.g. Gershon (1998), Cliburn et al. (2002), and Miller et al.
(2003).

2.2.1. Intrinsic uncertainty visualization
With intrinsic uncertainty visualizations, the graphical representation of the visualized
data is altered by modifying visual object properties such as color, transparency, or
shininess in order to visually map the uncertainty associated with the data (Miller et al.
2003). Color, in contrast to glyphs or other geometric representations for visualization of
uncertainty information, does not obscure or distort the graphical representation of the
data itself (Tak and Toet 2014), and has, therefore, been used in visual mappings of
uncertainty (MacEachren et al. 1998, Burt et al. 2011, Coninx et al. 2011). The use of color
as a visual variable is very powerful, since color by its nature has three perceptual
dimensions (hue, saturation and lightness), which can be effectively altered to create
color sequences for the visual representation of quantitative information. Early experi-
mental studies on color scales for univariate maps suggest that scales with varying hue
are generally useful for reading metric quantities when hue is used as a key. On the
other hand, for revealing shape and structure, it is more important to employ a color
scale with monotonically increasing luminance (Ware 1988). The role of the previously
mentioned perceptual dimensions for color scale design in uncertainty visualization has
been discussed by many researchers in this field with more or less controversial results.

Aerts et al. (2003) experimented with various visualizations of uncertainty in urban
growth, and from the results of user studies, they concluded that color lightness is a
powerful graphical variable for representing uncertainty. More specifically, Leitner and
Buttenfield (2000) found in an experimental study that task completion in terms of
correctness was significantly increased when more certain information was mapped to
lighter color values. This interpretation contrasts with conclusions by Tak and Toet
(2014) who tested users’ perceptions of tricolor sets. In their experiment the authors
tested the intuitiveness of 31 unique sets of three perceptually ordered colors and
found, among others, that users rated lighter colors as less certain. Lightness, as variable
for encoding uncertainty, was also investigated by Kubíček and Šašinka (2011) where a
majority of test participants acknowledged that lighter colors express more uncertainty.
In an experimental study by Cheong et al. (2016), an opposite representation with color
value and uncertainty was used, where lighter depicted less uncertain areas. According
to their result, this type of representation led users to better decisions when compared
with other types of uncertainty representation (i.e. texture, hue, transparency and text).
MacEachren et al. (2012) concluded from experiments that color lightness (value) is also
rated as an intuitive visual variable to represent uncertainty.

4 S. SEIPEL AND N. J. LIM
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Several studies have proposed varying levels of color saturation as an intuitive way to
express data uncertainty. MacEachren et al. (1998) proposed to combine saturation with
an existing color scheme to depict several levels of reliability for the classes of data
expressed by the existing color scheme. A similar approach has been employed by Burt
et al. (2011) to visualize fuzzy classification in digital soil maps. In their work the authors
used few distinct hues to portray soil classes and they reduced saturation levels for
increasing levels of uncertainty. In a redundant color mapping scheme, Hengl (2003)
combined saturation and lightness, where dark and pure colors represent reliable data
and light desaturated colors depict uncertain data. The author also points out severe
limitations when saturation is combined with hues (e.g. do designate categories), as the
visual distinction between different hues (and categories) becomes more difficult for
increasingly pale colors. The role of hue for visualization of uncertainty has been critically
discussed in Bisantz et al. (2009), where the authors recommended avoiding nameable
hues to convey uncertainty due to the inconsistencies with which subjects in the study
ordered hue sets. On the other hand, there is research, which suggests, that hue can be
efficiently used to map uncertainty, in particular when using a bi-polar color scale based
on blue (certain) and red (uncertain), as described by Howard and MacEachren (1996)
and MacEachren et al. (2005), or when using tri-color scales encompassing green-yellow-
red (Rhodes et al. 2003). The same traffic light color sequence has also been identified as
very suitable for representation of discrete levels of uncertainty by Tak and Toet (2014).

Opacity is another, intrinsic graphical visual variable which can be used in visual
mapping of uncertainty, as demonstrated by Djurcilov et al. (2002) in the visualization of
3D scalar datasets. The opacity affects the apparent color of graphical elements based
on a blending with the colors of objects hidden by those elements. Hence, a structured
background is, therefore, required to accentuate the effect of opacity (Djurcilov et al.
2002). Also, since apparent color is a result of blended colors of objects along the line of
sight of the observer, the interpretation of uncertainty per object is both viewpoint-
dependent and ambiguous in visualizations of 3D data.

2.2.2. Extrinsic uncertainty visualization
Uncertainty visualization using extrinsic schemes add supplementary objects to the
visualization, or even employ additional graphical views and interactive techniques to
convey levels of uncertainties associated with the visualized data. Among the most
common expressive techniques are uncertainty glyphs to augment the visualization of
data. Djurcilov et al. (2002), for example, add speckle patterns with varying size and
spatial density as an overlay to the data display in order to visualize regions of
uncertainties in renderings of 3D scalar datasets. A similar approach has been proposed
by Coninx et al. (2011) who applied bi-dimensional Perlin noise patterns to visualizations
of scalar field data, whereby data uncertainty was used to control the spectral properties
of the noise pattern. In a paper by Pang (2001), a vector field visualization is described in
which uncertainty glyphs are modeled as directional glyphs, whereby the width of the
glyph maps the angular uncertainty of the vectors. Different types of circle shaped
glyphs have been investigated for the representation of positional uncertainty on
mobile devices by McKenzie et al. (2016). The use of glyphs in form of 2D or 3D icons
generally enables creation of very complex displays. To that end, Miller et al. (2003) and
Slocum et al. (2003) used various bar glyphs in their geo-visualization of a water-balance
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model and conclude that the use of differently colored glyphs allows the user to identify
multiple sources of uncertainty to the model. Uncertainty bars are intuitive if uncertainty
in the data is expressed in terms of statistical moments of the data. However, in a user
study by Sanyal et al. (2009) users performed consistently poorer when using bar-glyphs
as compared to e.g. color in visualizations of 2D scalar data. There seem to be different
preferences among groups of users, and Slocum et al. (2003) concluded that in their
study, experts preferred extrinsic bar-glyph representations of uncertainty, while deci-
sion makers preferred intrinsic mapping with color schemes.

Uncertainty stems often from variability in observed or simulated ensembles of data
and therefore one straightforward procedure to convey this variability is to present
representative samples of the dataset in separate views, side-by-side, for direct compar-
ison by the observer (Pang et al. 1997, MacEachren et al. 2005). Potter et al. (2009)
referred to this method as film strip summary view. Examples of side-by side presenta-
tions of uncertain geographical data were presented e.g. in works by Aerts et al. (2003)
on urban growth, or in flood risk assessment as described by Lim et al. (2016).

Other more interactive techniques for exploration of uncertainty information are
inspired by techniques in the fields of scientific visualization and information visualiza-
tion. Delmelle et al. (2014) represented inaccuracies of the outbreak of dengue fever in
time and space by estimating a three-dimensional space-time kernel density function,
which are visualized as 3D uncertainty volumes using voxel-based rendering techniques.
Multiple linked views are employed to display different aspects of the data in different
views, which are interactively updated as the user interacts with them (Bastin et al.
2002). For the visual exploration of uncertainties in air-quality data, Pebesma et al. (2007)
suggested an interactive map representation linked to a graph of the cumulative
probability function representing uncertainties of NO2 predictions at the current map
cursor position. A recent example of this approach is presented by Höllt et al. (2015) who
showed ensembles of ocean predictions in geographical context views, which are
complemented with statistical graphs linked to marked geographical positions.
Similarly, linked views have also been proposed by Lim et al. (2016) to explicitly present
individual results from flood simulation ensembles which form the base for aggregated
flood uncertainty. Figure 1(d) shows this form of flood uncertainty visualization.

2.3. Research issues and contributions

Previous research by the authors of this paper has investigated user’s decisions in
presence of uncertainty in flood maps. Using a task that required avoidance of probably
flooded areas, intrinsic uncertainty visualizations, like the map presented in Figure 1(c),
were compared with an interactive visualization of the entire data underlying the
uncertainty estimation (Figure 1(d)). Among the results that sparked this research is
the observation that visualizations of uncertainty in the form expressed in Equation (3)
let users choose areas that were certain to be flooded in as many as 6% of the cases,
whereas this was never the case for the extrinsic visualization scheme. Closer inspection
of Figure 1(c) suggests that the visualization of uncertainty as an explicit variable Sj
provides clear distinction of the various levels of uncertainty; however, it is highly
ambiguous with regard to the assessment of expected flooding state Cj (compare
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Figure 1(b)). Interpretation of the expected flooding state in two nearby areas with low
uncertainty, requires further evaluation of auxiliary information as conveyed through
geographic context (Figure 1(a)), expected flood probability (Figure 1(b)), or more
comprehensive presentation of the data underlying the uncertainty assessment
(Figure 1(d)).

For tackling this problem, this paper contributes with a new, custom designed color
mapping scheme for the visualization of predicted floods which instantly conveys
information of the estimated probability of the flooding status, as well as its inherent
uncertainty.

3. Color map design for flood uncertainty visualization

As described in 2.3, visualizations of an uncertainty measure alone (here Sj) using a
sequential color scale, hamper disambiguation of the expected flooding status (Cj) for
particular cells in the flood map. Efficient flood map visualization should therefore
encode both variables, e.g. using 2D color maps designed for bivariate data presenta-
tion, as described in Bernard et al. (2015). Even 1D color maps can be efficiently
employed for bivariate data visualization if their design is based on perceptually separ-
able visual properties as stated by Robertson and O’Callaghan (1986)

and Trumbo (1981). For the particular task of flood map assessment, other semantic
and perceptual criteria must be met to allow efficient interpretation by the user:

(1) Part of the information to be visualized (uncertainty) has a clear critical value in
the middle of the data range to be mapped (here Cj). For this kind of data, Brewer
(1996) suggested a diverging color scheme where hue-pairs can be applicable to
either end of the color scale.

(2) Colors at either end of the diverging color map should have connotations with
the predicted flooding status, however, such associations should be strong
enough to avoid confusion according to Tyner (2010), who exemplifies that
blue is almost universally used in maps to depict water.

(3) Since flooding status is a binary variable, a binary color scheme is according to
Brewer (1994) recommended. Hence, no other salient hue should appear along
the color map to avoid confusion or distractions.

(4) A general design rule that applies for most color sequences requires maximum
contrast to allow visual detection of small changes in the data (Levkowitz and
Herman 1992, Healey 1996).

(5) Another frequently stated requirement to color maps is perceptual uniformity
which implies that perceived differences between colors represent the differences
in the data they represent (Zhou and Hansen 2015).

Above criteria are vital for many task-specific color map designs where visual assessment
of critical data is required, e.g. in critical industrial processes described in Seipel et al.
(2006). Since the two critical variables in flood assessment (Cjand Sj) are dependent
following Equation (3), a 1D color map can be constructed meeting the above stated
criteria. Requirements (1) and (2) suggest a scale with distinct colors with distinguishable
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hues. To determine such intuitive hues with strong connotations (2), we conducted
informal interviews with a dozen students at our campus, asking them of the colors they
associate with flooding and dry conditions. Quite expectedly we found blue as the color,
which is most often related to water, to represent flood status. For the dry condition
there were many votes for brown or beige. Since brown is no luminescent that can be
displayed on computer displays, we opted for a yellowish, slightly de-saturated orange
hue, hereafter referred to as brown. These blue and brown were assigned to the higher
(flooded) and lower (non-flooded) end of the value range of Cj. Coincidentally, smooth
transitions between blue and brown can yield color sequences similar to the blue-yellow
color scale, which according to Ware (1988) is known to produce very high contrast
which satisfies (4).

As pivotal color in the center of our diverging color map, we defined a gray with
intermediate level of intensity. Firstly, this is to avoid the addition of any prominent hue
(3). Secondly, gray serves as a suitable choice to express high uncertainty in the middle
of the mapped range because gray is highly desaturated in comparison with both hues
at either end of the scale. In combining these colors in a 1D color map, a transition
between two hues expresses the predicted likelihood of the flooding status Cj . Likewise,
as proposed earlier by Burt et al. (2011), transitions from high to low saturation express
increasing levels of uncertainty. In our case, when diverging from gray in the center
toward the hues at either end of the color map, saturation would increase, that is,
uncertainty Sj would decrease.

To better control color transitions between those three base colors, we specify two
more intermediate base colors half way between blue and gray, as well as between gray
and brown. They serve as additional control points for the subsequent color interpola-
tion using spline based color sequence design procedure, a process described by Pham
(1990). Table 1 specifies the exact RGB values of these five base colors.

The base colors (Table 1) serve as control points of a spline curve in RGB color space,
which we sample to obtain a sequence of colors for the visual mapping of Cj and Sj . The
initial equal-distance (in terms of the spline parameter) sampling of the RGB-spline curve
results in a preliminary design for the color map (compare Figure 2, top), which has not
yet sufficed the above-stated criterion of perceptual linearity (5). Figure 3 shows cumu-
lative color differences in terms of Euclidean CIE L*u*v* color distances (ΔLuv) between
two colors c1 and c2 (Equation 4) for the initial color map. Colors have been converted
from RGB into CIE L*u*v* color space, which is one among few color spaces designed to
be perceptually linear (Paschos 2001). The red solid curve shows that the initial color
map has not equal perceptual contrast along its range.

ΔLuv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLc2 � Lc1Þ2 þ ðuc2 � uc1Þ2 þ ðvc2 � vc1Þ2

q
(4)

Table 1. Base color with associated Cj, Sj , and their meaning.
Color (R,G,B) Cj Sj Semantics

Blue (70,62,174) 1.0 0.0 Certainly flooded
Blue-Gray (166,153,204) 0.75 0.81 Intermediate control
Gray (89,89,89) 0.5 1.0 Highly uncertain with regard to flooding status
Gray-Brown (189,186,62) 0.25 0.81 Intermediate control
Brown (130,106,74) 0.0 0.0 Certainly non-flooded
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A common procedure for perceptual linearization of color sequences, as outlined by
Levkowitz and Herman (1992), is to determine the length CL of the curve representing it

in CIE L*u*v* color space and by resampling this curve at constant intervals dC ¼ CL
n ,

where n is the number of desired colors in the color sequence. This process can be
solved numerically in a straight-forward manner and it results in a new color sequence
that is expected to have equal perceptual differences between any two adjacent colors.

One issue with this procedure, which we found not to be addressed previously,
relates particularly to diverging color scales, where the initial design aims at a pivotal
color in the center (n/2) of the color sequence (gray in our case). The traditional
linearization process does not guarantee that this specific color will be: a) exactly
reproduced in the resampling; and, more importantly, b) located at the center (n/2) in
the linearized map. In our case, with n=256, the pivotal gray (RGB=89,89,89) is expected
at sequence position 128 in the color map. As Figure 2 (middle) shows, there is, after
linearization of the entire diverging color map, an evident shift of the pivotal color. Here,

Figure 2. Color map from initial interpolation in RGB (top). Color map after linearization in CIE
L*u*v* color space (middle) with clear shift of pivotal gray off the center (dashed line). Color map
resulting from bilateral linearization with constant contrast in diverging branches and pivotal color
remaining on center (bottom).

Figure 3. Cumulative CIE L*u*v* contrast for different color maps.
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the pivotal color after linearization is at position 109 in the color map. This corresponds
to a 15% shift off the center, which is likely to cause bias in the interpretation of the
visualized data.

We resolved this issue with bilateral linearization, whereby we split the curve repre-
senting the color sequence in CIE L*u*v* at the pivotal color into a lower and an upper
diverging branch. Linearization is then performed independently starting from the
pivotal color toward the ends in the upper and lower branches. Bilateral linearization
cannot guarantee the same contrast (dC) in both branches, because the lengths

(Cupper
L and Clower

L ) of the two branches in CIE L*u*v* space might be different, whereas
the number of samples in each branch is (n/2). But we consider this problem to be
inferior to those resolved. Also, as Figure 3 shows, the contrast curve of the bilaterally
linearized palette is close to linear with only marginal differences in contrast to either
sides of the center. Figure 2 (bottom) shows our final diverging color map after bilateral
linearization. A visualization of an uncertainty map using our task-specific color map is
shown in Figure 4.

4. User study

4.1. Flood scenario

To compare the usability of our new color map design, we used in this study the same
flood scenario as used previously in a study by Lim et al. (2016). The study area
comprises a 2 km section of river Testebo located nearby Gävle, Sweden (see Figure 1
(a)) which has a normal discharge of 12.1 m3/s. Observation exists from a 100-year flood
event in 1977 when the flow peaked at 160 m3/s. It served as validation data to
determine model performance Li as used in Equations (1) and (3). The peak flow was

Figure 4. A flood map visualization using task-specific color map to visually express both expected
likelihood Cj and uncertainty Sj of flooding (right). An orthophoto of the region is shown for
geographic reference (left).
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simulated with CAESAR-Lisflood (Coulthard et al. 2013) to create an ensemble of 50
different simulations. The varied parameters were: a) resolution of the digital elevation
model (DEM); and, b) the Manning’s roughness coefficient (n). For details concerning the
modeling, we refer the reader to Lim et al. (2016). Figure 5 shows binary flood maps of a
few simulations from the ensemble. Common visualizations of aggregated probability of
a flood (Cj) in our study area are shown in Figure 1(b) and for uncertainty (Sj) in Figure 1
(c). Figure 1(d) is an extrinsic visualization of the performance Li of all 50 simulations in
descending order. Large bars represent high model performance. The color of bars
indicates the predicted binary status (blue means flooded) for the selected cell j in the
map (here indicated with a star).

4.2. Task and visualization conditions

To study how the different visualizations described above affect human decision-makers
in their assessment of areas that are at risk to be flooded, users had to take decisions
about critical positions in a spatial planning scenario. For this experiment, users had to
act as spatial planners and to decide on locations where they can issue a building
permit. Based on a preferred position for a new construction (e.g. by a homeowner), test
subjects had to evaluate the likelihood of a flood of this preferred position, and when
estimated to be at high risk, to make adjustments of the position to a safer place.
Figure 6 shows a detailed view of one such situation, in which the preferred position is
marked by a cyan-colored rectangle in the orthophoto. Test subjects were allowed to
move this position into places with different flood risks along a predefined linear
trajectory, here visualized as a yellow line. The finally decided position is marked with a
magenta-colored star. In their decision about the final positions, users had to consider
trade-offs between spatial cues (distance to the preferred position) and the flood risk
accepted at chosen site.

In our experiment, we did not consider color vision deficiencies as a factor for two
reasons: 1) total color blindness (monochromacy) is a rare condition experienced by the
general population (Jenny and Kelso 2007, Carroll et al. 2008); and, 2) tritanopia or
having defective blue cone cells causing color blindness with blue-yellow combinations,
is a by far less common condition than red-green color vision deficiency (Jenny and
Kelso 2007).

Figure 5. Some examples of binary flood maps by modeling the 100-year flood. Each map was
produced using different combinations of DEM resolution and Manning’s roughness coefficient. The
map on the far right had the best model performance.
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The visualization conditions in our user experiment are summarized in Table 2. They
comprise side-by-side visualizations of the cartographic context and uncertainty infor-
mation following the map-pairs design suggested by MacEachren (1992). Two existing
visualizations (Figure 1(c,d)) serve as a reference for validation of our new custom
designed visualization, which is shown in more detail in Figure 4, right).

Figure 6. Detailed map view for one specific scenario (stimulus) to be assessed by test subjects.

Table 2. Visualization conditions used in the user study.

Visualization
Depicted
variable(s) Descriptions

Li;wij Extrinsic visualization with performance bars (PB) conveys the predicted binary
flood statuses wij (flooded = blue, not flooded = yellow/brown) for all i
simulations in the ensemble. Bar height indicates model performance Li . As in
Anonymous (2016), the status of cell jis explored interactively in the map, one
at a time.

Cj Intrinsic flood map visualization, whereby two variables are mapped to
separable visual variables hue and saturation in a 1D diverging color map
(DM).

Sj Intrinsic visualization of uncertainty in flood predictions using a 1D sequential
color map (SM) as used e.g. in Horritt (2006) and Anonymous (2016),
combined with orthophoto to assess geographical details.
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4.3. Experiment design and procedure

Subjects in our study had to analyze and assess 14 different scenarios, one of which
shown in Figure 6. Preferred positions were spread out within the study area (see
Figure 7) and they had varying risks of becoming flooded. Every scenario had to be
assessed in each of the three visualizations (conditions); hence, every subject had to
solve a total of 3� 14 = 42 trials. The presentation of all 42 trials followed a randomized
order which was the same for all subjects in order to counter-balance for potential
learning effects and to avoid that subjects memorize scenarios across conditions. An
interactive test application was developed using a high level graphics development
environment (VizardTM from WorldViz, http://www.worldviz.com/). Users could step
through the experiment at their own pace without any time limits to solve each trial.
They were not instructed that time is a variable in the experiment, but rather that
solving the dilemma imposed by the experimental task was important. The actual
experiment was conducted in two sessions with two different groups of students. One
group comprised 61 students from the Engineering study program at University of
Ghent. The other was a class of second year students of the Geography program
comprising 22 students. Experimental sessions were held in computer lab rooms,
where students of each group solved the experiment simultaneously. After introduction
of the test by the experimental leader, subjects were given written instructions regard-
ing the experiment after which they performed a training session using the program
with a set of 10 trials to get familiar with the visualizations and the test program. The
actual experiment was followed up with a questionnaire to capture factors related to the
participants and also to identify strategies and subjective comments on the tested
visualizations. Altogether 83 students, 30 female and 53 male, participated in the
experiment. Their age ranged from 20 to 27 years, with an average of 21.6 years.

Figure 7. Positions decided by the participants (green), in relation to the homeowners’ preferred
positions (red) are shown for PB (left), DM (center), and SM (right).
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5. Results

This section is divided into two main parts, where the first consists of an analysis of
quantitative findings to assess how users utilized the different visualizations when
solving each task. Three primary observations formed the basis for this analysis: the
distances from preferred (target) sites; the predicted probability of flood in the selected
positions in terms of Cj ; and, the time they spent on the task. The second part presents
qualitative results of our study, i.e. the answers of the participants in the questionnaire.

5.1 Task performance

A total of 3486 samples (3 visualizations � 83 participants � 14 stimuli) were included in
the analysis. Datawere grouped per visualization. Figure 7 depicts all chosen positions in the
three different visualizations. For pairwise comparisons, observations within groups were
ordered according to subject ID and stimuli number. Since the data are non-normally
distributed based on initial histogram inspections and Shapiro–Wilk tests, non-parametric
tests (for paired and unpaired comparisons) were employed when contrasting observations
for different visualizations. Therefore, the critical p-value was lowered from 0.05 to 0.017
following a simple Bonferroni correction of p.

5.1.1. Avoidance of critical areas
For assessment of users’ task compliance, that is how successfully they identified areas,
which have no risk of being flooded, we first classified decided positions into three
categories (flooded, not flooded and uncertain) depending on the predicted flooding
probability Cj in those locations. The lower and upper thresholds for Cj used to classify
user responses as flooded and not flooded (see Table 3) were chosen to minimize
classification errors to 5%. Accordingly, the category uncertain comprises a fairly large
span of more or less uncertain predictions. Exact threshold values for classification are
stated in Table 3, which summarizes the observations for different visualization condi-
tions. Certain to be flooded positions were chosen in as many as 137 cases (12%) when
subjects used a map visualization of Sj with a sequential color map (SM). These figures
contrast strongly with those in the other two visualizations (PB and DM), where flooded
positions were designated in only 1% of all cases, i.e. one order of magnitude less
frequently. On the other side, with regard to determining locations without risk of being
flooded, subjects succeeded most frequently when they used the flood map with the
diverging color scheme (43%), in only 37% of the cases when using the performance
bars, and in just 36% of the cases when using the visualization with sequential color
map. A Chi-square test shows, that these differences between visualizations are highly
significant (χ2=201.4255; df=4; p<0.001).

Table 3. Status of chosen positions with different visualizations.

Visualization
Flooded
Cj>0.95

Not flooded
Cj<0.05

Uncertain
(0.05 � Cj � 0:95)

Performance bars (PB) 11 (1%) 433 (37%) 718 (62%)
Diverging color map (DM) 17 (1%) 498 (43%) 647 (56%)
Sequential color map (SM) 137 (12%) 421 (36%) 604 (52%)
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5.1.2. Accepted levels of uncertainty
A summary statistics of user responses classified as uncertain (0.05 � Cj � 0.95) is
provided in Table 4. It shows that positions were chosen in areas more likely to be

flooded, in terms of the median of Cj , when performance bars were used (~Cj=0.53), and

even more so, when the sequential color map was used (~Cj=0.56). With the diverging
color map, instead, users identified positions that are much less likely to be flooded

(~Cj=0.39). Observations (Cj) are far from normally distributed, and since the samples from
the three visualizations are also independent with different lengths (n), we used
Wilcoxon rank sum tests (W) to compare the obtained Cj between any two visualizations.
The results of these tests confirm that the above stated differences are highly significant,
with p< 0.0001 in all three comparisons.

Considering the mathematical relationship between uncertainty and flood probability
(see Equation 3) we find consequently, that positions with less uncertainty were chosen
using visualization SM (~Sj=0.87), when compared with visualization DM (~Sj=0.93).

Locations with highest uncertainty were identified for PB (~Sj=0.96). As above, all these
differences were highly significant (p<0.0001) in all pairwise comparisons between
conditions.

5.1.3. Efficiency
Reaction times were not communicated as important to test subjects. This was to avoid
personal trade-offs and strategies when solving the task (i.e. avoiding critical areas), and
hence making observed time independent of such trade-offs. The distributions of
observed times were highly skewed, therefore their location is assessed in terms of
the median (~t) in Table 5. For the entire dataset, it shows that significantly more time
(~tall) was needed when the extrinsic visualization (PB) was used, while time was on
comparable levels for the other two visualizations (SM and DM). In these comparisons
the test statistics V (Signed Rank Wilcoxon) for pairwise comparisons was used.

Closer inspection of times (~tsuccess) in attempts where subjects performed successfully
(i.e. they determined positions with Cj<0.05) and those where they apparently failed

(~tfail $ Cj>0.95) reveals the following: times did not differ significantly between visua-
lizations in attempts where users failed, even though nominal median times suggest
some differences. On the opposite, when users solved the task successfully, the type of
visualization used made a significant difference in all comparisons of visualizations. Most
efficient was the diverging color map, followed by sequential color map. Performance
bars took by far the longest time. Test statistics W was used here for unpaired compar-
ison of samples with different length.

Table 4. Medians for Cj and Sj in chosen positions with uncertain flooding state (0.05 � Cj � 0.95),
as well as median of distances D from preferred positions in meters (all observations).

Visualization n Cj Sj ~D

Performance bars (PB) 718 0.53 0.96 80.5
Diverging color map (DM) 647 0.39 0.93 89.9
Sequential color map (SM) 604 0.56 0.87 77.3

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 15

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
G

äv
le

] 
at

 0
5:

58
 1

7 
A

ug
us

t 2
01

7 



5.2. Questionnaire results

According to the answers in the questionnaire, only 42% (n=83) of the participants had
seen a flood map prior to the experiment conducted. The maps they saw were described
as discrete maps using one color or combinations of colors. Flooded areas depicted as
single information were shown mostly in blue. In some cases where two conditions (i.e.
flooded or dry) were being represented, either a combination of blue/green or blue/
brown was used. For maps that displayed risks of flooding, a graduated blue color was
said to be utilized, where the darkest color indicated highest risk. There were also two
subjects who remembered color schemes similar to our diverging map from previous
flood risk maps, however, with different color representation of uncertain conditions.

5.2.1. Importance of uncertainty information in flood maps
80% of the participants responded that the uncertainty information, in general, helped
them in their choice of locations in the task. The significance of its inclusion in the map
received a mean rating of 3.5 out of 5 on the Likert scale, where 1 is not at all important
and 5 is very important. The main reasons stated for its importance was the additional
information it provides in determining the chances of flooding in the given location, as
well as areas that are at risk. On the contrary, those who responded that it is unim-
portant to be included in the flood map gave the following reasons: 1) uncertainty
makes it more difficult to decide; 2) with the information, it is impossible to define clear
boundaries/edges in the maps and 3) decisions based on uncertainty can be unreliable
and not trustworthy.

5.2.2. Ratings and perspectives on the different visualization models used
An important criterion that influenced majority of the participants’ decision in their
choice of location was considering its certainty not to be flooded (57%). This was
followed by taking into account both closeness to the desired location and the certainty
that it will not be flooded (39%) as significant factors to their selection. Only 4%
indicated that closeness to the preferred positions by the homeowners was prioritized
in their decision, while the rest did not provide an answer to the question. In rating the
visualizations (SM, PB and DM) according to five different attributes (appeal, compre-
hensibility, clarity in indicating uncertain and certain areas, and helpfulness in the
decision) (Figure 8), DM received the highest mean on a 1–5 Likert Scale (where 1 is

Table 5. Times (median) needed for failed and successful decisions using different visualizations.
PB DM SM W p

~tsuccess 13.9 7.4 50,396 <0.0001
~tsuccess 13.9 6.5 171,900 <0.0001
~tsuccess 6.5 7.4 118,771 <0.001
~tfail 8.6 10.5 6.2 752 0.994
~tfail 8.6 10.5 80 0.557
~tfail 6.2 955 0.228
~tall V p
~tall 10.4 6.2 160,587 <0.0001
~tall 10.4 6.6 5,454,636 <0.0001
~tall 6.6 6.2 356,191 0.109
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not applicable and 5 is most applicable) in all characteristics, with the exception of
clarity in indicating uncertain areas. For this attribute, SM received the highest mean
(3.89), while PB got the lowest (3.14). Visualization SM received the lowest rating in all
other characteristics.

Respondents were also asked to provide details as to the strategies they employed
when using the different color maps, and the factors that helped them in arriving at
the decisions they made. The answers for the different visualizations are summarized
below.

5.2.2.1. Implicit map visualization with sequential gray-scale (SM). When the SM
was used, an important part of the information that helped the majority of the partici-
pants decide was the black color in the map, manifesting the certainty of being either
flooded or dry. Some participants were more specific in mentioning that the proximity
to the river was used to further identify the exact status at the black colored positions.
According to the answers, if these black colors are in the river or close to the river, they
know that these areas are certain to be flooded, thus, must be avoided in their decisions.
If it is black and far away from the river, then, it is certain that these areas will be dry.
However, there were also some who preferred areas that are positioned in uncertain
areas (gray) and even in areas with maximum uncertainty (white). Few of the respon-
dents who chose these areas indicated that they utilized the orthophoto to verify the
status at the given uncertain location. There were also participants who added that
visualization SM was confusing and unclear in the information it provides.

5.2.2.2. Explicit map visualization with performance bars (PB). The dominance of
the brown bars over the blue ones had been the key information used in making the
decision by the majority when utilizing PB. In the replies given, it was also pointed out

Figure 8. Participants’ ratings on the different visualizations.
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that an acceptable number of blue bars were considered, as long as there were more
brown bars displayed. Most of the respondents also stressed the role of the bars’ lengths
in their decisions. It became important for many to take into account that the longest
bars to the left are brown, which have the highest likelihood of being dry. But, there
were some who considered selecting a location only when all brown bars are displayed,
or if there is an equal proportion of blue and brown bars shown, but did not specify
details on the latter. A few also commented that PB was confusing and more difficult to
use than the other two visualizations. One mentioned that this model is statistically
good, but not visually, although no further explanation was given. Nonetheless, a
participant was very positive in employing the PB in the decision-making.

5.2.2.3. Implicit map visualization with diverging color map (DM). A great consen-
sus in the answers of the participants showed that the brown color, which indicates
certainty of being dry, helped in deciding the locations in the tasks. Some had empha-
sized that they avoided the blue colored regions, which are predicted to be flooded.
There were also a number of participants who preferred yellow or yellow/brown zones,
which are areas that have high certainty to be dry. For some respondents, the sites in
gray or gray/brown (i.e. uncertain to be dry areas) were preferable. But, they also
mentioned that with this choice, they tried to avoid blue areas or areas near the
water. Some commented that this color scheme is very good due to the distinctiveness
and clarity of the presented information in determining the locations’ flooded or non-
flooded conditions.

5.2.3. Role of the contextual information in the decisions made
86% of the participants had referred to the orthophoto accompanying the uncertainty
model when solving the task to see how the chosen location looks like in reality. Only
10% did not use the information, while the remaining 5% mentioned that they some-
times used it. When asked to rate in a scale of 1–5 its affect in the choice of location and
its importance in the decision made, mean ratings of 3.2 and 3.43, respectively, were
received.

6. Discussion and conclusion

6.1. Palette design and its evaluation

In this paper, we have proposed a special-purpose designed color map for the visualiza-
tion of flood probabilities and uncertainties and has evaluated its efficiency in an
experiment comparing this new visualization with the other two, previously proposed
visualizations in flood risk modeling. The particular design is informed by guidelines and
recommendations from previous research on efficient color maps, as well as on intuitive
human color associations gathered from a sample of interviewed people. The outcome
is a color map, which, at first glance, is reminiscent of color maps with similar appear-
ance. For instance, transitions from blue over gray to yellow have been suggested by
Ware (1988) as a sequential color scheme that can be perceived by people with color
vision impairments. Very similar in appearance, blue/orange is one of four color pairs,
which has been identified as the most suitable for definition of diverging color map
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schemes by Brewer (1996). In light of this, our present study has not evaluated how well
the new color map can be perceived by people with different color vision deficiency.
This is a relevant aspect, in particular for people with tritanopia/tritanomaly, which
should be looked at in forthcoming studies.

The presented color scheme differs from existing ones because it has been specifically
defined with regard to the requirements of its intended use (i.e. in flood risk assessment).
The integration of two, albeit mathematical related quantities (flood likelihood and uncer-
tainty) into one diverging color scheme is specific for the final result. It preserves intuitive
and semantically strong colors at either end of the color scale; it maintains perceptual
linearity in the two diverging branches of the color map; and, it maintains a specified pivotal
color in the center of the color palette range. The latter was accomplished through bilateral
linearization – a process that can be applied in other diverging color schemes, or be
generalized to any color range that requires piecewise perceptual linearity. Even though
the color palette used is specific for flood risk application, our specific design process is
applicable to other domains with similar data characteristics, i.e. diverging conditions
associated with gradually increasing uncertainty toward the center. A crucial step, however,
is the identification of two opposing colors at the ends of the diverging scheme, which can
vary depending on users’ preferences and how they associate colors with the data. With
regard to this, the representation of highest uncertainty as gray can generally be used.

Equally important as the actual specification of our new diverging color map is the
evaluation of its usability in visualization of flood risk maps. We carried out an experi-
ment that was designed with a representative task and we involved a comparably high
number (n=83) of users (all of them having some background in spatial planning) to
assure a high level of validity in the results.

6.2. Efficiency of the diverging color mapping scheme

6.2.1. Avoidance of hazardous locations
As this study confirms, map-based visualizations of flood uncertainty using sequential color
mapping schemes is prone to misinterpretation of the predicted flooding risks. Its inherent
issue of ambiguously representing the predicted flooding status (flooded or not flooded)
was problematized by users in the follow-up questionnaires. More so, this limitation is
evident from the quantitative results of our experiment. When using a visualization of
uncertainty (Sj) with the sequential color map (SM) subjects in our study had a failure rate
(i.e. they decided locations which are certainly to be flooded) in 12% of all cases, one order
of magnitude larger than for the other two visualizations (PB and DM). This finding also
corroborates the results in a similar previous study by Lim et al. (2016), which gives further
emphasis on the need for suitable color mapping schemes for flood risk assessment as
presented in this work.

The use of an extrinsic visualizations technique as suggested here with PB, or in
similar ways proposed in Lim et al. (2016) and Höllt et al. (2015), provides users with
additional information helping them to resolve potential ambiguities with regard to the
expected flooding states and thus to avoid erroneous decisions (only 1% of the cases).
As the percentage in Table 3 for DM shows, intrinsic flood risk map visualization with an
appropriately designed color mapping scheme can also help resolve these ambiguities
to avoid mistakes.
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6.2.2. Task compliance, compromises and risk taking
The users’ task was primarily to assess and move proposed building sites to safe
locations, i.e. areas which are certain not to be flooded. Strictly speaking, this goal was
accomplished best (in 43% of the cases) when subjects in our experiment used the
visualization with the custom tailored diverging map DM. Significantly lower task
achievement resulted when using SM (36%) and also when using PB (37%). Albeit the
increase of information in PB helped users to avoid the big mistakes, it did yet not lead
to much better task completion as compared with SM. Instead, when using PB, users
preferred more often positions in uncertain areas as compared to the two other
visualizations SM and DM (see Table 3). In fact, uncertain locations with Cj varying
between 0.05 and 0.95 were decided in more than half of all cases regardless of the
visualization used, which indicates that subjects made tradeoffs in identifying safe
positions while not moving too far from preferred building sites. A closer inspection of

uncertain locations (see Table 4) reveals that less risks (~Cj) and larger margins (~D) were
accepted when using DM insofar as uncertain positions were chosen at all. For SM and

PB, locations closer to the preferred building sites (i.e. smaller ~D) were identified at
higher risks to be flooded. In short, when using the visualization with DM, subjects in our
study identified safe sites more often and, when uncertain sites were identified, they
were on average at lower risk to be flooded.

The choice of students as subjects in our experiment allowed us to recruit a fairly
homogenous test population, which reduces bias from confounding variables (internal
validity), but might lower external validity of our findings. On the other hand, the design
of the task to be solved and the intended users of the produced visualizations are of a
general kind, which does not require expert knowledge in hydraulics or flood modeling.
Therefore we assert that our finding can be generalized to the intended real user group.

6.2.3. Efficiency
An overall analysis of task completion times, regardless if successfully solved or not,
reveals that the extrinsic visualization PB requires almost twice as much time compared
with the other two visualization, which is most likely due to the additional interaction
needed to sequentially explore positions in the map. In consideration of successful
outcome, it can be noted that the diverging color map visualization DM is superior to
the two other visualizations (~tsuccess in Table 5), which renders the visualization DM not
only the most effective one, but technically speaking, also the most efficient one. DM
represents two variables, Cj and Sj , in a combined map representation (see Table 1); in
this regard, our findings are in line with previous research (Kubíček and Šašinka 2011),
who concluded from their study that combined maps of bivariate information lead to
faster decisions than side-by-side representations. While observed differences in time are
statistically significant, they are meanwhile quite small and in practice probably
irrelevant.

6.3. Conclusion

A novel color map design for visualizing both probabilities and uncertainties in flood
maps was presented and evaluated in this study. The new color map was characterized
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by a diverging scheme, combining the color components hue and saturation. The
certainty of the conditions to either being dry or flooded was represented by brown
and blue, while uncertainty, which is the pivotal point at the center, was gray. In the
transitions between those colors, the level of uncertainty was represented by saturation,
which is decreased toward the center. Bilateral linearization was employed to maintain
constant contrast at the diverging branches of the scheme.

The new task-specific color map was compared with two previous visualization
models: an intrinsic visualization using a gray-scale sequential color map that conveys
the uncertainty of flooding; and an extrinsic visualization in the form of performance
bars, which shows the predicted binary status of each simulation result, as well as its
likelihood to the actual flooding event. The result shows that the new diverging color
map led users to better and efficient decisions in solving spatial-related tasks, than
the two uncertain visualization models. Distinguishing safer and less risky areas to be
flooded had been easier in the new map design, due to the clear separation of the
two conditions by the hues utilized. On the other hand, the ambiguity of the
information produced by the sequential map has once again been proven, and
strengthened in this study. The said map was prone to misinterpretation, leading to
unsafe decisions.

The appropriate design of uncertainty visualization for flood maps is necessary to
resolve the indistinctness of the information provided by them. Readability of uncer-
tainty maps, in terms of being able to correctly interpret the information embedded in
them, is a vital consideration if they are to be used in planning to avoid mistakes that
can lead to negative consequences of decisions based upon them.
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