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Abstract: Decision-making methods used in geospatial decision making are computationally complex
prescriptive methods, the details of which are rarely transparent to the decision maker. However,
having a deep understanding of the details and mechanisms of the applied method is a prerequisite
for the efficient use thereof. In this paper, we present a novel decision-making framework that
emanates from the need for intuitive and easy-to-use decision support systems for geospatial multi-
criteria decision making. The framework consists of two parts: the decision-making model Even
Swaps on Reduced Data Sets (ESRDS), and the interactive visualization framework. The decision-
making model is based on the concept of satisficing, and as such, it is intuitive and easy to understand
and apply. It integrates even swaps, a prescriptive decision-making method, with the findings of
behavioural decision-making theories. Providing visual feedback and interaction opportunities
throughout the decision-making process, the interactive visualization part of the framework helps the
decision maker gain better insight into the decision space and attribute dependencies. Furthermore,
it provides the means to analyse and compare the outcomes of different scenarios and decision paths.

Keywords: decision making; GIS; interactive visualization; bounded rationality; satisficing;
even swaps

1. Introduction

Providing support for geospatial decision making is one of the main goals of geo-
graphic information systems (GIS). GIS-based multi-criteria decision analysis (GIS-MCDA),
defined in [1] as “a collection of methods and tools for transforming and combining geographic data
and preferences (value judgements) to obtain information for decision making”, emerged during
the last couple of decades as a whole new interdisciplinary field of study. There is today
a whole plethora of prescriptive multi-criteria decision-making (MCDM) methods and
tools that are used for different types of geospatial decision problems. In [1], the most com-
monly used methods are categorized as either multi-attribute decision-making (MADM)
or multi-objective decision-making (MODM) methods. While MADM assumes a finite set
of alternatives, MODM deals with design process; the predefined set of alternatives is non-
existent and the number of alternatives is continuous, or infinite [2]. Prescriptive methods
aim to help decision makers make rational choices and decisions. Making a rational choice
means in this context making the optimal choice. Such methods are based on complex
computational models that are rarely transparent to the decision maker. The efficiency
of these methods ultimately relies on the input given by the decision maker. In order to
make a rational choice, giving the right input in itself may demand not only knowledge
and information about the issues relevant for the decision problem, but also the knowledge
and understanding of how the provided input is processed in a specific method.

Most of the prescriptive decision-making methods used today are implemented
through decision-making tools that make only limited use of interactive visualization.
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In addition, they are often non-transparent and difficult to understand in detail while de-
manding the decision maker to be able to express their preferences as quantitative relations
between criteria. This is partly due to the inherent non-interactivity of the methods [3,4].
This issue was addressed in Andrienko and Andrienko [5], who pointed out that visualiza-
tion has rather limited use in the design phase and the choice phase of the decision process,
and is usually limited to the initial, intelligence phase. Here, the authors use a generaliza-
tion of the decision-making process proposed in Simon [6], with intelligence, design, and
choice as three major phases. The intelligence phase covers the problem definition, data
collection, exploration, and preprocessing. The alternatives are defined in the design phase
and in the choice phase they are evaluated, whereby the most appropriate alternative or set
of alternatives is selected. Informed choice requires the more extensive use of visualization
with a high degree of user interactivity in all three phases, thus enabling the decision
maker to see how the suggested solution is positioned both in geographical and in attribute
space [5].

The models of rational behaviour that are based on the assumption that the deciding
subject always tries to make the optimal choice have been questioned by many, most notably
Herbert A. Simon [7]. The critics adopted the concept of bounded rationality, according
to which our rationality is limited by the incompleteness of available information, our
cognitive limitations, and the time available for decision making. Rather than always trying
to make the optimal choice, we tend to follow a decision-making process that leads to a
satisfactory outcome, and the search stops when a solution is found that satisfies all the
conditions. This decision-making model is known as satisficing. The concept of satisficing as
a decision-making model was first introduced in Simon [8] as a descriptive model for how
people actually make decisions. It describes a multi-criteria decision-making strategy in
which the decision maker provides the minimum value of an alternative in terms of each of
the considered criteria in order to be considered acceptable (acceptability threshold), and
then chooses the first alternative that satisfies the condition.

The aim of this study was to design a framework for geospatial decision making that
considers the findings of behavioural decision-making theories, and makes extensive use
of interactive visualization throughout the decision process. The main objectives of this
work are:

e Develop a decision-making model based on the concept of satisficing;

¢ Design a visualization framework that incorporates visualization units and interaction
paths compatible with the model;

*  Create a fully functional decision support tool that integrates the decision-making
model and the visualization framework.

2. Related Work

In this section, we present previous work related to each of the research areas relevant
for our study. MADM methods commonly used in GIS-MCDM are presented in Section 2.1.
Work related to the concept of bounded rationality and the satisficing decision-making
model is presented in Section 2.2. Relevant research in the field of interactive visualization
in decision making is presented in Section 2.3, and interactive visualization in GIS decision
support systems is reviewed in Section 2.4.

2.1. MADM Methods

Depending on the working framework on which they are based, the methods used in
the context of GIS-MCDM may be classified as either outranking methods, ideal point methods,
or weighted summation methods.

A preference relation among alternatives in outranking methods is usually built by
applying the concordance-discordance principle on several attributes. This principle states
that an alternative x is not dominated by an alternative y (xSy) if (i) a majority of the
attributes supports this assertion; and (ii) the opposition of the attributes which do not
is not “too strong” [9]. This relation is constructed through the pairwise comparison of
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alternatives based on the model of preferences suggested in [10]. The model defines four
preference modes: indifference (1), strict preference (P), weak preference (Q), and incompara-
bility (R). A family of multi-criteria decision making known as ELECTRE (Elimination
et Choix Traduisant la Réalité (Elimination and Choice Expressing Reality)) is based on
this IPQR model. Another popular outranking method is PROMETHEE (Preference Rank-
ing Organization Method for Enrichment of Evaluations) which is often used for group
decision making.

In ideal point methods, alternatives are evaluated based on their multidimensional
distance to a specific target—ideal point. The core of the ideal point methods lies in
the intuitive concept that the chosen alternative should be as close as possible to the
hypothetical alternative considered to be the best and as far away as possible from the
worst. This hypothetical ideal alternative provides the highest score on each considered
criterion. Ideal point methods differ mainly in the applied separation measures, i.e., the
way in which they calculate the separation of an alternative to the ideal solution. The
most commonly used ideal point method in GIS-MCDM is TOPSIS (Technique for Order of
Preference by Similarity to Ideal Solution).

The most common approach in GIS-MCDM decision making is weighted summation,
i.e.,, combining a weighting method and an aggregation method. It includes the following
four steps:

1.  Preparing criteria maps;

2 Generating alternatives;

3. Deciding relative importance of criteria;
4.  Creating the overall utility layer.

AHP, which is the most frequently used method for criteria weighting in the context
of GIS-MCDM [3], was first introduced in [11]. It relies on decomposing a decision problem
into a hierarchy of simpler sub-problems. The method is used to aggregate the relative
importance, or priority, on multiple levels. On the top level, the priorities of the criteria
are assigned by comparing any two criteria at the time, deciding their relative importance
with respect to the main objective. Similarly, if there are any sub-criteria, their priorities
with respect to the parent criterion are assigned on the next level and finally, at the bottom
level, the priorities are assigned to the alternatives with respect to each criterion. The
priorities are assigned in form of a pairwise comparison matrix based on the subjective
judgements of the decision maker. Fuzzy AHP, a variant of AHP, uses fuzzy numbers
instead of crisp numbers in the comparison ratios [12]. It is often used to minimize
the uncertainty related to the subjective judgements. More recently developed criteria
weighting models, such as the Best Worst Method (BWM) and Full Consistency Method
(FUCOM) attempt to overcome the shortcomings of AHP in terms of consistency and
robustness regarding subjectivity. BWM [13,14] and its fuzzy variant FBWM [15,16] use
an approach similar to AHP but instead of comparing each criteria with all the others, the
decision maker identifies the most important (best) and least important (worst) criteria
and then conducts pairwise comparisons between each of these two criteria and the other
criteria, significantly reducing the number of comparisons. FUCOM and its fuzzy variant,
Fuzzy Full Consistency Method (FUCOM-F), further reduce the number of comparisons to
only n-1, and yield more consistent results than both AHP and BWM [17,18].

2.2. Bounded Rationality and the Satisficing Model

The concept of satisficing as a decision-making model was first introduced in Simon [8]
as a descriptive model for how people actually make decisions. It describes a multi-criteria
decision-making strategy in which the decision maker provides the minimum value of an
alternative in terms of each of the considered criteria (acceptability threshold) and then
chooses the first alternative that satisfies the condition. The satisficing model is based on the
concept of bounded rationality, presented in Simon [7] (although the term bounded rationality
is first used in Simon [19]). Simon questions proposed models of rational behaviour that are
based on the assumption that the deciding subject always tries to make the optimal choice.
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In order for a choice to be considered rational according to these models, the deciding
subject needs to perform complex analyses and computations, such as determining the pay-
off function for each possible outcome, calculating the probability that a certain outcome
will ensue when a certain alternative is chosen, etc. These tasks, according to Simon, are not,
and indeed cannot be, performed in actual choice situations due to cognitive limitations and
the lack of time. The model suggested by the author implies that we, instead of performing
overly complex computations to obtain an “optimal” outcome, tend to perform a simpler
decision-making process which leads to a satisfactory outcome. Satisficing is used as a
stop rule, and the search stops when “a solution has been found that is good enough along all
dimensions” [20]. Gigerenzer [21] introduced the notion of adaptive toolbox as a framework
for bounded rationality. Adaptive toolbox is defined as a set of heuristics modelled “on the
actual cognitive abilities a species has, rather than on the imaginary powers of omniscient demons”.
These heuristics are designed for domain-specific goals, enabling fast and computationally
simple decisions. They also allow human beings to deal with high uncertainty, where we
cannot know the probabilities and /or consequences of different outcomes [22].

A notion of maximizing expected utility as a criterion of rational decision making
has been further criticized in Klein [23]. Based on the analysis of the boundary condi-
tions for optimizing decisions, compiled from the assumptions made in the literature,
Klein concludes that decision makers will be unable to optimize in field settings, as the
requirements are too restrictive to be applicable outside laboratory settings [23]. A recent
work by Lieder and Griffiths suggests, however, that although human decision making
deviates from expected utility theory, those deviations should not be seen as an indication
of human irrationality but rather as a reflection of people’s rational use of limited cognitive
resources [24,25].

The concept of satisficing as a model for behavioural decision making has been
evaluated in a number of studies. Gigerenzer and Goldstein [26] performed a study
where a number of algorithms based on the concept of satisficing, such as the “Take The
Best” algorithm, were compared with more rational inference procedures. Despite its
counter-intuitive name that suggests optimization, the “Iake The Best” algorithm is a
basic satisficing algorithm that only searches through a portion of the total knowledge
(information) and stops immediately when the first discriminating cue (criterion) is found.
The basic algorithm that discriminates between two alternatives is in Gigerenzer and
Goldstein [26] described as a five-step process:

1. Recognition principle: If only one of the two objects (alternatives) is recognized, choose
that object. If neither of the two objects are recognized, make a random choice.
Otherwise, proceed to step two;

2. Search for cue values: Retrieve from memory the cue values for the highest ranking

cue (criterion);

Discrimination rule: Decide whether the cue discriminates between the alternatives;

4. Cue-substitution principle: If the cue discriminates, stop search. Otherwise, go back to
step 2 and continue with the next cue;

5. Maximizing rule: Choose the object with the positive cue value, or choose randomly if
no cue discriminates.

®

The authors found that the “ITake The Best” algorithm matched, and in some cases, even
outperformed more rational inference procedures such as multiple regression. Satisficing
and the theory of bounded rationality were investigated in Agosto [27] in relation to young
people’s decision making in the World Wide Web. The results showed that participants in
the study in general made their decisions in accordance with the satisficing model. The two
major satisficing behaviours, namely reduction and termination, were observed during
the study. Reduction was demonstrated as relying on and returning to known sites, and
termination as stopping the search after the acceptable outcome was found. Zhu and
Timmermans [28] proposed a modelling framework for shopping behaviour incorporating
the principles of bounded rationality. The framework implements models based on three
basic heuristic rules (conjunctive, disjunctive and lexicographic rule), extended with a
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threshold heterogeneity (probabilistically distributed thresholds). These heuristic models
were estimated and compared with multinomial logit models on four decision situations:
go home, choose direction, rest and choose preferred store. The results of the comparison showed
that the heuristic models were superior to the multinomial in all four modelled decision
situations. Nakayama and Sawaragi [29] developed the Satisficing Trade-off Method, a
decision-making method based on satisficing, as an alternative to computationally and
cognitively complex interactive multi-objective optimization methods. The first step in
their five-step method is setting the ideal point that remains fixed throughout the process.
In step two, the decision maker sets the aspiration levels for all attributes. In step three, a set
of acceptable solutions is obtained by the Min—-Max method. The trade-offs are performed
in step four, where the decision maker classifies the criteria into three groups: the criteria
to be improved more, the criteria that may be relaxed, and the criteria which are accepted
as they are. The new acceptable levels of criteria are set in this step. Finally, in step five, a
feasibility check is performed. The results of the performed tests showed that the method
was very effective for problems with a large number of objective functions and expensive
auxiliary optimization.

Although Simon’s theory of bounded rationality has been widely recognized, it seems
to have had little influence on the development of decision-making models and methods.
Jankowski [30] notes that the development of prescriptive decision models and methods
shifted the focus from theoretic concepts of decision making towards algorithmic and
computational aspects of modelling. Decision theory has been marginalized in prescriptive
models, which often adopt a utility maximizing stance. This applies not least to spatial
decision support systems and GIS where, despite the findings in the field of behavioural
decision making, the rational model of decision making persisted as a theoretical construct
used in normative models [30].

2.3. Interactive Visualization in Decision Making

The development of human insight is aided by interaction with a visual interface, and
Pike et al. [31] see this as the central percept of visual analytics. Even though interactive
features are present in virtually every visualization tool regardless of the application area,
little attention has been paid to interaction [32] and it receives little emphasis in visualiza-
tion research [33]. This seemingly contradictory claim is based on the observation that most
of the research related to interaction is concerned with the analysis and design of the user
interface rather than the interaction itself. Beaudouin-Lafon [34] pointed out that user inter-
faces are the means and not the end of interaction. We need to be concerned with designing
the interaction, rather than interfaces, to control the quality of the interaction between the
user and computer. In what he called the Visual Information Seeking Mantra, Shneiderman
summarized the basic principle of interaction design as “Overview first, zoom and filter,
then details-on-demand” [35]. The issue of interaction design is addressed in Yi et al. [32],
where the authors proposed the following seven general categories of interaction tech-
niques used in information visualization: select, explore, reconfigure, encode (alter the visual
representation), abstract/elaborate, filter, and connect (highlight relationships between data
items). Rather than being organized around the low-level interaction techniques provided
by the system, these categories are organized around a user’s intent while interacting
with the system. Users’ intent, as well as preferences and competence, are also important
parts of the suggested guidelines for visualization recommendation systems—systems
that can identify and recommend visualizations relevant for a specific task—suggested in
Vartak et al. [36]. Other factors relevant for guidelines are data characteristics (correlations,
patterns and trends, etc.), semantics and domain knowledge, and visual ease of under-
standing. In accordance with the recommendations, the quality of visualization is to be
judged by relevance for the task, surprise (relevant visualization that the user has not asked
for), non-obviousness, diversity, and coverage. Elmqvist et al. [33] explained the skewed
balance between the visual and the interactive aspects of visualization in visualization
research by the inherent intangibility of the concept of interaction, that is difficult to de-
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sign, quantify, and evaluate. Based on the analysis of existing visualizations with efficient
interactive features, the authors suggest practical interaction design guidelines which they
call fluid interaction. A fluid interface (i) promotes flow (a mental state of immersion in
an activity); (i) supports direct manipulation based on continuous representation of the
objects, physical actions instead of complex syntax, and rapid and reversible operations
with immediately visible impact; and (iii) minimizes the difference between the state of
the system and the user’s perception of it, as well as the difference between the allowable
actions and user’s intentions.

2.4. Interactive Visualization in GIS Decision Support Systems

The importance of interactivity in geospatial decision support systems can hardly
be overstated. Factors such as the complexity and multi-dimensionality of data, large
number of alternatives, and uncertainty regarding input data and/or expected outcomes
set high demands on the design and efficiency of the visualization framework and its
interaction features. The negative impact of interface complexity on geospatial decision
making has been identified in a number of studies. The results of the study presented in
Vincent et al. [37] showed that, when using interactive maps to improve spatial decision
making, interface complexity influenced decision outcomes more than the decision com-
plexity. Moreover, participants made better decisions using the simpler interface. A related
issue of complexity of the representation methods was investigated in Cheong et al. [38].
In the study, participants were given different representations of uncertainty. The results
showed that there is little difference in the decision-making performance between groups if
there is enough time to focus on the problem. Under time pressure, however, participants
using simpler representation models performed better than the participants using more
advanced cartographic representations. Andrienko and Andrienko [39] addressed the
issue of complexity of geospatial decision support tools. There is a tendency to design
generic systems that will be applicable to many types of data sets and which address
the needs of many different users. This leads to complex systems that are difficult to
use. Instead, the authors suggested that systems should be designed in accordance with
the concept of a sufficient minimum, i.e., systems should be capable of recognizing which
instruments make a minimum combination appropriate to analyse a specific data collection
and simplify itself accordingly. The development in the area of interactive visualization
as a support for geospatial decision making has more recently led to a number of novel
methods and tools. These include generic tools [40-43], as well as tools aimed towards
specific tasks, such as the interpretation and understanding of the impact of simulated
flood risks [44-46], watershed simulation [47], exploring socio-economic vulnerability [48],
geospatial network of actors [49], marine pollution monitoring [50], the transnational flow
of hazardous waste [51], monitoring climate change [52], prediction and the analysis of
genomic islands [53], and many more. Most of the task-specific geospatial decision support
systems developed during the last four or five years are Web GIS systems, i.e., client-server
systems where the server is either a dedicated GIS server or a custom server application,
and where the client is a web browser. Elwood and Leszczynski [54] refer to Web GIS
systems as new spatial media that enable everyday users, not only experts, to access and
engage in the decision-making process. In a way, Web GIS democratizes geospatial decision
making, and the trend of using the Internet as a primary platform for GIS systems is likely
to continue.

3. Method

Satisficing is introduced as a descriptive model for a behavioural multi-criteria
decision-making strategy that is actually deployed when we make decisions. Accord-
ing to this strategy, the decision maker provides the minimum value of an alternative
in terms of each of the considered criteria (acceptability threshold) and then chooses the
first alternative that satisfies the condition. This implies that the decision process is se-
quential, and that the final choice will depend on the order in which the alternatives are
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evaluated [55]. However, Malczewski and Ogryczak [56] argued that, even if an individ-
ual behaves in accordance with satisficing principles of rationality, they still have some
tendency towards maximizing utility. Malczewski and Rinnner [1] referred to this type of
behaviour as quasi-satisficing rationality. According to this principle, the decision maker
should identify the most preferred alternative from the set of remaining acceptable so-
lutions, irrespective of the attainability or aspiration levels. The Even Swaps on Reduced
Data Sets (ESRDS) model presented here adopted this view and provides the means of
further evaluating the alternatives that satisfy all the conditions in order to select a sin-
gle most preferred alternative. Furthermore, ESRDS is based on the idea of interactive
multi-objective programming methods, according to which the most preferred alternative
is to be determined through a progressive communication process between the decision
maker and the application. This procedure is in Malczewski and Rinnner [1] described
as consisting of two phases: the dialogue phase, in which the decision maker analyses
information and articulates their preferences; and the computational phase, in which a
solution or set of solutions is generated. This interaction is continued until an outcome is
considered acceptable by the decision maker.

The starting point of ESRDS is the formal statement of the normative satisficing
procedure given in MacCrimmon [55]:

Suppose a set of minimal attribute values (g1, g2, .., $») is defined on A1 X Ay X ... X Ay
An alternative j is satisfactory only if g; < a;/ for all i. An unsatisfactory alternative j/—that
is, an alternative for which a;/ < g for some i'—is dropped from consideration.

The model upon which the decision-making framework presented in this work was
based is explained in Section 3.1. In Section 3.2, we give an overview of the features of the
visualization framework.

3.1. ESRDS Decision-Making Model

At the beginning of a decision process, the acceptability threshold T, for each criterion
C; is set to the minimum value that an alternative has in terms of that particular criterion:

VCZ‘ : TCi = Cimin (1)

Thus, all alternatives in the set are considered acceptable. When the acceptability
threshold for criterion C; is adjusted, all alternatives in the set that have the value in terms
of C; lower than the acceptability threshold T¢; are discarded from the set. The set of valid
alternatives A is then defined as

€A & VG X ZTC,- 2)

where ac, is the value of a in terms of the criterion C;. By adjusting the acceptability
thresholds of all criteria, the user is able to reduce the number of alternatives as only the
alternatives conforming to all the acceptability thresholds are kept in the set. The process
of adjusting acceptability thresholds is iterative, i.e., the decision maker can repeatedly
tighten or loosen the threshold for any of the criteria in order to reduce or increase the
set of acceptable alternatives. An important feature of ESRDS is the automatization of
the threshold update process. This feature may be used at any stage as long as there is
at least one criterion C; where Tc, > C; . . However, it is best used after the set of valid
alternatives has been reduced to a manageable size by adjusting the acceptability threshold
manually, and we want to further analyse the decision space by exploring dependencies
between pairs of criteria, while keeping the size of the set of alternatives unchanged.

The threshold update automatization used in ESRDS aims to provide an interactive
tool for what-if analysis. In a typical scenario, the user chooses a criterion, Cyesp, that
will respond to an adjustment in another criterion Cy,s. Ideally, when the acceptability
threshold for the criterion C,,s is changed by x units, there is a value y such that, when
the threshold value for Cy.sp is changed by y units, the total number of valid alternatives,
C4, remains unchanged. However, it is not always possible to find y that will generate
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a set of alternatives of size C4. Assume that C4 = 50 and the decision maker increases
the threshold for Cy.y, Tc, 47 8O that only 30 alternatives are left in A. The threshold for
Cresp, Tc,.s,» Needs to be decreased so that 20 alternatives that have previously been filtered
out by the higher value of T, are added to the set. In reality, it might be the case that
decreasing Cr.sp by some value ¢ generates 18 new alternatives, and decreasing it by ¢ + 1
gives 23 new alternatives. In such cases, our algorithm chooses y that gives the smallest
possible value of d, where d is the difference between C’ 4 and C,; in this case, d = 2 and

y=c:

Ca=ZforTc,, =p, Tc,, =4

C'a=Z+d,d>0, forTc,, =p+x Tc,, =7y )

Through an iterative process, the decision maker sets and adjusts the threshold values

for the criteria and analyses intermediate results. When the decision maker is content with

the set of alternatives obtained by the process, the dominated alternatives are removed

from the set. An alternative a’ is said to be dominated by an alternative « if it is inferior to
« on at least one criterion and not superior to & on any other criteria:

a> o = Vk: u(ay) = ulay) A 3k:u(ag) = ulay) 4)

where u () is the value of a in terms of criterion k.

Finally, from the set of the alternatives which conform to the decision maker’s as-
pirations, the most preferred alternative is selected by applying even swaps. Even swaps
is a trade-off-based method for multiple criteria decision making under certainty. The
essence of the issue of trade-offs under certainty is described in Keeney and Raiffa [57]
as “How much achievement on objective 1 is the decision maker willing to give up in order to
improve achievement on objective 2 by some fixed amount?”. As an iterative method based on
dimensionality reduction, even swaps was first introduced in Hammond et al. [58]. In
Hammond et al. [59], it is defined by the following five steps:

1.  Determine the change necessary to cancel out criterion R;

2. Assess what adjustments need to be done in another criterion, M, in order to compen-
sate for the needed change;

3. Make even swap. An even swap is a process of increasing the value of an alternative
in terms of one criterion and decreasing the value by an equivalent amount in terms
of another. After the swaps are performed over the whole range of alternatives, all
alternatives will have the same value on R and it can be cancelled out as irrelevant in
the process of ranking the alternatives;

4.  Cancel out the now-irrelevant criterion R;

5. Eliminate the dominated alternative(s).

The process pipeline for the decision-making model is presented in Figure 1.

Threshold
adjustment

Visual
feedback

Input data

—ﬁ Analysis '—» Decision

Figure 1. The process model for the framework.

3.2. Visualization Framework

The decision-making framework presented in this paper emerged from the recognition
of the necessity of integrating algorithmic techniques and visualization in order to create
sophisticated interactive tools for GIS-MCDM [60,61]. It follows the principle suggested in
Keim et al. [61], which states that in any analytical process, the user has to be the ultimate
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authority in directing the analysis, and that the system must provide effective means of
interaction that will facilitate the user in any specific task. Visualization features of the
framework are designed to give the user full insight into the decision space, both in the
attribute and in the geographical space, as well as means of isolating and analysing a
limited part of the decision space. The visualization framework presented here includes
the following three units:

1. Threshold adjustment unit. This is the core interaction unit, in which the user adjusts
threshold values for the criteria. The direct result of an adjustment is shown for the
adjusted criterion and every other criterion, if affected. The unit panel contains sliders
for threshold adjustments for each of the criteria. For each criterion, a histogram is
provided that shows the distribution of the values in terms of that particular criterion;

2. Attribute space analysis unit. This panel is shown when the set of acceptable alternatives
is reduced to a manageable level. A parallel coordinates plot is used to visualize the
relations between the remaining acceptable alternatives in attribute space;

3. Geographical space analysis unit. A geomap is used for visualization of the positions of
the acceptable alternatives in geographical space;

The interaction path between different units is given in Figure 2.

Details
on demand
Threshold
adjustment
unit
v
Attribute Geographical
space P space
unit - unit

Figure 2. The interaction path between different units of the framework.

4. Result

In order to demonstrate the proposed framework, we developed GISAnalyzer, a deci-
sion support tool that implements the model and the visualization framework presented in
Section 3. The initial setup is shown in Figure 3.

The application takes input for each criterion from an ESRI ASCII grid file. Each file
contains values of the alternatives in terms of one particular criterion, i.e., the number
of input files corresponds to the number of criteria. After loading the input data, the
main window containing the threshold adjustment panel (Figure 3, 1) and the map panel
(Figure 3, 2) are shown. The threshold adjustment panel is shown with default settings,
where the threshold value for each criterion is set to the minimum value that an alternative
has in terms of that particular criterion. Values of the alternatives in terms of each of
the criteria are obtained by scaling the nominal values to a 0-255 scale. For the more, the
better type of criteria, alternatives with highest nominal values have the value 255 and
alternatives with lowest nominal values have the value 0. The opposite applies to the less,
the better criteria. The geographic map is shown with all acceptable alternatives, which in
the initial setup means all alternatives coded red. This is due to the fact that the colour
coding in the map changes depending on which criterion is currently manipulated. Since
none of the criteria are initially selected, the colour coding in the map does not consider
the values, but only the geographic positions of the alternatives. A bar chart visualization
of the number of alternatives conforming to the acceptability threshold value for each of
the criteria serves as a complement to the threshold adjustment panel (Figure 3, 3).
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Figure 3. The main window of GISAnalyzer; initial setup, after the data for all criteria are loaded.

The main unit of the application is the threshold adjustment unit. The threshold for each
criterion is adjusted with a slider, and a histogram is used to represent the distribution
of the values of the alternatives in terms of each of the criteria. When the threshold is
adjusted for any of the criteria, the histogram is updated and the part filtered out by the
change is coloured light grey. Throughout the adjustment process, the user can choose
either non-filtered or filtered adjustment panel view. In the non-filtered view (Figure 4a), the
histogram for a particular criterion concerns all alternatives conforming to the threshold
value for that particular criterion, regardless of whether they are acceptable or not (whether
or not they conform to all thresholds). In the filtered view, the histogram only concerns
the acceptable alternatives (Figure 4b). If the user wants to discard a certain criterion, this
can be done by unchecking the criterion. The current acceptability threshold is saved, and
the criterion is excluded from the calculations until it is checked again. When a threshold
for at least one criterion C; is set to a value larger than C; ., the option for automatized
adjustment is made available. The user can use any criterion as the adjusting criterion
(Cref), but only a criterion with Tc, > C; . can be chosen as the one to be automatically
adjusted (Cresp)-

In the geomap, the currently acceptable alternatives (each alternative is represented
by a pixel in the map) are colour-coded from red to green based on the value in terms of
the criterion whose threshold is currently being adjusted. The alternatives with the lowest
value are coded red and the alternatives with the highest value are coded green. One
example is given in Figure 5.
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Figure 4. Different views of the threshold adjustment panel: (a) non-filtered view, where, for each
criterion, all alternatives conforming to the threshold value for that particular criterion are drawn;
(b) filtered view, where only alternatives conforming to all the thresholds are drawn, with one
criterion (Power distance) discarded (equivalent to setting the threshold for that criterion to C,,;,)
and another criterion (Distance to cities) selected as the criterion to be automatically adjusted, Cresp.
Red numbers in the upper right corner of each histogram denote the number of alternatives with a
given value.

2 Gisvisualize by NoMoreloudMusic nc. - o x

& Fiter outunavalable atematives from the histogram

& Osancetoctes e
o [l
, | |

Showmap &1

Actve altematives: 4898

'2__‘{" r7.3§#';%!:1 L ey

i A4 L

Figure 5. The main application window during the threshold adjustment process. The initial set
of 15,555 alternatives is reduced to 4898, by adjusting the thresholds values for three criteria. The
threshold for Distance to cities is increased to approximately 8500 m, the threshold for Power distance to
approximately 1100 m, and the threshold for Road distance to approximately 14,000 m. The remaining
acceptable alternatives are colour-coded based on the value in terms of Road distance, as it happens to
be the criterion currently being adjusted.
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In some cases, when the number of remaining acceptable alternatives is small and
the alternatives are spread over the wider area, it may be difficult to see them on the
map, especially if the map colour at the area where the alternatives are drawn is similar
to the colour-coding of the alternatives. In such cases, the user has an option to show a
desaturated map. Then, the alternatives, as they remain coloured, protrude in contrast
to the desaturated map, making it easier for the decision maker to see their placement
(Figure 6).

Figure 6. Geomap in default view (a) and in desaturated view (b).

When the number of remaining acceptable alternatives is less than a predefined limit
L1, the attribute space panel is shown. The values of the alternatives in terms of each of the
criteria are shown in a parallel coordinates plot (Figure 7).
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Figure 7. Each of the five coloured axes in the parallel coordinates plot holds the values of the
remaining acceptable alternatives in terms of one of the criteria. The last two axes represent longitude
and latitude of the alternatives in the geographical space. Polylines representing the alternatives are
colour-coded from green (best) to red (worst).

This plot is drawn with n + 2 axes, where n is the number of criteria. The other
two axes represent the longitude and latitude, respectively, of the alternatives in the map,
i.e., they mirror the geographic location of the alternatives. In GISAnalyzer, we chose
to make the plot visible but non-interactive for L1 > C4 > L2, where C4 is the number
of acceptable alternatives, L1 is the maximum number of alternatives to be shown in
the plot, and L2 is the maximum number of alternatives for which the plot interaction
is enabled. While the plot still may be understood and interpreted for up to several
hundred alternatives (polylines), selecting a single polyline, which is a precondition for
an interactive feature, may be difficult and virtually impossible in a plot with too many
polylines. When the interactive feature is enabled, all acceptable alternatives are marked
in the geomap. The interaction between the map and the plot is bidirectional. When a
polyline is selected, the corresponding alternative is encircled in the map. If an alternative
is selected (clicked on) in the geomap, the corresponding polyline is highlighted in the plot.
Selecting an alternative in the geomap provides detailed information, which consists of
textual information regarding the values in terms of each of the criteria for the selected
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alternative, as well as a bar chart (Figure 8a). The bar chart gives a hint of the overall value
of an alternative by presenting the portion of the maximum value in terms of each of the
criteria for the alternative in question. The user may select an area in the map, in which
case polylines corresponding to all acceptable alternatives within the area are highlighted
(Figure 8b). Bar charts for the selected alternatives in this scenario are not available.

Ao
ok

S
b S 3

Figure 8. The interaction between the parallel coordinates plot and the geomap. When an alternative
is selected in the plot, it is highlighted in the geomap. Selecting the alternative in the geomap opens a
“detail-on-demand” window (a). When an area is selected in the geomap, all acceptable alternatives
within the selected area are highlighted white in the parallel coordinates plot (b).

In GISAnalyzer, we implemented a comparison feature which adds further possi-
bilities for a thorough analysis during the decision process, and we chose AHP as the
comparison method. Even though we are critical of the AHP method for its many short-
comings, not least in the way it is used in GIS-MCDM,, it is the most frequently used
decision-making method in geospatial decision making, and thus most likely to be familiar
to a user. It is important to emphasize that AHP is not an integral part of our framework,
but an extra feature of GISAnalyzer. After the user has performed an analysis and obtained
a final set of acceptable alternatives A, the comparison feature may be used to compare
the results with the results of handling the problem with AHP. The AHP functionality
implemented in the application cannot be used for the complete hierarchical AHP process,
but only to assign weights to the criteria (Figure 9).

For Aapp, the set of highest ranked alternatives obtained by AHP applies that
Ca,pp = Ca (the number of alternatives in A 4pp is equal to the number of alternatives in
A)andVa: a € A V a € Aygyp. The polyline for each alternative in A gpp is added to
the parallel coordinates plot. For the number of polylines after adding, R, applies that
(2% Cy) > Rp > C4. Ry = 2% Cy in cases when there are no common alternatives to AHP
and the threshold adjustment, and R, = C, in the opposite case, when the sets obtained
by AHP and the threshold adjustment are identical.
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Figure 9. AHP window. The “Apply” button is enabled if the relative importance values for the
criteria are consistent, i.e., if the consistency index CI < 0.1.

When the AHP is functionality is enabled, each polyline is colour-coded depending
on which of the following conditions is met:

1. a€A N a€ Agyp: magenta;

2. —(aeA) AN a€ Apgp: cyan;

3. a€ A AN —(a € Agyp): colour-coded from red to green based on the value of
Y1 u(ac;), where a is the alternative represented by the polyline, 7 is the number
of criteria, and u(ac,) is the value of a in terms of the criterion C;.

The portion of alternatives satisfying the conditionax € A A a € A,yp is visualized
by means of a complementary diagram as the intersection of two circles representing A
and A 4pp, respectively. It applies that A; = r x A, where Ay is the intersection area, Ac
is the area of one of the circles, r = k/(C4 + Capp — k), and k is the number of elements
of the set AU A 4pgp. The parallel coordinates plot and the complementary diagram are
shown in Figure 10. If the criteria weights are changed, i.e., if the changes are made in the
preference matrix in the AHP window, A ogp is updated and the parallel coordinates plot,
the complementary diagram, and the geomap are refreshed with the current values.
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Figure 10. The parallel coordinates plot and the complementary diagram after applying comparison
with AHP.

When the number of available alternatives is equal to or less than a predefined
maximum number of alternatives which is manageable by even swaps, the even swaps
feature is available to the decision maker. Even swaps opens in a separate window, where
the decision maker performs swaps. After each turn, the application removes dominated
alternatives, if there are any, and dismisses the reference criterion from further process.
An example of applying even swaps on a hypothetical solar farm site location decision
problem with five criteria is given in Figure 11. The full view of the application main
window after applying even swaps as well as the AHP comparison feature is shown in
Figure 12.

Reference criterion Distance to main roads [meters]

S

Al A2 A3 Ad A5 AB AT AR AS AlD

Response criterion:

Distance to main roads [m... 1300 (1300 1300

» | Slope [degrees] 4 10

Set Values

Changing Distance to main rads [meters] from 1400 to 1300is worth changing Slope [degrees] from 4to

Changing Distance to main roads [meters] from 7000 to 1300 is warth changing Slape [degrees] from 2to

0K

Figure 11. The status after three of the criteria were previously dismissed from further process and
seven dominated alternatives were removed. In the current step, Distance to main roads is chosen
as the reference criterion, and Slope is chosen as the response criterion. The values in terms of the
response criterion need to be adjusted in order to compensate for the adjustments needed to render
all three remaining alternatives equal (at the value of 1300) in terms of the reference criterion. This is
done by increasing the value in terms of Slope from four to five degrees for alternative A2, and from
two to six degrees for alternative A10. After this swap is performed, the reference criterion, Distance
to main roads, will be dismissed. The values in terms of the only remaining criterion, Slope, will be
five degrees for A2, ten degrees for A3, and six degrees for A10. A2 is chosen as the most preferred
alternative, as it has the best value on the only remaining criterion.
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Figure 12. The full view of the GISAnalyzer main window after applying even swaps to obtain the
most preferred alternative.

5. Discussion and Conclusions

In this paper, we presented a novel decision-making framework that emanates from
the need for intuitive and easy-to-use decision support systems for geospatial multi-criteria
decision making that will serve both expert and non-expert users. It is based on the concept
of satisficing; however, instead of fully adopting satisficing as the stop rule, the proposed
framework implements a quasi-satisficing model. This still allows the decision maker to
choose any alternative from the set of alternatives that satisfy all the conditions. At the same
time, it provides the option to apply even swaps upon the set of acceptable alternatives, in
order to choose the most preferred alternative.

Based on the pairwise comparison of alternatives, the even swaps method is not
applicable to geospatial decision problems in quasi-continuous choice models with large
numbers of alternatives. In [3] we presented GISwaps, a new method for geospatial decision
making based on even swaps which uses virtual alternatives that are representative for the
whole decision space in order to interpolate the compensation values needed to compensate
for adjustments in the reference criterion for all alternatives. The satisficing-based approach
deployed in the present study relies on an iterative data reduction process which enables
the use of the even swaps method in its basic form in geospatial decision making. Including
the even swaps method into our decision-making framework adds to its applicability and
efficiency while it does not significantly increase its complexity, as even swaps in itself is a
rather intuitive method based on trade-offs, is easy to understand and is reasonably easy
to apply.

Compared to the established models used in GISSMCDM—weighted summation
methods, outranking methods, and ideal point methods—the advantage of ESRDS is two-
fold: (1) it can handle an almost unlimited number of alternatives; and (2) it does not rely on
criteria weighting. In the context of GIS-MCDM, the decision space is usually represented
in a quasi-continuous choice model, with the number of alternatives limited only by the
resolution of the digital model of the geographic area of interest. Under such conditions,
analysis and pairwise comparison between alternatives is not feasible, as it would require
2?2_11 i comparisons for n alternatives. Weighted summation, outranking, and ideal point
methods all deploy criteria weighting at some stage, which is not problematic when the
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number of alternatives is small. In GIS-MCDM, however, assigning weights to criteria
associated with map layers is usually done without considering the values of the actual
alternatives—a mistake known in decision theory as the most common critical mistake [57].
Suppose that we want to buy a house and we choose between house A which costs
USD 100,000, house B which costs USD 150,000, and house C which costs USD 200,000.
Obviously, price would be a very if not probably the most important factor. However, if
the prices were USD 100,000 for house A, USD 105,000 for house B, and USD 110,000 for
house C, we would probably consider price to be much less relevant.

The comparison between the different models (Table 1), in terms of the number of al-
ternatives they can manage, assumes correct usage of criteria weighting, i.e., judging the im-
portance of criteria considering the values of alternatives. In terms of handling uncertainty,
ESRDS, just as the remaining compared models, assumes that outcomes and consequences
are known in advance, i.e,, it is not suitable for decision making under uncertainty.

Table 1. Comparison between ESRDS and ranking, ideal point, and weighted summation methods
used in GIS-MCDM.

Method Nr. of Criteria Handles
Alternatives Weighting Uncertainty

ESRDS Large No No

Weighted summation methods Small Yes No

Outranking methods

(ELECTRE, PROMETHEE) Small Yes No

Ideal point methods

(TOPSIS) Small Yes No

The interactive visualization, which is an integral part of the framework, enables
the efficient use of ESRDS in the geospatial context. It provides visual feedback on the
decision maker’s every action throughout the decision process in two different views that
represent the attribute and the geographical space, respectively. This, in combination with
the detail-on-demand feature, gives the decision maker the opportunity to analyse and
compare the outcomes of different scenarios and decision paths. Furthermore, the available
means of interaction help the decision maker gain insight in attribute dependencies and
discover the potential relations between the criteria that would otherwise remain hidden.

The presented framework and GISAnalyzer that implements it are results of the effort
to incorporate the findings in the field of behavioural decision making into a prescriptive
decision model. The framework will be evaluated in a future study, focusing on two main
issues: how efficient is the proposed model in the context of GIS-MCDM, and to what
extent does the interactive visualization facilitate the decision maker in learning about and
better understanding the decision problem.
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