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Abstract: The effect of mechanical night ventilation on thermal comfort and electricity use for cooling
of a typical historic office building in north-central Sweden was assessed. IDA-ICE simulation
program was used to model the potential for improving thermal comfort and electricity savings
by applying night ventilation cooling. Parametric study comprised different outdoor climates,
flow rates, cooling machine’s coefficient of performance and ventilation units’ specific fan power
values. Additionally, the effect of different door schemes (open or closed) on thermal comfort in
offices was investigated. It was shown that night ventilation cannot meet the building’s total cooling
demand and auxiliary active cooling is required, although the building is located in a cold climate.
Night ventilation had the potential in decreasing the percentage of exceedance hours in offices by up
to 33% and decreasing the total electricity use for cooling by up to 40%. More electricity is saved with
higher night ventilation rates. There is, however, a maximum beneficial ventilation rate above which
the increase in electricity use in fans outweighs the decrease in electricity use in cooling machine.
It depends on thermal mass capacity of the building, cooling machine´s coefficient of performance,
design ventilation rate, and available night ventilation cooling potential (ambient air temperature).

Keywords: night ventilation; historic buildings; office buildings; building energy simulation; IDA-ICE;
Nordic climate

1. Introduction

The European Union (EU) has set an objective to be climate neutral by 2050. This implies that
80–95% reduction in greenhouse gas (GHG) emissions, compared to the 1990 levels, needs to be achieved
through pursuing the most energy efficient and economically feasible measures. It is estimated that
the EU building sector accounts for about 36% of CO2 emissions and 40% of used energy [1] and over
25% of buildings are historic [2]. Therefore, one of the main measures to achieve these goals is to focus
on improving energy efficiency in the building sector, including historic buildings.

One part of energy use in buildings, especially for office and commercial buildings, is cooling
demand. Night ventilation (NV) is one of the promising techniques which has shown to significantly
reduce buildings’ cooling demand and improve thermal comfort [3], specifically when applied to
massive/heavy buildings [4]. This is an indirect way of cooling in which the building is ventilated with
colder ambient air during nighttime to cool down its structural elements. The cool fabric can then
absorb the heat flows the following day and provide comfort by reducing both the indoor air and wall
temperature rises.

The efficiency of NV is strongly dependent on some main parameters: (1) daily amplitude of the
ambient temperature (higher effectiveness with higher amplitude; specifically with lower minimum
ambient temperature), (2) the difference between indoor and ambient temperatures mainly during
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night period, (3) the NV rate, (4) the NV operation period and duration, (5) the thermal capacity of the
building, and (6) efficient coupling of air flow and thermal mass (an example of inefficient coupling is
short circuit air flow through the windows) [5].

Some studies have evaluated the effect of climatic situations (including the ambient temperature)
on the potential of NV strategy. Artman et al. [6] showed that Northern European climates (including
the British Isles) offer a significant potential for cooling by NV, while in Central, Eastern and even
some regions of Southern Europe, additional cooling systems are required to fulfill thermal comfort
during a series of warmer nights at some locations. It was depicted that in southern Spain, Italy and
Greece, NV might be promising for hybrid systems. Another study by Artmann et al. [7] assessed the
influence of the future climate warming on NV potential and showed that by 2071–2100, the decrease
in mean cooling potential will be in the range of 12.5–37.5 W/m2, depending on season, location and
the emission scenarios. Jimenez-Bescos [8] simulated the effect of the future climate scenarios on the
required NV rates with the help of thermal mass for reducing overheating in the buildings located in
London Islington. It was shown that while NV rates over eight air changes per hour (ACH) could
provide significant overheating reductions in the short term, in the long term, the 2080s, NV rates less
than 10 ACH have very low influence for this purpose, less than 3% and 8% for high and medium
emissions scenarios, respectively. Kolokotroni et al. [9] simulated how urban heat island phenomenon
can increase the building summer cooling demand and deplete the NV potential. They showed that,
during a typical hot week and in the same location, the rural reference office has 84% of the cooling
demand of the urban one. It also depicted that a rural optimized office, unlike an urban one, could
maintain temperatures below 24 ◦C without artificial cooling and would need 42% of the cooling
required for an urban optimized office.

Several parametric studies using Building Energy Simulation (BES), pointed out the important
influence of different building design and operational parameters including thermal mass of the
building [10], NV rate [11,12] and NV period and duration [12] on the effectiveness of NV strategy in
different climatic conditions. The results of some studies have shown more than 60% cooling load
reduction by increasing building time constant between 400–1000 h [13], up to 3 ◦C reduction in peak
indoor air temperature for high thermal mass [5,14], 2–3 ◦C reduction in indoor temperatures by
doubling the building mass (800 kg/m3 to 1600 kg/m3) [15], and 3–6 ◦C indoor temperature decrease
depending on the amount of thermal mass, the rate of NV, and the temperature swing of the site
between day and night [16].

The higher the NV rate, the higher the effectiveness of the strategy; there may exist some thresholds,
however. The results of some parametric studies using BES have depicted the achievable reduction
of the peak indoor temperature up to 1 ◦C as well as attained comfort criteria with NV rates lower
than 10 ACH for Spanish climates (further increases produced marginal improvements) [17] and for
maritime Irish climate [15]. Some studies have shown reduction in the mean radiant temperature of
building’s indoor surface up to 3.9 ◦C at 8:00 am with NV rate of 10 ACH for the Northern Chinese
climate [4], and a 39–96% decrease in the overheating hours (with natural NV) and 48–94% energy
reduction (with air conditioning systems) with the NV rates of 10–30 ACH for the Greek climate
(Athens) [5].

Different suggestions have been proposed regarding the influence of NV runtime (including
the start point and the duration) on the effectiveness of NV strategy. They include, among others,
NV duration with 5 a.m. in the middle of the period (such as 4 a.m. to 6 a.m.) [18] and longer NV
duration and closer NV period to the active cooling period [4,12,19,20].

Many parametric studies, using BES, investigated the influence of NV strategy on both
improvement of thermal comfort and reduction of energy use for active cooling in office buildings.
Some studies have shown the potential of NV in the form of determining the optimal NV flow rate
over which further increase in ventilation rate, produces marginal improvements in thermal comfort in
the building; dependent on the thermal mass capacity of the building [4,5,17]. These studies, afterward,
calculated the amount of saved energy for active cooling based on this maximum beneficial ventilation
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rate. However, for mechanically driven NV, the electricity use in ventilation unit’s fans needs also to
be taken into account. In other words, the maximum beneficial NV rate is the ventilation rate which
results in the minimum total energy use which consists of energy use for active cooling plus electricity
use in ventilation unit’s fans. For NV rates above this maximum limit, the amount of increase in
electricity use in fans outweighs the amount of decrease in energy use for active cooling and, therefore,
the total energy use starts increasing.

Lain and Hensen [21] performed a parametric study on the optimization of mechanical NV
system in an office building, including two NV rates and the mechanical cooling system’s coefficient of
performance (COP) 2.5. They illustrated that due to the relatively high COP value, the electrical energy
use in the fans can outweigh even the large cooling energy savings by NV. However, they did not
evaluate the potential of NV for other COP values. In fact, cooling systems with lower performance,
lower COP values, might result in higher potential of NV for cooling energy savings. The evaluation of
NV potential for cooling energy savings for various cooling system’s COP values has not been widely
covered in the literature and a research gap is recognized in this area.

Guo et al. [22] evaluated the influence of the key design parameters on NV performance indicators
using a holistic approach integrating sensitivity and parametric simulation analyses. They concluded
that the window-wall ratio, internal convective heat transfer coefficient, internal thermal mass level,
and NV rate are the most important parameters. Percentage outside the range (POR), from the thermal
comfort improvement category, ventilative cooling advantage (ADV), from the energy efficiency
category, and cooling requirements reduction (CRR), from the ability to reduce cooling energy use
category, were recommended to evaluate the NV performance.

In the present study, the effect of mechanical NV strategy on both thermal comfort and electricity
use for cooling of a typical historic office building in north-central Sweden was assessed. The NV
performance indicators from thermal comfort improvement and energy efficiency categories were
used in the assessment. In the former, POR was applied and, in the latter, the total electricity use for
cooling, comprising the electricity use in cooling machine plus the electricity use in ventilation system,
was compared in different cases. The IDA indoor climate and energy (IDA-ICE) simulation program
was used to model the potential for improving thermal comfort and electricity savings by applying
NV cooling. The parametric study comprised different outdoor climate conditions, flow rates, cooling
machine´s COP and ventilation unit’s specific fan power (SFP) values. In addition, the effect of different
door schemes (i.e., open doors or closed doors) on thermal comfort in the offices was investigated.

2. Case Study

This study is based on the design and structure of the City Hall of Gävle in Sweden. The City
Hall is a typical historic building, refurbished to an office, with the usable floor area of around
2100 m2. A detailed description of the building was presented in the previous published paper by
Bakhtiari et al. [23]. The building consists mainly of 66 spaces: small office rooms, corridors, open-plan
offices/seminar rooms, stairwells/entrance halls, with heavyweight construction and large windows.
The height of each floor level is around 4 m, except for the open-plan offices/seminar rooms (around
5 m). The parametric study has been performed based on the third floor of the four-story building,
which is a representative floor level. The building of the City Hall of Gävle is shown in Figure 1.
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Figure 1. The building of the City Hall of Gävle (photo: Abolfazl Hayati). 

3. Materials and Methods 

Methods used in this study include on-site measurements, including logging on the building 
management system (BMS), and applying a BES tool. An overview of the methods is shown in Figure 
2, and it can be divided into five main steps. In the first step, the input and calibration data were 
collected from on-site measurements and BMS logging, and the initial BES model of a non-occupied 
zone was created. In the second step, the BES model of the zone was calibrated. The final calibrated 
BES model included the construction materials normally used at the time the City Hall was 
constructed [24]. In the third step, the BES model of a representative floor level was created with the 
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Figure 1. The building of the City Hall of Gävle (photo: Abolfazl Hayati).

3. Materials and Methods

Methods used in this study include on-site measurements, including logging on the building
management system (BMS), and applying a BES tool. An overview of the methods is shown in Figure 2,
and it can be divided into five main steps. In the first step, the input and calibration data were collected
from on-site measurements and BMS logging, and the initial BES model of a non-occupied zone was
created. In the second step, the BES model of the zone was calibrated. The final calibrated BES model
included the construction materials normally used at the time the City Hall was constructed [24].
In the third step, the BES model of a representative floor level was created with the same construction
materials as the second step. In the fourth and fifth steps, using the floor-level BES model, the thermal
comfort and energy use analyses were carried out.

3.1. Calibration

The numerical analyses were carried out using the dynamic simulation software IDA-ICE version
4.8. IDA-ICE has been tested and validated according to various international and standard tests [25–29].

The aim was to simulate a floor plan of the building for the parametric study. In order to get the
materials and the thermal performance of the structures reasonably accurate, a simulation model of a
non-occupied office room was calibrated. The IDA-ICE simulation program supports only one-dimensional
heat transfer, while the windows have niches which are two-dimensional thermal bridges. The niches
were modelled as equivalent walls with one-dimensional heat transfers and the equivalent thicknesses
were calculated using COMSOL Multiphysics (CM) simulation program version 5.3.

The modeled building in IDA-ICE is oriented with 40◦ clockwise from north which was measured
on site. The shading effects of neighboring buildings were modelled by non-transparent bars
(shading building) based on estimated heights and distances to the building of the City Hall using
on-site observation.

3.2. Calibration of One Zone

In order for BES models to be used with any degree of confidence, it is necessary that the model
closely characterizes the actual behavior of the building. The purpose of model calibration is to
decrease the discrepancies between BES and measured building performance.
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With the aim of calibrating the BES model, a set of detailed measurements were done in a
non-occupied office room in the building, with mechanical ventilation turned off. The room was
situated on the last floor facing northwest with the minimum solar radiation during the day. The room
size was 4 × 3.2 m and the floor–ceiling height was 2.9 m. The window size was 1.3 (width) × 2.6 m
(height) and without internal shading.

The calibration of the office’s BES model was done based on the heating demand of the office
during the measurement period. An electrical radiator in which the operative temperature was
controlled by the thermostat was applied in the model.

A manually tuned iterative process of simulation runs aiming at reducing discrepancies between
simulated and measured data was used for calibrating the model of the selected office room. The iterative
process was performed by calculating two principal uncertainty indices at each runtime including
Normalized Mean Bias Error (NMBE) and Coefficient of Variation of the Root Mean Square Error
(CV(RMSE)) [30].

The calibration indices were calculated as follows:

NMBE =
1
m
·

∑n
i=1(mi − si )

n− p
× 100 (%) (1)

CV (RMSE) =
1
m

√∑n
i=1(mi − si)

2

n− p
× 100 (%) (2)

where mi is the measured value, si is the simulated value, n is the number of measured data points,
and m is the mean of the measured values. P is the number of adjustable model parameters which,
for calibration purpose, is suggested to be zero in Equation (1) and to be one in Equation (2) [31,32].
Table 1 shows the calibration criteria proposed by ASHRAE Guideline 14 [33].

Table 1. The calibration criteria proposed by ASHRAE Guideline 14 [33].

Calibration Criteria (%) Index ASHRAE Guideline 14

Monthly criteria NMBE ±5
CV (RMSE) 15

Hourly criteria NMBE ±10
CV (RMSE) 30

After the first set of simulation runs, the heat transmission through the internal walls as well as
the construction materials were identified as the influencing parameters on the difference between the
simulated and measured data. In the final calibrated model, the temperature profiles of the adjacent
zones (based on BMS logged data) as well as the typical constructions used in buildings at the time
when City Hall was built [24] were taken into account. Thermal bridges along different joints were
also implemented.

3.3. Measurements Used for Calibration

An electrical radiator, on/off controlled by thermostat, was used to heat up the room during the
period 12th–17th May 2018. During this period, the hydronic radiator was shut off, the ventilation
supply and return devices were completely sealed, and the room’s closed door was taped to ensure
that only the electrical radiator heated up the room.

The electrical power measurements were done at one-minute intervals using an energy logger.
Room air and surface temperatures were measured at five-minute intervals using thermistor sensors
for temperature which were connected to a data logger. A vertical rod with attached thermistor
sensors for temperatures at four different heights was placed in the middle of the room to measure
room air temperature. Room air temperature was calculated as the average of measured values at
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the four different heights. Temperatures of all available internal surfaces in the room were measured,
including the surface of internal walls, external wall, floor, ceiling, door and window. A weather
station installed on the roof of a nearby building was used to measure ambient air temperature, relative
humidity, and wind direction. The climate file used for the simulation part of the calibration process
was created based on the measured data on the weather station plus the solar radiation data from the
Swedish meteoroidal institute [34]. The measurement tools and equipment are illustrated in Figure 3.
The technical data of measurement equipment are presented in Table 2.
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Table 2. Measurement equipment and accuracy.

Measurement Equipment Accuracy

Electrical radiator power Tinytag Energy logger Inaccuracy of ± 0.2% [35]
Room air and surface temperatures Thermistor sensor for temperature Inaccuracy of ± 0.3 ◦C [36]
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3.4. Model Calibration

Table 3 illustrates the construction materials and infiltration rate used in the IDA-ICE model of
the selected room for the calibration purpose. Table 4 shows the calculated linear heat loss coefficients
for thermal bridges for different types of joints.

Table 3. Construction materials [24] and infiltration rate used in the IDA-ICE model of the selected
room for the calibration purpose.

Construction Part. Construction Material Thickness (m) U-Value (W/m2
·K)

External wall—below the window Brick + light insulation 0.43 0.44
External wall—other parts Brick 0.66 0.72

Internal wall towards corridor Glass mineral wool + wood studs 0.15 0.34
Other internal walls Brick 0.35 1.25

Floor and ceiling Wood + sand 0.39 0.47
Window Double-glazed with clear glass 0.03 2.83 1

Door Wood 0.04 2.07

Infiltration rate 2 2.285 ACH (at pressure difference of 50 Pa)
1 Glazing U-value. 2 Measured on-site in a representative zone.

Table 4. The linear heat loss coefficient for thermal bridges (W/K·m) for different types of joints in
the building.

Type of Joints External
Wall/Internal Slab

External
Wall/Internal Wall

External
Wall/External Wall

External Window’s
Perimeter

Thermal bridges (W/K·m) 0.73 0.23 0.26 0.04

The calibration indices were calculated on an hourly basis for office room’s air temperature and
different surface temperatures. Since the electrical radiator was an on/off radiator and due to low
seasonal heating demand, it turned on during very short periods (maximum ten-minute periods).
The thermostat of the modelled radiator could not model the on/off performance, rather than on
P-control. Therefore, the use of hourly calibration indices for the power of the electrical radiator did not
give the possibility for correct comparison between measured and simulated data for this parameter.
Thus, the calibration indices for this parameter were calculated based on a daily basis. The calculated
indices are shown in Table 5.

Table 5. The calculated calibration indices for the office room’s air temperature and the office room’s
different surface temperatures (on an hourly basis) and for the power of the electrical radiator (on a
daily basis).

Air Temperature
in Office Room

Power of
Electrical Radiator External Wall Internal Wall with

Lunch Saloon
Internal Wall
with Corridor

NMBE (%) −0.9 −6.4 −4.0 −1.3 −2.0
CV (RMSE) (%) 2.1 9.1 4.2 1.8 3.1

Internal Wall with
Seminar Room Floor Ceiling Door Window

NMBE (%) −2.1 −3.4 −3.5 −1.7 −3.8
CV (RMSE) (%) 3.5 3.8 3.8 2.2 6.9

As Table 5 illustrates, the hourly calibration indices for the office room’s air temperature and
different surface temperatures are in the acceptable range based on ASHRAE Guideline 14 according
to Table 1. This guideline does not present any daily criteria. However, considering the daily criteria
as an average between hourly and monthly criteria, the acceptable daily criteria for NMBE and CV
(RMSE) could be proposed as ±7.5% and 22.5%, respectively. Considering these daily criteria, the daily
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calibration indices for the power of the electrical radiator are in the acceptable range base on ASHRAE
Guideline 14.

Figure 4 shows the office room’s air temperature and the power of the electrical radiator during
the measurement period based on both measurement and simulation results. Note the influence of
late afternoon sun on the increase in room temperature. Simulations tend to over-estimate the air
temperature during insolation (which could be due to window niches which are not possible to fully
model in IDA-ICE).
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3.5. Simulation of NV

In thermal comfort analysis, in the first step, the influence of totally eight different cases on the
operative temperatures of office rooms was assessed and the optimum case was determined. The cases
included with and without NV strategy as well as different schemes of offices’ doors (i.e., closed or
open doors). The cases are presented in Table 6.

Next, the effect of four different improving measures was evaluated on the optimum case
determined in the previous step. In the building’s energy use analysis section, the variation of total
electricity use for cooling (i.e., electricity use in cooling machine plus electricity use in fans) was
evaluated for different cooling machine’s COP values and various SFP models for ventilation unit’s fans.
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Table 6. Different schemes of open or closed doors with/without NV with NVR = 1.66 ACH (cases are
without active cooling).

Cases NV Southern Offices’ Doors 1 Northern Offices’ Doors 2

1 No Always closed Always closed
2 No Open during working hours Always closed
3 Yes Always closed Always closed
4 Yes Open during working hours Always closed
5 No Always open Always closed
6 Yes Always open Always closed
7 No Always open Always open
8 Yes Always open Always open

1 Representing offices with southeast orientation with higher internal solar gains compared to other offices.
2 Representing all other offices excluding the open-plan office.

The corridors and the entrance hall on the representative floor level were modelled as integrated
zones and the existing internal walls located inside them were defined as internal masses in these
zones. The model of the representative floor level on IDA-ICE is shown in Figure 5.
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Figure 5. The model of the representative floor level (unlabeled zones are offices).

Internal gains from equipment and lighting were defined according to common assumptions for
office buildings [37]. The default value of 0.1 m/s was specified for the air velocity in offices during
summer. The occupants’ clothing insulation was defined as 0.8 ± 0.2 clo for summer in order to
represent normal office clothing plus, when needed, an extra sweater [38]. The activity level was
specified to be 1.1 met to represent the average of common office activities including seated quiet
resting, seated reading, typing as well as standing relaxed rest [38]. It was assumed that only one
person worked in each single office with their desk placed in the middle of the office. The period
08:00–17:00 (normal working hours) was defined as the schedule for all internal gains. The defined
internal gains in different zones on the floor are shown in Table 7.

Predefined supply and return air ventilation unit with a constant air volume (CAV) type was
applied. The unit included a predefined control macro for NV strategy which also included the
schedule of the daytime ventilation. The ventilation rate was measured as 1.66 ACH in one of the
offices in the building which corresponded to the design ventilation rate. Considering the same design
ventilation rate in all offices, the ventilation unit’s total design ventilation rate was defined as 1.66 ACH
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of the total volume of the connected office rooms. The schedule for daytime ventilation and NV were
defined as 06:00–18:00 and 20:00–06:00, respectively. For improving measures on NV by doubled and
tripled NV rates (see thermal comfort analysis section), the NV schedule was shortened to 20:00–04:00.

Table 7. The internal gains from different sources in different zones of the modelled floor.

Zones Occupants (W/Zone) Equipment (W/m2) Lighting (W/m2)

Offices 115.2 1 13 9
Open-plan office 2 115.2 1 13 9

The smallest corridor 0 0 9
Other corridors 3 0 7.5 9

Entrance hall 0 0 9
1 Corresponding to internal gains from one person with the activity level of 1.1 met. 2 The same internal gins as
offices were defined for the open-plan office. 3 The values are presented for each of these corridors.

For thermal comfort analysis, without active cooling (AC) during day, the total design ventilation
rate was set for both daytime- and NV rates. For energy use analysis, when local ideal coolers were
applied in offices as active cooling, the minimum required ventilation rate (corresponding to 0.35 l/s·m2

+ 7 l/s·person) [39] was set for the daytime ventilation keeping the night ventilation rate at the total
design value. This means that the ventilation unit acted as a CAV system with two different constant
ventilation rates with different working schedules (daytime ventilation and NV) plus the off mode.
The proportional controller with the P-band corresponding to 1 ◦C (i.e., set point temperature ±0.5 ◦C)
was defined for each local ideal cooler.

For NV strategy, the ventilation unit’s return air and ambient temperature limit were set to 18
and 10 ◦C, respectively, and the benefit limit (i.e., the difference between ambient and return air
temperatures) was defined as +2 ◦C. It means that the NV starts if all the following conditions are
fulfilled and stops if any of them is missed:

(1) The time is during the period defined for NV schedule;
(2) The ventilation unit’s return air temperature is over 18 ◦C;
(3) The ambient temperature is over 10 ◦C;
(4) The ambient temperature is at least 2 ◦C lower than the return air temperature.

3.6. Thermal Comfort Analysis

In order to evaluate thermal comfort in this study through comparing with standards’
recommendations, operative temperature (Top) was used as an indicator. The maximum acceptable
Top during summer for activity level around 1.2 met and clothing insulation around 0.5 clo in single
(cellular) offices is 26 ◦C [40]. Top of office rooms with different orientations were compared with each
other for the eight different cases presented in Table 6. Simulations were carried out for two summer
climates for the city of Gävle in Sweden: (1) Typical summer (representative of the average climate
condition for a 30-year period of 1981–2010), and (2) the unusually hot summer of 2018. The cases
which resulted in the lowest possible Top in the offices were determined. The mean and average
diurnal variation of ambient temperature for both typical and hot summer are presented in Table 8.

Table 8. The mean and average diurnal variation of ambient temperature.

Climate
Mean Ambient Temperature (◦C) Average Diurnal Variation 1 (◦C)

June July August June July August

Typical summer 13.3 17.7 14.4 9.9 10.3 9.2
Hot summer 15.2 20.4 16.8 9.6 10.0 9.6

1 Average difference between daily maximum and minimum temperatures.
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In order to further decrease the Top in offices for the determined cases, four improving measures
were proposed:

(1) Decreasing the minimum ambient temperature limit (ATL) of NV strategy from 10 to 5 ◦C;
(2) Doubling the daytime ventilation rate (DVR);
(3) Doubling the NV rate (NVR) while decreasing the NV period (NVP) from 20:00–06:00 to

20:00–04:00;
(4) Tripling the NV rate (NVR) while decreasing the NV period (NVP) from 20:00–06:00 to 20:00–04:00.

3.7. Energy Use Analysis

In the first step, the active cooling was added to four different cases with NV in the “Thermal comfort
analysis” section (i.e., cases 3, 4, 6, and 8 in Table 6) and simulations were run for both typical and hot
summers in order to show the difference in building’s total electricity use for cooling between these cases.

In the second step, the parametric study was carried out on the effect of different NV rates on
the building’s total electricity use for cooling during the hot summer conditions of 2018. The total
electricity use for cooling in the building consisted of (1) electricity use in cooling machine plus (2)
the electricity use in ventilation unit’s fans. Considering the former, three cooling machines with
COP values of 1, 2 and 3 as well as two cooling set points for Top including 26 and 24 ◦C were taken
into account in the parametric study. COP = 1 represents a cooling machine in which the amount of
electricity use equals the amount of heat extracted equivalent to the cooling demand. Considering
the latter part, five different NV rates including 0 ACH (i.e., without NV) and four multiples of 1.66
ACH as well as three various SFP models were considered. The VR during daytime was the minimum
required value. In the first model, a constant SFP was defined for all NV rates. In the second and third
models, the NV rates of 1.66 ACH and 3 × 1.66 ACH were considered as the design ventilation rates,
respectively, and the SFP value was defined at these design ventilation rates. The SFP = 1.5 kW/(m3/s)
was applied as a common value for each design flow rate, which is recommended for new air-handling
systems for the supply and return fans in ventilation units with heat recovery [39]. SFP values for
ventilation rates below the design flow rate were calculated based on data of part-load performance for
VAV fan systems according to ASHRAE standard 90.1 [41]. Table 9 shows the SFP values in different
NV rates in the three mentioned models.

Table 9. The SFP values of ventilation unit’s fans (supply and return fans) for different NV rates in
three various models (kW/(m3/s)).

NVR 0 ACH 1 0.5 × 1.66 ACH 1.66 ACH 2 × 1.66 ACH 3 × 1.66 ACH

SFP model 1 1.5 1.5 1.5 1.5 1.5
SFP model 2 0.3 0.6 1.5 5.4 2 11.7 2

SFP model 3 0.1 0.1 0.2 0.7 1.5
1 For the first case with NVR = 0, the SFP value is defined for the daytime ventilation rate (corresponding to the
minimum requirement of 0.35 l/s·m2 + 7 l/s·person). 2 Calculated by extrapolation on data of part-load performance
for VAV fan systems based on ASHRAE standard 90.1 [41] for the assumed NV rate.

4. Results and Discussion

4.1. Thermal Comfort Analysis

In order to show how different schemes of offices’ doors (i.e., closed or open doors) affect the
average Top of offices and corridors, the simulation results during the hot summer for the cases with
NV (NVR = 1.66 ACH) were applied. According to Figure 6, for cases with all doors always closed
with NV (case 3), except for short periods, the average Top of northern offices is always lower than
those of southern offices and corridors. The average Top of southern offices is lower than that of
corridors during a large proportion of working hours during June and August and during a very short
proportion of working hours during July.
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Figure 6. The average operative temperatures of the northern and southern offices and the corridors
for the case with NV with all doors always closed (case 3) during the hot summer of 2018. Southern
offices represent offices with southeast orientation with higher internal solar gains compared to other
offices. Northern offices represent all other offices excluding the open-plan office.

In case 4, the southern offices’ doors are open only during working hours. Compared to case 3,
this helps southern offices’ average Top drop during periods of working hours when corridors are
cooler than southern offices (mainly during July). During the night, only southern offices are cooled
down by NV. In case 6, the southern offices’ doors are open during the whole period (24 h). Thus,
corridors are also cooled down by NV during night, influenced by the southern offices’ air. Therefore,
compared to case 4, corridors’ average Top drops during working hours. When northern offices’
doors are also opened (for 24 h), case 8, both corridors’ and southern offices’ average Top decrease
and northern offices’ average Top increases. In all cases, only direct connection between zones via
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open doors affect different zones’ average Top. The influence of heat transfer between different zones
through internal walls and closed doors is negligible.

Figure 7 illustrates the percentage of working hours with the average Top over 26 ◦C, the percentage
of exceedance hours (He) [42], in offices for cases without NV for both typical and hot summers.
Figure 7 clearly shows that for the hot summer, northern and southern offices’ average Top are over
26 ◦C during longer periods of working hours compared to the typical summer. The differences are
specifically significant during June and August. This shows the significance of hot as opposed to
typical summer weather.Energies 2020, 13, x FOR PEER REVIEW 16 of 26 

 

 
(a) (d) 

 
(b) (e) 

 
(c) (f) 

Figure 7. Percentage of exceedance hours in offices for cases without NV during June, July and August 
during (a–c) the typical summer and (d–f) the hot summer of 2018. Case 1: All doors always closed, 
Case 2: Northern offices’ doors always closed/Southern offices’ doors open during working hours, 
Case 5: Northern offices’ doors always closed/Southern offices’ doors always open, Case 7: All doors 
always open. Southern offices represent offices with southeast orientation with higher internal solar 
gains compared to other offices. Northern offices represent all other offices excluding the open-plan 
office. 

Figure 8 shows the exceedance hours in offices and corridors for the hot summer both with and 
without NV. According to Figure 8, NV helps reducing the offices’ indoor temperatures during 
working hours during the whole period June-August and for all cases. He in offices is decreased by 
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during (a–c) the typical summer and (d–f) the hot summer of 2018. Case 1: All doors always closed,
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Figure 8 shows the exceedance hours in offices for the hot summer both with and without NV.
According to Figure 8, NV helps reducing the offices’ indoor temperatures during working hours
during the whole period June-August and for all cases. He in offices is decreased by the range 7.1–28.6%
as a result of NV application.
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Figure 8. Percentage of exceedance hours in offices during the hot summer of 2018 (a–c) without NV
and (d–f) with NV. Cases 1 and 3: All doors always closed, Cases 2 and 4: Northern offices’ doors
always closed/Southern offices’ doors open during working hours, Cases 5 and 6: Northern offices’
doors always closed/Southern offices’ doors always open, Cases 7 and 8: All doors always open.
Southern offices represent offices with southeast orientation with higher internal solar gains compared
to other offices. Northern offices represent all other offices excluding the open-plan office.

As Figure 8 shows, in southern offices and for both cases with and without NV during the whole
period June-August, the cases with all doors always open (cases 7 and 8) lead to lower average Top

compared to other cases. For the cases without NV, He in southern offices is decreased by the range
1.4–10.5% in the shift from case 1 to 7. For the cases with NV, He in southern offices is decreased by
5.2–12.3% in the shift from case 3 to 8. On the other hand, cases 7 and 8 result in the higher He in
northern offices compared to other cases. For the cases without NV, He in northern offices is increased
by the range 1.3–5.7% in the shift from case 1 to case 7. For the cases with NV, He in northern offices is
increased by the range 0.5–2.2% in the shift from case 3 to 8.

Generally, it is shown that the amount of decrease in He in southern offices outweighs the amount
of increase in He in northern offices. This happens thanks to the considerably lower average Top in
northern offices during some periods, while southern offices’ average Top is over 26 ◦C during the
same periods. There is only one exception for the cases without NV during July when He is increased
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by 4.1% in northern offices, while it is decreased only by 1.4% in southern offices. All in all, it is shown
that cases with all offices’ doors always open (i.e., case 7 without NV and case 8 with NV) result
in the best possible condition for all offices among the available cases regarding offices’ operative
temperatures (optimum cases).

4.2. Thermal Comfort Improvement

In this section, the effect of higher flow rates for both daytime ventilation and NV on improving
thermal comfort in offices was studied. Figure 9 illustrates the amount of decrease in the exceedance
hours in northern and southern offices as a result of applying the thermal comfort improving measures.
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Figure 9. Percentage of exceedance hours in offices for thermal comfort improving measures for (a–c)
case 7 and (d–f) case 8 during the hot summer of 2018. Cases 7 and 8: All doors always open. Southern
offices represent offices with southeast orientation with higher internal solar gains compared to other
offices. Northern offices represent all other offices excluding the open-plan office. DVR: Daytime
Ventilation rate, NVR: NV Rate, ATL: Ambient Temperature Limit.
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According to Figure 9a–c, by doubling DVR, He is decreased by the range 19.1–27.1% in southern
offices and by the range 11.4–20.5% in northern offices. It is understood that the ambient temperature
is lower than the offices’ indoor temperatures during a considerably long period. According to
Figure 9d–f, by doubling the NVR while shortening the NV period to 20:00–04:00, He is decreased by
the ranges 2.4–6.5% in northern offices and by the range 7.1–7.8% in southern offices. Tripling the NVR
leads to decrease in He by the ranges 5.7–12.2% in northern offices and 10.5–16.1% in southern offices.

A finding is that the amount of decrease in He during June as a result of decreasing the ATL of NV
strategy from 10 to 5 ◦C is more than and equal to the one caused by doubling the NVR in southern
and northern offices, respectively. It is because the ambient temperature during NV periods is lower
than 10 ◦C for longer periods during June compared to July and August. There is, however, the risk of
condensation on the surfaces with low ATL.

4.3. Energy Use Analysis

Table 10 illustrates the total electricity use for cooling (kWh/m2) during summer season in
cases with different schemes of offices’ doors with NV plus active cooling for both typical and hot
summer conditions.

Table 10. The total electricity use for cooling (kWh/m2) during summer season in cases with different
schemes of offices’ doors with NV plus active cooling for COP = 3 and the maximum beneficial NVR =

0.5 × 1.66 (ACH).

Cases
Total Electricity Use for Cooling during Summer Season (kWh/m2)

Typical Summer Hot Summer of 2018

B.C 3.8 5.9
Case 3 3.3 5.8
Case 4 4.1 6.3
Case 6 5.1 6.2
Case 8 2.3 5.5

B.C: Base case, i.e., all doors always closed without NV. Case 3: All doors always closed. Case 4: Northern offices’
doors always closed/Southern offices’ doors open during working hours. Case 6: Northern offices’ doors always
closed/Southern offices’ doors always open. Case 8: All doors always open.

According to Table 10, total electricity use for cooling is the lowest in case 8 compared to other
cases during both typical and hot summers. This, along with the results of thermal comfort analysis,
confirms that the case with all doors always open is the optimum case resulting in the best possible
condition for all offices. Figures 10 and 11 show the individual electricity uses in fans as well as for
active cooling and total electricity use for cooling for the hot summer of 2018.

According to Table 11, the following findings for all SFP models are presented:

(1) The influence of increasing NV rate on decreasing the total electricity use for cooling is more
significant for lower COP values;

(2) The influence of decreasing operative temperature cooling set point on increasing the total
electricity use for cooling is more significant for lower COP values;

(3) For all different NV rates, the influence of increasing COP on decreasing the total electricity use
for cooling is more significant for the lower operative temperature cooling set point (i.e., 24 ◦C).
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Figure 10. (a) individual electricity uses; electricity use in fans and electricity use in cooling machine
(b) total electricity use for cooling (i.e., electricity use in fans + electricity use in cooling machine);
during the hot summer of 2018 for operative temperature cooling set point of 26 ◦C.
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Figure 11. (a) individual electricity uses; electricity use in fans and electricity use in cooling machine
(b) total electricity use for cooling (i.e., electricity use in fans + electricity use in cooling machine);
during the hot summer of 2018 for operative temperature cooling set point of 24 ◦C.



Energies 2020, 13, 4159 20 of 24

Table 11. The ranges of decrease or increase in total electricity use for cooling (kWh/m2) during summer
season through different perspectives of investigation in the three defined SFP models.

Perspective of Investigation Corresponding COP or
Cooling Set Point (SP)

Absolute Change in Total Electricity Use for Cooling
(kWh/m2)

SFP Model 1 SFP Model 2 SFP Model 3

Decrease in total electricity use through
increase in NVR

COP = 1 2.0–5.1 2.0–2.4 2.3–5.3
COP = 3 0.3–0.6 0.4–0.5 0.7–1.0

Increase in total electricity use through
decrease in SP (from 26 to 24 ◦C)

COP = 1 5.4–6.2 4.0–5.8 5.4–6.3
COP = 3 1.6–2.1 0.3–2.1 1.6–2.1

Decrease in total electricity use through
increase in COP

SP = 26 ◦C 3.5–9.8 5.5–9.8 3.5–9.8
SP = 24 ◦C 6.3–13.7 8.4–13.7 6.3–13.7

Based on the data in Figures 10 and 11, Table 12 shows the NV rates at which the minimum total
electricity use for cooling occurs (optimal NV rates) for different COP values and SFP models for both
operative temperature cooling set points of 26 and 24 ◦C. Table 13 shows the amount of total electricity
use for cooling which is saved due to applying NV strategy with the maximum beneficial NV rate in
each case (i.e., the NV rates presented in Table 12) compared to the case without NV.

Table 12. The NV rates (ACH) at which the minimum total electricity use for cooling during the hot
summer of 2018 occurs for different COP values for operative temperature cooling set points of 26 and
24 ◦C.

SFP Models Cooling Set Point
Optimal NVR (ACH)

COP = 1 COP = 2 COP = 3

SFP model 1
26 ◦C 2 × 1.66 2 × 1.66 0.5 × 1.66
24 ◦C 3 × 1.66 2 × 1.66 1.66

SFP model 2
26 ◦C 1.66 0.5 × 1.66 0.5 × 1.66
24 ◦C 1.66 0.5 × 1.66 0.5 × 1.66

SFP model 3
26 ◦C 2 × 1.66 2 × 1.66 1.66
24 ◦C 2 × 1.66 2 × 1.66 1.66

Table 13. The amount of saving in total electricity use for cooling during the hot summer of 2018
both in (kWh/m2) and (%) as a result of applying NV strategy with the maximum beneficial NV rate
(compared to the case without NV).

SFP Models Cooling Set Point
Electricity Saving (kWh/m2)

COP = 1 COP = 2 COP = 3

SFP model 1
26 ◦C 4 (27%) 2 (19%) 1 (10%)
24 ◦C 5 (24%) 1 (12%) 1 (8%)

SFP model 2
26 ◦C 2 (16%) 1 (13%) 1 (10%)
24 ◦C 2 (11%) 1 (8%) 0.5 (6%)

SFP model 3
26 ◦C 5 (36%) 2 (28%) 1 (21%)
24 ◦C 5 (24%) 2 (18%) 1 (15%)

According to to Table 12, for higher COP values, the minimum total electricity use for cooling
occurs at lower NV rates. In the first SFP model, the high NVR = 3 × 1.66 ACH and 2 × 1.66 ACH are
still beneficial for the cases with COP = 1 and COP = 2, while for COP = 3, NV rates over 0.5 × 1.66 ACH
(for cooling set point = 26 ◦C) or over 1.66 ACH (for cooling set point = 24 ◦C) result in increase in the
total electricity use for cooling. In the second SFP model, NVR= 1.66 ACH still results in a decrease in
the total electricity use for cooling for the case with COP = 1, whereas NV rates over 0.5 × 1.66 ACH
lead to increase in the total electricity use in the cases with COP = 2 and COP = 3. Finally, in the
third SFP model, while NVR = 2 × 1.66 ACH still decreases the total electricity use in the cases with
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COP = 1 and COP = 2, NV rates over 1.66 ACH cause increase in the total electricity use in the case
with COP = 3.

5. Summarized Discussion

(1) The typical summer climate (based on average climate data during the period 1980–2010) does not
represent an extraordinary warm summer which may be more common in the future. Applying
this typical summer climate for energy simulation in buildings could lead to underestimation of
the offices’ indoor temperatures and, consequently, of the building’s cooling need.

(2) Amongst all the proposed schemes of open/closed offices’ doors, the case with all offices’ doors
always open was recognized as the overall optimum case. The case with all offices’ doors always
closed was considered as the base case, given that offices should be locked for security reasons
when unoccupied. The simulation results were presented for the cases with NV and during
the hot summer of 2018. In comparison with the base case, the optimum case led to decrease
in percentage of working hours with the offices’ average operative temperature over 26 ◦C,
the percentage of exceedance hours, He [42], in southern offices by the range of 1.3–5.7%, while it
resulted in increase in He in northern offices only by the range 0.5–2.2%. Thus, the optimum case
improves thermal comfort in offices in overall.

(3) The mechanically driven NV strategy has the potential to improve thermal comfort in offices and
to save the total electricity use for cooling in the building. Compared to the base case, the NV
strategy is capable of reducing He by up to 33% and 28% during the typical and the hot summer,
respectively. This amount of reduction is achievable thanks to NVR = 1.66 ACH (design DVR
for the present building) for the optimum case with all offices’ doors always open. For the same
scheme of offices’ doors, with the maximum beneficial NVR = 0.8 ACH (0.5 × 1.66 ACH) and
cooling machine’s COP = 3, the NV strategy is capable of saving 1.5 kWh/(m2

·year) (40%) and
0.4 kWh/(m2

·year) (7%) of the electricity use for cooling during the typical and the hot summer,
respectively. These results are in line with the findings by Artmann et al. [7] and Jimenez-Bescos [8]
predicting decrease in NV potential in future climates.

(4) Four proposed improving measures on daytime and NV (both without active cooling) showed
potential in improving thermal comfort in offices. Doubling daytime ventilation rate had the
potential in decreasing the percentage of exceedance hours in southern and northern offices
by up to 27.1% and 20.5%, respectively. Increasing the NVR was capable of decreasing the
percentage of exceedance hours by up to 6.5% and 7.8% for the doubled NVR and by 12.2% and
16.1% for the tripled NVR in northern and southern offices, respectively. Decreasing the ambient
temperature limit of the NV strategy from 10 to 5 ◦C had the potential to decrease the percentage
of exceedance hours in southern and northern offices by up to 10% and 4%, respectively. During
June, compared to July and August, when the ambient temperature was below 10 ◦C for longer
periods during the NV period, decreasing the ambient temperature limit of the NV strategy led to
more improvement in thermal comfort in southern offices and the same improvement in northern
offices in comparison with doubling the NV rate.

(5) With higher NV rates, thermal comfort in offices is improved further and more savings are
achieved in electricity use in cooling machine in the building. There is, however, a maximum
beneficial NV rate over which the total electricity use for cooling starts increasing since the
amount of increase in the electricity use in fans outweighs the amount of saved electricity use
in cooling machine. This maximum beneficial ventilation rate depends on the thermal mass
capacity of the building’s construction, the coefficient of performance (COP) value of the cooling
machine, the design (maximum) ventilation rate, and available NV cooling potential (ambient air
temperature). SFP is defined at the design (maximum) ventilation rate. Therefore, the optimum
case is important in the design of the ventilation for new building projects, so that a low SPF
is obtained for high NVR (this will require large size ventilation ducts). It is more difficult to
achieve in buildings with an already installed duct system.
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6. Conclusions

The potential of NV for cooling of a typical historic office building in north-central Sweden was
evaluated by parametric study using building energy simulation (BES). Although the building is
located in a cold climate, it was shown that NV alone is not capable of meeting the total cooling
demand of the building and an auxiliary active cooling is required. NV with mechanical system,
however, showed a potential in reducing the total electricity use for cooling, comprising the electricity
use in cooling machine plus the electricity use in ventilation unit’s fans, thanks to the building’s heavy
construction. The effect of NV on reducing the building’s total electricity use for cooling increases with
higher NV rates. However, there is a maximum beneficial ventilation rate above which further increase
in the NV rate results in increase in the building’s total electricity use for cooling. This maximum NV
rate depends on the thermal mass capacity of the building, the COP value of the cooling machine,
design (maximum) ventilation rate, and available NV cooling potential (ambient air temperature).
For buildings with equal weight (same time constant), for the ones equipped with cooling machines
with higher COP values, lower NV rates are recommended. This work also suggests that open doors
in all zones of the building overall result in the best thermal comfort and reduced electricity use for
cooling purposes. For this door scheme, the NV is capable of reducing the percentage of exceedance
hours in offices by up to 33% and decreasing the total electricity use for cooling by up to 40%.
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