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ABSTRACT
We consider the problem of guaranteed estimation of unknown
right-hand sides of the equations entering the statement of the
exterior Neumann problems for the Helmholtz equation from indi-
rect observations of their solutions. A method is developed for the
determinationof guaranteed aposteriori estimates of this right-hand
sides which are compatible with measurement data. It is shown that
such estimates can be expressed via solutions of a uniquely solvable
system of the Helmholtz equations.
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1. Introduction

Inverse problems associated with the analysis of exterior boundary value problems for the
Helmholtz equation constitute an important part of the inverse scattering theory with
major applications in electromagnetics and acoustics [1,2]. A review of results can be
found in [2,3]. Obtaining guaranteed estimation of the unknown right-hand sides of equa-
tions and boundary conditions entering the statements of boundary value problems from
observations of their solutions is a relatively new research direction. The settings andmeth-
ods that simultaneously take into account the uncertainty of data for this class of inverse
problems have been recently developed in [4,5].

In this paper, we extend the approaches set forth in our earlier studies [4,5] aimed
at the analysis of inverse problems with uncertain data arising in the electromagnetic
and acoustic diffraction theory. A goal is to establish a technique for obtaining guaran-
teed a posteriori estimates in electromagnetic and acoustic inverse problems formulated
for the exterior Neumann problems for Helmholtz equations and provide its complete
mathematical justification.

In order to determine such estimates, additional data (observations) are needed. Here
we use indirect observations that are linear transformations of unknown solutions of the
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exterior Neumann problems with additive deterministic errors. Such a kind of observation
is motivated by the fact that unknown solutions often cannot be observed directly.

Assuming that unknown perturbations of right-hand sides of equations, Neumann
boundary conditions, and errors in observations satisfy some quadratic restrictions, we
define the set consisting of all right-hand sides entering into the exterior Neumann prob-
lemwhich are compatible with observation data. Any element belonging to this set is called
an a posteriori estimate of unknown right-hand sides. Thenwe choose the optimal estimate
among them, called the guaranteed a posteriori estimate.

As an optimality criterion, we use the guaranteed deviation between the a priori
estimates of right-hand sides of the exterior Neumann problem and their exact values.

We show that the guaranteed a posteriori estimates of unknown right-hand sides are
expressed via solutions of some uniquely solvable systems of Helmholtz equations.

2. Problem statement

LetD be a bounded domain inR
n, n = 2, 3, with the Lipschitz boundary� having the unit

outward normal ν, D′ = R
n \ D̄, and ϕ be a solution to the Neumann problem

−(�+ k2)ϕ = f in D′, (1)

∂ϕ

∂ν
= g on �, (2)

∂ϕ

∂r
− ikϕ = o(1/r(n−1)/2), r = |x|, r → ∞, (3)

in which

• k is a given nonzero complex number, 0 ≤ arg k < π ,
• ∂ϕ/∂ν is a normal derivative of ϕ on the boundary �,
• f is a function from the space L̃2(D0), where by L̃2(D0) we denote the space of all

complex-valued functions square-integrable in a bounded subdomain D0 ⊂ D′ that
vanish outside D̄0 in the domain D′,

• g is a function defined on � and belonging to the space L2(�).

Setting (1)–(3) may be referred to [2,3] as the forward problems describing the scat-
tering of a time-harmonic acoustic (or electromagnetic) wave of a (given) frequency ω
by a rigid body D, n = 2, 3 (or a perfectly conducting cylinder having the cross-section
D ⊂ R2, n = 2) with φ being the sound-pressure (or the polarized electromagnetic-field
component) amplitude function; here k = ω/c is the wave number and c is the sound (or
light) speed in a homogeneous medium.

Denote by d� the element of measure on surface �, by L2(�) the space of square-
integrable functions on �, and by H1(
) the standard Sobolev space of order 1 on the
domain
.

Introduce the spaces

H1
loc(D

′) = {u : u|D′∩
R ∈ H1(D′ ∩
R) for every R > 0 such that D′ ∩
R 	= ∅},
H1
loc(D

′,�) := {u : u ∈ H1
loc(D

′), �u ∈ L2loc(D
′)},
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where

L2loc(D
′) = {u : u|D′∩
R ∈ L2(D′ ∩
R) for every R > 0 such that D′ ∩
R 	= ∅},


R := {x : |x| < R}; the Laplacian is taken in the distributional sense.
It is proved that problem (1)–(3) has a unique solution such that ϕ ∈ H1

loc(D
′,�) (see,

e.g. [6,7]).
Introduce the Hilbert spaceH := L̃2(D0)× L2(�) with the inner product defined by

(f1, f2)H :=
∫
D0

f1(x)f2(x) dx +
∫
�

g1g2 d� ∀f1 = (f1, g1), f2 = (f2, g2) ∈ H.

Let
j, j = 1, . . . ,M, be a given system of bounded subdomains ofD′ that do not intersect
and have a piecewise smooth boundary. We suppose that one observes the functions of the
form

yj(x) = Cjϕ(x)+ vj(x), x ∈ 
j, j = 1, . . . ,M, (4)

where vj(x) ∈ L2(
j) are observation errors and Cj ∈ L(L2(
j), L2(
j)) are linear contin-
uous operators.

Suppose that there is the following a priori information about the data and errors: f :=
(f , g) ∈ H and v := (v1(·), . . . , vM(·)) belong to the set G of the form

G =
{
(f , v) ∈ H :

M∑
j=1

∫

j

Dj(x)vj(x)vj(x) dx +
∫
D0

Q1(f − f0)(x)(f (x)− f0(x)) dx

+
∫
�

Q2(g − g0)(g − g0) d�
)

≤ β2M

}
,

in which βM is a known number, f0 = (f0, g0) ∈ H is a known vector-function, Dj(x) are
knownmeasurable bounded positive continuous functions on 
̄k, andQ1 andQ2 are Her-
mitian positive definite operators in L2(D0) and L2(�), respectively, for which there exist
bounded inverse operators Q−1

1 and Q−1
2 ,

H := L̃2(D0)× L2(�)× L2(
1)× · · · × L2(
M).

Introduce the notion of a guaranteed a posteriori estimate of vector-function f = (f , g).

Definition 2.1: The set Gy defined by

Gy = {f ∈ H : F(y, f) ≤ β2M}
is called the a posteriori set of all possible f = (f , g) corresponding to measurements (4)
and (f , v) belonging to G, where y := (y1(·), . . . , yM(·)),

F(y, f) =
M∑
j=1

∫

j

Dj(x)(yj(x)− Cjϕ(x))(yj(x)− Cjϕ(x)) dx

+
∫
D0

Q1(f − f0)(x)(f (x)− f0(x)) dx +
∫
�

Q2(g − g0)(g − g0) d�.
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Definition 2.2: The vector-function f̂g = (fg , gg) from the set Gy is called a guaranteed a
posteriori estimate of vector-function f = (f , g) if the following condition holds:

inf
f1∈Gy

sup
f2∈Gy

‖f1 − f2‖H = sup
f2∈Gy

‖f̂g − f2‖H.

Definition 2.3: The quantity

δa = sup
f2∈Gy

‖f̂g − f2‖H

is called guaranteed error of a posteriori estimation.

Definition 2.4: A vector-function ϕ̂g is called a guaranteed a posteriori estimate of
unknown solution ϕ if it uniquely solves problem (1)–(3) at f = f̂g .

Let us give an important remark. As a result of applying measurements yj(x), j = 1,..,
m, the set of unknown elements f = (f , g) becomes Gy. Functions f (x), g(x) at which
measurements yj(x), j = 1,.., m, are given belong to this set. The elements of set Gy are
a posteriori estimates of unknown functions f and g. Next, if f1 = (f1, g1) is a certain a
posteriori estimate of the element f = (f , g), then the guaranteed error

δ(f1) = sup
f∈Gy

‖f1 − f‖H.

Note that this estimate is not worse than the a priori estimate (f0, g0) = f0 because from
the proof of Theorem 3.1 it follows that δ(fg) = inf f1∈H δ(f1), and therefore the inequality
δ(f0) ≥ δ(fg), holds.

3. Main results

In order to obtain the representation for a posteriori estimates, we first prove the following
assertion.

Lemma 3.1: There exists a unique element f̂ = (f̂ , ĝ) ∈ H such that

inf
f∈H

F(y, f) = F(y, f̂)

which is determined by

f̂ (x) = χD0(x)Q
−1
1 p̂(x) |D0 + f0(x), ĝ = Q−1

2 p̂ |� + g0, (5)
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where p̂ ∈ H1
loc(D

′,�) is uniquely defined from the solution of the problem

−(�+ k̄2)p̂(x) = −
M∑
j=1

χ
j(x)C
∗
j Dj[Cjϕ̂ − yj](x) in D′, (6)

∂ p̂
∂ν

= 0 on �, (7)

∂ p̂
∂r

+ ik̄p̂ = o(1/r(n−1)/2), r = |x|, r → ∞, (8)

−(�+ k2)ϕ̂(x) = χD0(x)Q
−1
1 p̂(x)|D0 + f0(x) in D′, (9)

∂ϕ̂

∂ν
= Q−1

2 p̂ + g0 on �, (10)

∂ϕ̂

∂r
− ikϕ̂ = o(1/r(n−1)/2), r = |x|, r → ∞. (11)

Here, ϕ̂ ∈ H1
loc(D

′,�), χM(x) =
{
1, x ∈ M
0, x /∈ M

is a characteristic function of the setM ⊂ R
n.

Functional F(y, f) can be represented in the form

F(y, f) = F(y, f̂)+ F1(f − f̂), (12)

where

F1(f) =
M∑
j=1

∫

j

Dj(x)Cjϕ(x)Cjϕ(x) dx +
∫
D0

Q1f (x)f (x) dx +
∫
�

Q2gg d�. (13)

Proof: It is easy to see that functional F(y, f) can be decomposed as

F(y, f) = F1(f)+ L(y, f)+ C0(y),

where F1(f) is defined by (13),

L(y, f) = −2�
⎛
⎝ M∑

j=1
(DjCjϕ, yj)L2(
j) + (Q1f , f0)L2(D0) + (Q2g, g0)L2(�)

⎞
⎠ ,

C0(y) =
M∑
j=1

∫

j

Dj(x)yj(x)yj(x) dx +
∫
D0

Q1f0(x)f0(x) dx +
∫
�

Q2g0g0 d�.

Using the fact that the solution ϕ(x) to problem (1)–(3) can be represented as

ϕ(x) = Cf(x) :=
∫
D0

�k(x, y)f (y) dy +
∫
�

�k(x, y)g(y) d�y in D′,

where �k(x, y) is the Green function satisfying the condition1 ∂�k(x, y)/∂νx = 0 on �,
and introducing the operators Aj : H → L2(
j) defined by

Ajf(x) := Cf(x) |
j , j = 1, . . . ,M,
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we see that functionals F1(f) and L(y, f) can be rewritten in the form

F1(f) = (Q̃f , f)H, (14)

L(y, f) = −2�
⎛
⎝f ,

M∑
j=1

A∗
j C

∗
j Djyj + Qf0

⎞
⎠

H
,

where Q̃ and Q : H → H are Hermitian positive definite bounded operators defined by

Q̃ =
M∑
j=1

A∗
j C

∗
j DjCjAj + Q, (15)

and

Qf := (χD0(·)Q1f ,Q2g) ∀f = (f , g) ∈ H,

respectively, A∗
j : L2(
j) → H are the operators adjoint of Aj defined by

A∗
j v =

(
χD0(·)

∫

j

v(x)�k(x, ·) dx,
∫

j

v(x)�k(x, ·) dx
∣∣∣∣
�

)
∀v ∈ L2(
j).

From here, it follows that F1(f) is a quadratic form which corresponds to a semi-linear
continuous Hermitian form

π(f , g) := (Q̃f , g)H
andL(f) a linear continuous functional defined onH.Moreover, sinceF1(f) is also a strictly
convex functional in the spaceH satisfying the condition

F1(f) ≥ c‖f‖2H ∀f ∈ H, c = const,

we obtain, using Remark 1.1 to Theorem 1.1 from [8], that there exists a unique element
f̂ ∈ H such that

inf
f∈H

F(y, f) = F(y, f̂).

Hence, for τ ∈ R, the following relation is valid

d
dτ

F(y, f̂ + τw)
∣∣∣∣
τ=0

≡ 0 ∀w = (w1, ,w2) ∈ H.

Next, observing that

1
2
d
dτ

F(y, f̂ + τw
∣∣∣∣
τ=0

= −
M∑
j=1

�
∫

j

Dj(x)(yj(x)− Cjϕ̂(x))Cjϕ̃(x) dx

+ �
∫
D0

Q1(f̂ − f0)(x)w1(x) dx

+ �
∫
�

Q2(ĝ − g0)w2 d�, (16)



INVERSE PROBLEMS IN SCIENCE AND ENGINEERING 531

where ϕ̂ and ϕ̃ uniquely solve problem (1)–(3) at f = f̂ and f = w, respectively, and
introducing function p̂ ∈ H1

loc(D
′,�) as the unique solution to the problem

−(�+ k̄2)p̂(x) =
M∑
j=1

χ
j(x)C
∗
j Dj[yj − Cjϕ̂](x) in D′, (17)

∂ p̂(·; u)
∂ν

= 0 on �, (18)

∂ p̂
∂r

+ ik̄p̂ = o(1/r(n−1)/2), r = |x|, r → ∞, (19)

we obtain from (16),

1
2
d
dτ

F(y, f̂ + τw
∣∣∣∣
τ=0

= �
(

−
∫
D0

p̂(x)w1(x) dx −
∫
�

p̂w2 d�

+
∫
D0

Q1(f̂ − f0)(x)w1(x) dx +
∫
�

Q2(ĝ − g0)w̄2 d�
)

≡ 0 ∀w ∈ H. (20)

Indeed, choosing R large enough so that D̄, D̄0,
j ⊂ 
R, j = 1, . . . ,M, and applying to
p̂(x) and ϕ̃(x) in the domain
R \ D̄ the second Green’s formula, transforms the first term
in the right-hand side of (16). We have

−
M∑
j=1

�
∫

j

Dj(x)(yj(x)− Cjϕ̂(x))Cjϕ̃(x) dx

= −�
∫

R\D̄

M∑
j=1

χ
j(x)C
∗
j Dj[yj − Cjϕ̂](x)ϕ̃(x) dx

= �
∫

R\D̄

(�+ k̄2)p̂(x)ϕ̃(x) dx

= �
(∫


R\D̄
p̂(x)(�+ k2)ϕ̃(x) dx −

∫
�

p̂
∂ϕ̃

∂ν
d� +

∫
�R

p̂
∂ϕ̃

∂ν
d�R −

∫
�R

∂ p̂
∂ν
ϕ̃ d�R

)

= �
(

−
∫
D0

p̂(x)w1(x) dx −
∫
�

p̂w2 d� +�R(p̂, ϕ̃)
)
, (21)

where by�R(p̂, ϕ̃) we denote

�R(p̂, ϕ̃) :=
∫
�R

(
p̂
∂ϕ̃

∂ν
− ∂ p̂
∂ν
ϕ̃

)
d�R

with�R = ∂
R, ν denotes the outward unit normal to the sphere�R. Since p̂ and ϕ̃ satisfy,
respectively, the Sommerfeld radiation conditions (19) and (3), p̂(x) = O(1/R) and ϕ̃(x) =
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O(1/R), R = |x| → ∞ (see [9]), and we obtain an estimate for �R(p̂, ϕ̃),

�R(p̂, ϕ̃) :=
∫
�R

(
p̂
∂ϕ̃

∂ν
− ikϕ̃

)
d�R −

∫
�R

(
∂ p̂
∂ν

+ ik̄p̂
)
ϕ̃ d�R

=
∫
�R

O(1/R)o(1/R)d�R −
∫
�R

o(1/R)O(1/R)d�R = o(1) as R → ∞.

From here, passing to the limit as R → ∞ in (21), we obtain (20).
Putting in (20) w1(x) = Q1(f̂ − f0)(x)− χD0(x)p̂(x) and w2 = Q2(ĝ − g0)− p̂|� , we

obtain ∫
D0

|Q1(f̂ − f0)(x)− p̂(x)|2 dx +
∫
�

|Q2(ĝ − g0)− p̂|2 d� = 0. (22)

Equations (17)–(19) and (22) imply representation (5).
The above analysis and the fact that functional F(y, f) has one minimum point f̂ lead to

the conclusion that problem (6)–(10) is uniquely solvable.
Let us prove (12). Let ϑ(τ) := F(y, f̂ + τ(f − f̂)). By expanding the function ϑ(τ) by

Taylor’s formula in a neighbourhood of zero, we find

ϑ(τ) = ϑ(0)+ dϑ
dτ

∣∣∣∣
τ=0

τ + 1
2
d2ϑ
dτ 2

∣∣∣∣
τ=0

τ 2. (23)

Since f̂ ∈ Argmin F(y, f) then (dϑ/dτ)|τ=0 = 0. Setting τ = 1 in (23), we obtain that

ϑ(1) = F(y, f) = F(y, f̂)+ 1
2
d2ϑ
dτ 2

∣∣∣∣
τ=0

. (24)

Representation (12) follows from (24) if we observe that (d2ϑ/dτ 2)|τ=0 = F1(f − f̂). This
completes the proof of the lemma. �

From this lemma, we conclude that the set Gy has the form

Gy = {f : F1(f − f̂) ≤ β2M − F(y, f̂)}. (25)

Using this fact, we establish in the proof of Theorem 3.1 that fg = f̂ .

Theorem 3.1: The guaranteed a posteriori estimate f̂g of unknown vector-function f coin-
cides with vector-function f̂ , i.e.

f̂g(x) = f̂ (x) a.e. in D0, ĝg = ĝ a.e. on �,

and the guaranteed a posteriori estimate ϕ̂g of unknown solution ϕ coincides with function
ϕ̂, i.e.

ϕ̂g(x) = ϕ̂(x) a.e. in D′,

where f̂ , ĝ and ϕ̂ are determined from (5) to (11).
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The estimation error δa is determined by

δa = (β2M − F(y, f̂g))1/2 sup
‖a‖H=1

(Q̃−1a, a)1/2H , (26)

where Q̃−1 is the inverse of a Hermitian positive definite bounded operator Q̃ : H → H
defined by (15).

Proof: First, notice that Q̃−1 exists, and it is a Hermitian positive definite bounded opera-
tor since it is the inverse of Q̃. It is evident from the definition of element f̂ ∈ H that f̂ ∈ Gy.
From (14) and (25), it follows that the set Gy can be represented as

Gy = {f ∈ H : (Q̃(f − f̂), f − f̂)H ≤ γ },

where γ := β2M − F(y, f̂) > 0. Introduce also the set G̃y = {f̃ ∈ H : (Q̃f̃ , f̃)H ≤ γ }. It is
easy to see that Cauchy–Schwarz inequality implies

‖f1 − f2‖H = sup
‖a‖H≤1

|�(a, f1 − f2)H|.

Then for all f1 ∈ Gy,

sup
f2∈Gy

‖f1 − f2‖H = sup
‖a‖H≤1

sup
f2∈Gy

|�(a, f1)H − �(a, f2)H|

= sup
‖a‖H≤1

sup
f̃∈G̃y

|�(a, f1 − f̂)H − �(a, f̃)H|

= sup
‖a‖H≤1

⎛
⎝|�(a, f1 − f̂)H| + sup

f̃∈G̃y

|�(a, f̃)H|
⎞
⎠ .

From here, taking into account the relationship2

sup
f̃∈G̃y

|�(a, f̃)H| = γ 1/2(Q̃−1a, a)1/2H ,

we obtain that for all f1 ∈ Gy,

inf
f1∈Gy

sup
f2∈Gy

‖f1 − f2‖H ≥ sup
‖a‖H≤1

inf
f1∈Gy

⎛
⎝|�(a, f1 − f̂)H| + sup

f̃∈G̃y

|�(a, f̃)H|
⎞
⎠

= sup
‖a‖H≤1

sup
f̃∈G̃y

|�(a, f̃)H| = γ 1/2 sup
‖a‖H=1

(Q̃−1a, a)1/2H ,

where equality is attained at f1 = f̂ . Whence, f̂g = f̂ , ϕ̂g = ϕ̂, and δa is defined by (26). This
completes the proof. �

As a corollary, we obtain the following result.
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Theorem 3.2: Let 
R := {x ∈ R
n : |x| < R} and R0 be chosen so that D̄ ⊂ 
R0 . Then, for

any R ≥ R0, there exists a positive constant αR > 0, dependent only on R, such that the
following inequality holds:

‖ϕ − ϕ̂g‖H1(
R\D̄,�) ≤ αRδa, (27)

where ϕ̂g is the guaranteed a posteriori estimate of unknown solution ϕ, δa is determined by
formula (26), and ‖ψ‖H1(
R\D̄,�) = ‖ψ‖H1(
R\D̄) + ‖�ψ‖L2(
R\D̄) ∀ψ ∈ H1

loc(D
′,�).

Proof: Since ϕ̂g(x) solves problem (1)−(3) at f = f̂g , function ϕ1(x) := ϕ(x)− ϕ̂g(x)
solves the following problem:

−(�+ k2)ϕ1 = f1 in D′,
∂ϕ1

∂ν
= g1 on �,

∂ϕ1

∂r
− ikϕ1 = o(1/r(n−1)/2), r = |x|, r → ∞,

where f1 = f − f̂g , g1 = g − ĝg . From a priori estimates for exterior Neumann problem for
the Helmholtz equation (see [6,10]), it follows that

‖ϕ1‖H1(
R\D̄,�) ≤ αR‖f1‖H,

where αR a positive constant dependent only on R, f1 = (f1, g1), whence it follows estimate
(27). �

4. Conclusion

Following our main objective to establish a technique for obtaining guaranteed a posteri-
ori estimates in acoustic and electromagnetic inverse problems, we have constructed the
tools for efficient estimation of the right-hand sides entering Neumann problems for the
Helmholtz equation that model the wave fields in acoustic scattering on rigid bodies or
electromagnetic scattering on perfectly conducting cylindrical bodies.

We have proposed the relevant mathematically correct definition of guaranteed a
posteriori estimate, and the description of measurement errors.

A uniquely solvable linear system of Helmholtz equations has been obtained that
generates guaranteed a posteriori estimates of the Neumann data.

The developed approach continue our studies aimed at elaborating mathematically jus-
tified solution techniques for various forward and inverse problems with uncertainties
arising in electromagnetics and acoustics.
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Notes

1. That is, for fixed x ∈ D′ function,�k(x, y) solves the Neumann boundary value problem:

−(�y + k2)�k(x, y) = δ(x − y), y ∈ D′,
∂�k(x, y)
∂νx

= 0, y ∈ �,
∂�k(x, y)

∂r
− ik�k(x, y) = o(1/r(n−1)/2), r = |y|, r → ∞,

where�y denotes the Laplacian with respect to the y variables, and δ is the Dirac delta function
concentrated at x.

2. In fact, by virtue of generalized Cauchy–Schwarz inequality [11, p.186],

sup
f̃∈G̃y

|�(a, f̃)H| ≤ sup
f̃∈G̃y

|(a, f̃)H| ≤ sup
f̃∈G̃y

(Q̃−1a, a)1/2H (Q̃f̃ , f̃)1/2H = γ 1/2(Q̃−1a, a)1/2H ,

and this inequality is transformed into an equality on the element f̃ = γ 1/2(Q̃−1a, a)−1/2
H Q̃−1a.
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