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a b s t r a c t

Training support vector machines (SVMs) for pixel-based feature extraction purposes from aerial
images requires selecting representative pixels (instances) as a training dataset. In this research,
locality-sensitive hashing (LSH) is adopted for developing a new instance selection method which
is referred to as DR.LSH . The intuition of DR.LSH rests on rapidly finding similar and redundant
training samples and excluding them from the original dataset. The simple idea of this method
alongside its linear computational complexity make it expeditious in coping with massive training
data (millions of pixels). DR.LSH is benchmarked against two recently proposed methods on a dataset
for building extraction with 23,750,000 samples obtained from the fusion of aerial images and point
clouds. The results reveal that DR.LSH outperforms them in terms of both preservation rate and
maintaining the generalization ability (classification loss). The source code of DR.LSH can be found
in https://github.com/mohaslani/DR.LSH.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Support vector machines (SVMs) [1] are among the most pow-
rful supervised classifiers in machine learning that have been
bundantly applied to a multitude of pattern recognition prob-
ems in remote sensing and geoscience [2–4]. Structural risk
inimization (minimizing the misclassification risk on unseen
ata) and convex quadratic optimization are two features that
istinguish SVMs from other classifiers in terms of classification
bility [5].
The quality of the remote-sensing-derived products construc-

ed by SVMs (or generally all classifiers) relies on the classification
ccuracy [6] which mainly depends on the samples selected to
e used in the training phase [7,8]. The number and coverage
f training data (training pixels; a pixel as a sampling unit) in
he feature space should be such that they suitably represent the
ntirety of classes [9]. The value of training data is a function of
any factors of which the spatial variability of spectral signatures
f classes is a key factor [7]. In fact, the training data should
ffectively cover all the crucial regions in the feature space so that
ccurate classification is assured. Effectively covering the crucial
egions in the feature space usually leads to redundancy and
raining data expansion especially in high-resolution images due
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to the high correlation of neighboring pixels in the feature space.
Also, manually identifying a small subset of only the effective
pixels in the image space is a nontrivial and time-consuming
task.

Redundancy and increase in the number of training samples
significantly reduce the speed of SVM in the training phase due
to the high time and memory complexity of its training [10]. In
other words, the high computational and memory complexities
of SVM make it impractical and can hinder achieving the results
while handling a huge number of pixels. With the aim of tackling
this issue, researchers have proposed several methods to expedite
the learning process of SVM facing with huge datasets. These
methods are classified into two categories. In the first category,
methods aim at accelerating the calculation of SVM training by
either reducing the complexity of the underlying optimization
problem (e.g., decomposition of the original quadratic problem to
the problems with smaller size) or speeding up the optimization
problem [11–14]. The second category includes data reduction
methods to reduce the computational complexity in classifica-
tion [15,16]. These methods try to preserve the generalization
ability of SVM by choosing a specific number of effective samples
and features [8]. They assist in inordinate memory and time
complexities in dealing with the contemporary huge datasets.
Theoretically, the methods in the first category do not have
the required efficiency for handling a huge number of training
data and they still need huge memory space [17,18]. Whereas,

there are a few advantages associated with the second category.
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irst, data reduction methods are usually more general than the
ethods in the first category and may be beneficial in different
lassifiers. Second, the data become less demanding in terms of
he required memory.

Among manifold approaches in data reduction (second cate-
ory), instance selection has drawn the attention of researchers
wing to the growing number of records in datasets [19]. Instance
election methods strategically select a manageable subset of
raining data that are representative of the original set [20,21].
hey reduce the data size and speed up the training process
y discarding the instances that do not significantly contribute
n classification accuracy [22,23]. The focus of this research is
n extracting the effective training data such that the original
attern is preserved (i.e., instance selection).
Within such a context, a myriad of instance selection methods

ave been proposed. The methods that yield more efficient results
sually suffer from fairly high computational complexity. This
akes these methods slow or almost impractical while handling
uge datasets with several millions of records. Therefore, the
eed for the methods that are both fast (linear time complexity)
nd efficient (low value of loss or high value of accuracy) is
ndispensable in huge training datasets.

In this research, a new fast instance selection algorithm in-
pired by locality-sensitive hashing (LSH), owing to its suitable
omputational complexity, is presented. In this algorithm, the
nstances whose degree of similarity to a given sample is greater
han a pre-established similarity threshold are quickly identified
nd removed. The remarkable features of the proposed algorithm
re:

• Simplicity
• Linear time complexity (O(n))
• Integer-based calculations
• Satisfactorily preserving the extent of known classes
• Easy control of the preservation rate by adjusting the input

parameters especially similarity threshold.

The remaining part of this paper is organized as follows:
ection 2 reviews instance selection methods and summarizes the
aps in the existing literature. Section 3 introduces the principles
f LSH. Section 4 describes the operation of the proposed method
nd its behavior in detail. In Section 5, a dataset for building
xtraction from the fusion of high-resolution aerial images and
oint clouds is prepared. The results are presented and discussed
n Section 6. Finally, Section 7 concludes the paper and proposes
ome directions for future work.

. Related work

Manifold instance selection methods have been proposed in
he context of classification and a comprehensive survey of the
xisting methods in this realm may be found in [19,23,24]. These
ethods can be classified by using a range of different tax-
nomies and there is no comprehensive and universally accepted
ategorization of all instance selection methods. Nevertheless,
ost of them, based on the underlying method, can be cat-
gorized into random-based, clustering-based, distance-based,
eighborhood-based, and tree-based methods. It should be noted
hat evolutionary approaches are not reviewed in this paper due
o their high computational complexity, although they deliver
utstanding results in terms of accuracy and reduction rate [25].
The random-based methods select a small subset of instances

n a random manner to form the reduced training dataset. Sim-
licity, data size independence, and very low computational com-
lexity are the biggest advantages of such methods that make

hem feasible for many different types of datasets [21,26,27].

2

However, those methods might not be able to adequately repre-
sent all classes. Also, they might deliver a high standard deviation
of classification accuracy and loss [28].

In the clustering-based methods, after a given clustering tech-
nique is applied, the clustered samples that lie far away from
decision boundaries are removed, and the refined samples from
the crucial clusters are selected [29]. In other words, there are
generally three steps in clustering-based methods: 1- cluster-
ing the data, 2- identifying the crucial clusters, and 3- detect-
ing influential instances. Frequency sensitive competitive learn-
ing [29], k-means [30–32], fuzzy clustering [33], adaptive clus-
tering [34], minimum enclosing ball [35], hierarchical micro-
clustering [36], and Ward-linkage clustering [37] are different
clustering techniques that have been used in previous research.

The clustering step can be done for instances of each class sep-
arately [36–38] or for all instances regardless of their classes [30–
32,35,39]. Regarding selecting the crucial clusters, the authors
in [30] and [39] considered homogeneous clusters (those that
contain instances of a single class) as ineffective ones that do not
contribute much to extracting the border of classes and preserved
only one point from each of them (centroid or a point near the
centroid). By way of contrast, the methods proposed in [31,32,
35] do not ignore all the homogeneous clusters as they might
contain boundary instances. It was shown that replacing each
homogeneous cluster with only one point may impair the deci-
sion functions. In [32,35], all the heterogeneous clusters and the
homogeneous clusters that are near the decision boundaries are
selected for further instance selection analysis. Different meth-
ods have been applied for selecting potentially valuable samples
from crucial clusters such as using a rough sketch of decision
boundaries obtained by an initial SVM [36], safety region [31,38],
convex–concave hull [40], and Fisher’s discriminate analysis [32].
One of the difficulties of the clustering-based methods is a proper
selection of the influential parameters such as the number of
clusters. Also, the clustering performance has a direct bearing on
the selected samples [41].

In the distance-based methods, the points near the opposite
class [27,42,43] or densest points [44] are detected by calculat-
ing Euclidean, Mahalanobis, or Hausdorff. Calculating distances
between instances makes these methods computationally high
demanding for huge datasets. Moreover, it might not be possible
to entirely load all the calculated distances in memory since
distances are decimal numbers and occupy much memory. In
the method proposed in [44], computing the density of a sample
requires calculating Euclidean distances of the sample to others,
making the method, consequently, slow when applied to huge
datasets. In calculating the Mahalanobis distance [42], the com-
plexity of estimating the inverse covariance matrix significantly
grows as the dimension of the dataset rises.

In the neighborhood-based methods, effective points are ex-
tracted by calculating the statistical properties of their neighbors.
The method proposed in [45] hinges on the fact that the sam-
ples situated near the decision boundaries have neighbors that
are more heterogeneous. The authors suggested two indexes:
proximity and correctness. Proximity measures the diversity of
the neighbors’ class (i.e., heterogeneity of the neighbors) and
correctness, as an index for detecting noisy samples, measures
the consistency of an instance with its neighbors (i.e., a noisy
sample tends to belong to a different class from its neighbors).
Calculating k-nearest neighbors, proximity alongside correctness
for all the samples increases the computational complexity of this
method. The method was improved in [41] such that k-nearest
eighbors, proximity, and correctness are calculated only for a
ubset of the training dataset that is mostly positioned near the
ecision boundaries. The search space reduction is based on the
dea that the neighbors of a sample that is located near the deci-
ion boundaries are also placed near the decision boundaries. The
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erformance of this method is highly a function of the number
f neighbors (k). Wang and Kwong [46] integrated the proxim-
ty index with active learning for selecting informative samples.
n [47], Bayes posterior probability is employed to recognize the
oints that are close to the decision surfaces. If the estimated class
f the sample, calculated by Bayes posterior probability, is not the
ame as the observed class (true class) of the sample, then it is
emoved from the training set. The authors indicated that their
ethod is effective for different types of classifiers. Zhu et al. [48]
sed k-nearest neighbors to develop a new instance selection
ramework named NearCount. In NearCount, the importance of
n instance is determined based on the number of times that it
s selected as the nearest neighbor of instances from opposite
lasses. Naturally, instances that have a zero cited count (not
elected as the nearest neighbors) are considered as inner ones
nd removed from the dataset.
In tree-based methods, extraneous instances are filtered based

n the output of decision trees. Guo et al. [49] used bagging [50]
s a variant of ensemble learning that combines multiple weak
earners. The Classification and Regression Trees (CART) was used
s a base-classifier because of its simplicity [51]. The authors
roposed an index called ensemble margin that integrates the
irst and second most voted classes [52]. The samples with small
alues of ensemble margin are close to the decision surfaces
nd should be preserved. The results indicated that the proposed
ethod outperforms a random-based method. However, the pro-
osed method is not efficient in handling a huge dataset with
large number of features. Thus, Guo and Boukir [17] proposed

o use a very small sampling ratio and ensemble size in bagging
o make the algorithm faster without affecting its performance
ecause the aim of using ensemble learning is instance selec-
ion rather than classification. Chang et al. [10] used a binary
4.5 algorithm [53] to decompose the original data space into
number of smaller heterogeneous and homogeneous regions.
he labels of the samples that fall inside the heterogeneous areas
re determined by SVMs. In this way, the computational cost of
raining SVMs becomes less expensive as SVMs are required to
e trained only on small datasets. Another tree-based strategy
f approximating decision boundaries proposed in [22] trains
VM only on the samples located near the approximate decision
oundaries. The initial SVM trained on a small subset of the
riginal dataset and the decision tree trained by C4.5 algorithm
stimate decision boundaries.
Due to the fairly high computational cost of the most above-

entioned methods that makes them infeasible to deal with huge
atasets with several millions of records, two neighborhood-
ased instance methods with linear time complexity were pro-
osed recently: Prototype Selection based on Dense Spatial Par-
itions (PSDSP) [54] and Instance Selection based on Locality-
ensitive Hashing (LSH-IS-S) [55]. PSDSP aims at selecting
aramount samples from the densest partitions obtained by an
-dimensional regular grid. The algorithm has three steps: 1-
artitioning the space into non-overlapping regions by using a
egular grid, 2- calculating the density of each partition according
o its corresponding number of samples, and 3- extracting the
ndispensable samples from the first k densest partitions. The
nput parameter k shows the desirable number of samples. The
uthors indicated that their algorithm achieves reasonable accu-
acy in 15 different datasets. LSH-IS-S removes redundant (very
imilar) instances by using LSH [56]. LSH was invented for the
im of enhancing the nearest neighbor search [57]. LSH technique
ashes instances such that similar instances fall into the same
ucket with high probability (please refer to Section 3 for more
nformation about LSH). LSH-IS-S irregularly divides the feature
pace into a number of buckets in different layers by using a set

f hash functions families. If the bucket assigned to an instance f

3

was not occupied by another instance before, the instance is
preserved. In this way, only one instance in a group of very
similar instances is preserved. The authors benchmarked LSH-IS-
S against seven instance selection methods and concluded that it
leads to acceptable results in terms of classification accuracy and
reduction rate.

On the whole, most of the existing methods either have high
time complexity which makes them infeasible in handling huge
datasets (e.g., distance-based methods) or have low performance
(e.g., random-based methods). In this paper, a new method that
has suitable time complexity and performance in facing with
a huge dataset is developed. The method inspired by LSH is
developed from a perspective based on a similarity index. Since
LSH is employed for designing a method for data reduction, the
proposed method is referred to as DR.LSH . It quickly identifies and
removes similar samples to a given sample according to a defined
similarity threshold. Therefore, by reducing the number of similar
training samples, the training phase of SVM becomes faster with-
out significantly compromising the generalization ability. Unlike
clustering and distance-based methods that are computation-
intensive particularly in huge training datasets due to calculating
the distance between each pair of samples, the proposed method
is fast and has low memory consumption because of its linear
time complexity and integer-based computations. Taking advan-
tage of eliminating redundant samples (similar samples), the
extent (both edges near the opposite class and near the free
space) of known classes in the feature space is preserved and
thus, removing the fusion of samples from unseen classes will
be feasible. In contrast to PSDSP and LSH-IS-S, the similarity
of samples is directly measured and considered in the instance
selection process of DR.LSH .

The performance of DR.LSH is benchmarked against LSH-IS-
S and PSDSP as two newly developed methods with linear time
complexity. Their time complexity enables them to handle huge
datasets and provide a fair comparison. The assessment is carried
out by using Pareto optimality [58] by considering a reduction
rate and a classification loss simultaneously. Also, the knee point
concept [59] is utilized for choosing the best configurations of the
input parameters of DR.LSH .

3. Locality-sensitive hashing: LSH

LSH is a fast method for finding approximate k-nearest neigh-
bors by hashing data into buckets to avoid comparing all pairs of
points [56]. The buckets are obtained by some locality preserving
hash functions. The idea behind LSH is that the probability for
close samples to be projected into the same bucket is higher
than for samples that are further. Within such a context, a family
H = {h : Rn

→ N} that is locality-sensitive (i.e., closer samples
have a higher probability to collide, while more further samples
have a lower probability to lie in the same bucket) should be used
for hashing the data into buckets. In this paper, the following
locality preserving hash function is used for hashing each sample
(−→x ) [60]:

h−→a ,b(
−→x ) =

⌊−→a · −→x + b
r

⌋
(1)

In Eq. (1), −→a is a d-dimensional vector whose elements are
ndependently chosen from a Gaussian distribution with mean 0
nd standard deviation 1. The parameter b is a random real value
rawn uniformly from [0, r] and the parameter r controls the
idth and number of buckets. A small value of r leads to a large
umber of buckets with a small interval size. Given a specific
alue of r , the hash function projects sample−→x along the random
irection identified by −→a , then adds a random shift of b, and
inally rounds down the obtained value divided by r . For the sake
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Fig. 1. An example of a similarity index. Different hyper-planes in each layer
are the representations of hi .

f simplicity, all the samples (−→x ) are normalized into [0, 1] and
he parameter r is set to 1.

A set of k independently chosen hash functions of H forms a
amily of hash functions g(−→x ) = (h1(

−→x ), h2(
−→x ), . . . , hk(

−→x )).
n order to achieve high accuracy of search and to increase the
robability of success (i.e., the collision probability of close sam-
les in buckets), a set of hash functions families G = {g1, g2, . . . ,

l}, rather than only one hash functions family, needs to be
onstructed. In the next section, the concepts of LSH are used
or defining the nature of the proposed instance selection method
DR.LSH).

. The proposed instance selection method

This section aims at explaining the way that DR.LSH works.
he pseudocode of DR.LSH along with the detailed explanations
f its steps are first presented. Then, the effects of the input
arameters on its performance are illustrated.

.1. DR.LSH

DR.LSH is based on the perspective that there are some redun-
ant samples that do not significantly contribute to the descrip-
ion of each class. Its main goal is to quickly find and remove
hem in huge datasets. DR.LSH accelerates the calculations of
inding redundant samples by using the local sensitivity concept.
t identifies redundant samples by measuring similarity based on
artitioning the space into many buckets in several layers. The
edundant samples, relative to a given sample (A), are defined
s the samples whose similarity to sample A exceeds a pre-
stablished threshold. DR.LSH is composed of two main steps: 1-
ashing data points into buckets, and 2- measuring the similarity
nd removing similar samples (redundant samples).
In the first step, a set of hash functions families is used

o identify the buckets that each instance belongs. Let G =
g1, g2, . . . , gl} be a set of families of hash functions such that
(−→x ∈ T ) = (h1(

−→x ), h2(
−→x ), . . . , hk(

−→x )), and hi is a hash func-
ion {h : Rd

→ N}. T = {(−→x1 , C1), . . . , (−→xn , Cn)} is a train-
ng dataset where (−→x , C) is an input–output pair, −→x is an
d-dimensional input feature vector, C is the output class, and
is the number of training data. Each family of hash functions

gi) splits the input space into a set of smaller regions called
buckets. The output of each hash functions family can be depicted
as a layer of non-overlapping d-dimensional buckets. Also, the
utput of a set of hash functions families (G) with l members
4

can be regarded as l layers of buckets (Fig. 1). Indeed, samples
are projected from an d-dimensional decimal space to an l-
dimensional integer space such that each feature in the new space
is the bucket id in its corresponding layer. This property enables
DR.LSH to scale well with data dimensionality. It should be noted
that a bucket id can be thought of as a unique number assigned
to each bucket in each layer.

In the second step (Fig. 2), first, the samples that share a
bucket (i.e., they are approximately close), to a given sample,
are retrieved and their similarity is measured. A similarity index
between two samples (A and B) is defined as the number of
identical buckets of A and B in all l layers. In other words, the sim-
ilarity between two samples is measured based on the number
of matching feature values in the new space. Closer samples are
more likely to be hashed in the same buckets and thus, they have
a high similarity index. Finally, the samples that have a high value
of similarity index to a given sample (i.e., bigger than a defined
similarity threshold) are considered as superfluous ones and are
removed. DR.LSH is fast because it does not need to compute a
large number of dissimilar pairs.

Fig. 1 shows an example of five layers of hash functions
families (g). Let T = {A, B, C, D } be the dataset with only one
class and A is the current sample. Regarding the similarity index, B
and C are the only samples that share a few buckets with A and
accordingly, they are considered as the samples that are likely
extraneous. The number of identical buckets of A and B is 4 and
that of for A and C is 2. Thus, the similarity index between A and
B is 4 (out of 5) and the similarity index between A and C is 2
(out of 5).

The pseudocode of DR.LSH is presented in Algorithm 1. Data
reduction is carried out for each class separately and thus, it is
readily applicable for datasets with multiple classes. The inputs
of the algorithm are a set of hash functions families (G), a training
dataset (T ), and a similarity threshold (ST ). The algorithm consists
of two major loops. In the first loop (lines 2–7), the bucket id of
each instance in all layers is determined and recorded indepen-
dently. The time complexity of the first loop is linear with regard
to the number of instances (n) because every instance is included
only once.

In the second loop (lines 8–26), first, the samples of class C
that have at least one common bucket with the current sample
(−→x ) in all layers are retrieved and stored. Then, the samples
whose number of shared buckets with −→x is more than ST are
regarded as extraneous instances and removed. Since DR.LSH
starts with the original dataset and gradually discards those sam-
ples that are unnecessary (lines 20–21), it is considered as a
decremental method in terms of the order in which instances are
processed [24] and thus, its execution time mainly depends on
the number of preserved samples. That is, the more samples are
removed, the fewer samples are required to be passed through,
and the shorter the execution time will be. The time complexity of
the second loop is linear with respect to the number of instances
(n). Please refer to Appendix for the proof of linearity of DR.LSH ’s
time complexity.

The number of layers (l), number of hash functions in each
layer (k), and similarity threshold (ST ) are the parameters that
directly contribute to DR.LSH ’s performance (e.g. reduction rate)
and its computational cost. The higher value of these parameters
(k and l) leads to a longer computation as more fine buckets
are created. In addition, the bucket resolution along with the
accepted degree of similarity are controlled by k. The parameter
k controls the tradeoff between larger bucket size with a lower
degree of similarity and smaller bucket size with a higher degree
of similarity. The parameter ST significantly affects the reduc-
tion rate — in other words, the number of preserved instances
increases with the value of ST .
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Fig. 2. The workflow of the second step of DR.LSH for an instance x.
Algorithm 1 DR.LSH , the proposed instance selection algorithm

Input: A training dataset T = {(−→x1 , C1), . . . , (−→xn , Cn)}
A set of hash function families G = {g1, g2, . . . , gl} such that
g(−→x ∈ T ) = (h1(

−→x ), h2(
−→x ), . . . , hk(

−→x )) and hi is a hash function (h : Rd
→ N)

ST (similarity threshold) that should not be greater than l
Output: The set of selected instances (SI ⊆ T )

1: SI ← ∅
2: for each −→x ∈ T do
3: for each function family g ∈ G do
4: bid← bucket id assigned to −→x by g
5: Add bid to bgx
6: end for
7: end for
8: for each class C ∈ {C1, C2, . . . , Cm} do
9: S ← {−→xi |Ci = C}; S contains all the instances in class C

10: for each −→x ∈ S do
11: I ← ∅
12: for each function family g ∈ G do
13: bid← bgx
14: Neighbors← all instances of class C in bid except −→x
15: Add Neighbors to I
16: end for
17: for each unique z ∈ I do
18: SimilarityIndex← calculate the frequency of z in I
19: if SimilarityIndex >= ST then
20: Remove z from S
21: Remove z from all buckets
22: end if
23: end for
24: end for
25: Add S to SI
26: end for
o
o
c
h
t
a
3

b
n

4.2. Behavior of DR.LSH

Discarding redundant samples leads to curtailing training data,
speeding up the training process, and satisfactorily preserving
data extent of each known class (both edges near the opposite
class and the free space). The degree of preserving the original
extent of classes is controlled by the reduction rate that is itself
affected by l, k, and ST . To understand the effect of input param-
eters on the behavior of DR.LSH , we illustrate it by an empirical
omparison. In this comparison, a synthetically generated dataset
ormed by 9000 instances with two numerical features and two
lasses is used. In this dataset, the number of instances in each
lass is roughly the same. Fig. 3(a) shows the distribution of the
riginal dataset. It is vivid that the instances are not uniformly
istributed and there are some regions in both classes with a
igher density of points. Also, there is an overlap between classes.
Table 1 summarizes the number of samples selected by DR.LSH

when the number of hash functions in each layer (k) and similar-
ity threshold (ST ) gradually decline. The number of layers (l) is set
to 10 for simplicity. The reduction rate increases as the buckets
become coarser and similarity threshold becomes smaller. In fact,
 D

5

the high reduction rate is attributable to the high value of pa-
rameters k and ST . This is a useful and interesting feature for the
users as they can readily control the reduction rate and degree of
preserving the data. Fig. 3 indicates the preserved instances when
k = 20, l = 10, and ST = 2, 4, 6, and 8. It is evident that the extent
f each class is convincingly maintained depending on the value
f ST . This feature helps to feasibly recognize data from unseen
lasses. Another property of DR.LSH is that it makes the data more
omogeneous in terms of density. Table 2 compares the execution
ime (sec) of DR.LSH , programmed in MATLAB 20191 and run on
computer with an Intel(R) CoreTM i7-7700 CPU @ 3.6 GHz and
2 GB RAM, for different values of k and ST when l = 10. The

longest execution time is 0.176 (s) that is insignificant in handling
9000 points. It is seen that the computational time of DR.LSH
diminishes as k and ST declines. This is because the number of
uckets, the required degree of similarity, and consequently the
umber of instances selected are reduced.

1 The source code of DR.LSH can be found in https://github.com/mohaslani/
R.LSH.

https://github.com/mohaslani/DR.LSH
https://github.com/mohaslani/DR.LSH
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Fig. 3. Selected instances by DR.LSH .
Table 1
The number of instances that DR.LSH selects for different values of k and ST (l = 10)
Similarity threshold (ST ) Number of hash functions in each layer (k)

30 25 20 15 10 5

8 2084 1661 1216 810 432 146
6 851 646 462 289 151 52
4 368 277 191 120 64 25
2 146 111 79 51 29 12
Table 2
The execution time (sec) of DR.LSH for different values of k and ST (l = 10)
Similarity threshold (ST ) Number of hash functions in each layer (k)

30 25 20 15 10 5

8 0.176 0.140 0.112 0.086 0.064 0.043
6 0.106 0.091 0.080 0.068 0.052 0.036
4 0.092 0.081 0.071 0.060 0.044 0.032
2 0.082 0.073 0.062 0.052 0.040 0.029
5. Building extraction from the fusion of high-resolution
aerial images and point clouds

To verify the effectiveness of the proposed method, it is in-
orporated in the procedure of automatic building extraction.
utomated building extraction from high-resolution aerial im-
ges and point cloud has been an important realm of research in
emote sensing over the past two decades. Different approaches
hat have their own advantages and disadvantages have been
roposed for building extraction [61,62]. In this context, SVM as
supervised learning algorithm has been widely and success-

ully utilized in pixel-based classification methods for building
xtraction because of its good performance [63–65].
6

The SVM-based building extraction method employed con-
sists of the following five steps: 1- Data preprocessing that aims
at removing noise from point clouds (Section 5.2), 2- Feature
production whereby features such as height from the ground
and vegetation index are derived (Section 5.2), 3- Instance se-
lection (Section 6), 4- Training SVM and optimizing the hyper-
parameters (Section 6), and 5- Post-processing for supplementing
incomplete buildings and eliminating non-buildings (Section 6).

All the five steps affect the quality of the output. However, the
worthiness of the maps constructed by SVM is mainly a function
of classification performance among others. The performance of
the SVM depends on the samples used for its training. Although
including all the pixels of the training parts leads to a complete
cover of spectral variability and extent of each known class by
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Fig. 4. (a) True-Orthophoto and boundary of the study area and (b) Footprint of buildings.
VM, this can bring about a huge number of redundant training
ata. This is especially true in high-resolution images, because of
he analogous feature values and/or spatial correlation of neigh-
oring pixels. This can hinder obtaining the results by SVM due
o its high time complexity. Therefore, selecting a small subset
f training pixels is indispensable to circumvent this issue. In
his paper, DR.LSH is used to select the pixels that provide a
epresentative description of the overall population in the feature
pace.

.1. Study area and data description

The study area is a small part of Gothenburg that is the second-
argest city in Sweden. The data for this research provided by the
wedish mapping, cadastral and land registration authority (Lant-
äteriet)2 include True-Orthophoto, image-derived DSM cloud
roduced by image matching of aerial images, LiDAR data, and
he footprint of buildings. The aerial images were acquired in
018 with the spatial resolution of 10 cm in 4 bands of near-
nfrared (NIR), red (R), green (G), and blue (B) by a digital camera
ltraCam Eagle Mark 13 with the focal length of 79.8 mm and
he pixel size of 5.2 µm. The spatial resolution of both the DSM
loud and True-Orthophoto is 10 cm. The point density of LiDAR
ata captured by Leica Geosystems ALS60 is 1 point per square
eter. All the collected data were georeferenced in SWEREF99.
ig. 4 shows True-Orthophoto and the buildings’ footprint of the
tudy area.

.2. Data pre-processing and features production

In the preprocessing stage, noise as an unavoidable phe-
omenon that influences outputs is removed from LiDAR data.
iDAR points whose last return (LR) is significantly bigger than
heir first return (FR) are considered as noises and are eliminated.
mage-derived DSM cloud is enhanced by the first echo of each
ulse of LiDAR data to make sure that there is no gap in the
SM. In order to train an SVM and enable it to detect buildings,
ifferent features of each pixel as the inputs of the classification

2 https://www.lantmateriet.se/
3 http://www.vexcel-imaging.com/
7

Fig. 5. nDSM.

process are required to be produced. Gradient magnitude, sec-
ond spatial derivative (Laplacian), terrain roughness, and nDSM
are four features that are derived from DSM and normalized
difference vegetation index (NDVI) is a feature produced from
True-Orthophoto.

The digital terrain model (DTM) is generated by using the
progressive morphological filter developed in [66]. This method
removes non-ground features by gradually increasing the filter
size and applying opening operations in each step. The nDSM,
which includes the heights of non-terrain objects (e.g., build-
ings and vegetation), is obtained by subtracting DTM from DSM
(Fig. 5).

The gradient magnitude that measures the local change of the
height values in the DSM is calculated by Eq. (2). In this equation,
∂F
∂x and ∂F

∂y are gradients in x and y directions respectively. Since
it is not necessary to find the exact locations of the edges and
because of the simplicity, the Sobel operator with odd dimensions
(3× 3) is used to calculate the gradients in x and y directions [67].

https://www.lantmateriet.se/
http://www.vexcel-imaging.com/
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radient Magnitude =

√
(
∂F
∂x

)2 + (
∂F
∂y

)2 (2)

The second derivative that enhances the discontinuity of the
height values of the DSM is estimated by a 3 × 3 Laplacian kernel
Eq. (3).

∇
2F ≈ F (X+1, Y )+F (X−1, Y )+F (X, Y+1)+F (X, Y−1)−4F (X, Y )

(3)

In Eq. (3), X and Y are the centers of the Laplacian kernel.
Terrain roughness that describes the irregularity of the DSM is
calculated by the method proposed in [68]. This method is based
on measuring the amount of elevation difference among neigh-
boring cells of a DSM. NDVI as a widely used vegetation index is
derived from True-Orthophoto by Eq. (4) where NIR and R are the
reflectances of the near-infrared and red bands respectively.

NDVI =
NIR− R
NIR+ R

(4)

The above-mentioned features along with the pixels’ labels
extracted from the reference data (footprint of buildings) are used
to form the elements of training data. The size of the training
dataset is approximately 23,750,000 records with five input fea-
tures and one output (building/non-building). Each output class
occupies a specific region in the feature space, depending on the
intrinsic property and environmental context of the classes.

6. Results and discussion

In this section, the effects of the parameters of DR.LSH on its
verall performance by using the dataset obtained for building
xtraction are assessed. Moreover, its performance is compared
ith two recently proposed instance selection methods, namely
SH-IS-S and PSDSP. These methods are selected for benchmark-
ng because of their linear time complexities that make them
pplicable to handle several millions of instances.
The performance of an instance selection method can be

ssessed qualitatively by visual inspection or quantitatively with
ome metrics. In this research, two quantitative metrics (Eqs. (5)
nd (6)) are used to assess and benchmark the performance of
he aforementioned instance selection methods. Fig. 6 indicates
he workflow used for evaluating the instance selection meth-
ds. First, the dataset is normalized between 0 and 1. Then,
he normalized dataset is partitioned into outer training and
uter test sets in a stratified p-fold cross-validation scheme. Next,
n instance selection method (e.g., DR.LSH) is applied to the
uter training set, producing the selected data. At this point, the
reservation rate is measured by the number of the selected data
nd the outer training set. Afterward, the selected data is used
or hyper-parameter optimization (through a stratified cross-
alidation scheme) alongside training an SVM with the optimized
yper-parameters. Finally, the classification loss is measured on
he outer test set.

As is evident from Fig. 6, a repeated stratified p-fold cross-
alidation scheme [69] is employed to estimate the average clas-
ification loss and preservation rate. Utilizing test sets for esti-
ating the classification loss through a repeated stratified p-fold
ross-validation scheme allows for an unbiased evaluation of the
eneralization capabilities of an SVM trained on the reduced data.
n addition, this scheme results in a lower variance in comparison
o a non-repeated version [70]. In this scheme, the parameter p
s the number of folds and the parameter r as the number of
epeats are set to 10 and 7 respectively. That is, the whole process
s repeated 7 times for 10 folds and the final classification loss and
8

reservation rate are obtained by averaging folds and repetitions
ogether.

Since classification loss, as an evaluation metric, significantly
elies on the value of hyper-parameters, namely kernel type (RBF,
olynomial, and linear), kernel parameters (kernel scale in RBF
nd polynomial order in polynomial), and box constraint [71],
hyper-parameter optimization step is included to ensure that
yper-parameters do not significantly affect the evaluation pro-
ess of the instance selection methods. Manifold methods have
een proposed for automatic tuning of hyper-parameters [72,
3]. However, global optimization algorithms are highly recom-
ended because of the non-convex property of hyper-parameter
ptimization problems. Therefore, in this research, Bayesian op-
imization as a state-of-the-art method for global optimization of
unctions is used [74]. Since there are three hyper-parameters,
he search space of Bayesian optimization is a 3-dimensional
pace composed of box constraint, kernel type, and parameter of
he selected kernel. The objective function that guides Bayesian
ptimization towards (near)-optimal hyper-parameters is the av-
rage classification loss on validation sets within a stratified
-fold cross-validation scheme (with q = 4). In each experi-
ental trial of Bayesian optimization, the training sets are used

o train an SVM, while the validation sets are used to calcu-
ate the classification loss as the objective function of Bayesian
ptimization.
Classification loss and preservation rate as two quantitative

etrics are calculated according to Eqs. (5) and (6). The reason for
oncurrently using these two measures is that the ideal objective
f instance selection is to minimize the number of instances of a
raining set (i.e., minimum preservation rate) while maintaining
he classification performance (i.e., minimum classification loss).

reservation Rate =
number of instances(Selected Data)

number of instances(Outer Training Set)
× 100

(5)

lassification Loss =
m∑
j=1

log(1+ exp(−Cjf (
−→xj ))) (6)

In Eq. (6), −→xj is the jth sample of the test set, f is the decision
boundary function obtained by the SVM trained on the selected
data, f (−→xj ) is the classification score for −→xj , and Cj ∈ {−1,+1}
s the observed class label, where -1 indicates the negative class
non-building) and +1 indicates the positive class (building) [75].

The parameters of DR.LSH significantly control its performance
n terms of preservation rate and classification loss. However,
t is not initially clear which configuration leads to the more
romising results as it depends on the problem at hand. Thus, 60
ifferent combinations of parameters (k, l, and ST ) are selected
y considering the limit of computational resources and avoiding
onstructing a myriad of hash functions.
The average classification loss and preservation rate of differ-

nt configurations are shown in Fig. 7, from which the following
mportant points can be stated:

• The biggest preservation rate is approximately 0.2%, that is,
DR.LSH could reduce more than 99.8% of instances. Also,
it is evident that its corresponding classification loss is in-
significant and very close to zero. This proves the great
performance of DR.LSH in reducing the dataset’s records.
• The number of samples eliminated increases with the value

of similarity threshold (ST ). This is because the parameter
ST controls the required degree of similarity for preserving
samples.
• Although there is a general inverse relationship between

classification loss and preservation rate, classification loss is
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Fig. 6. Workflow for evaluating the performance of the instance selection methods.
Fig. 7. Quantitative performance measures for different configurations..
almost constant (or has insignificant variations) for ST = 10,
9, 8, and 7.
• The configuration of k = 25 and l = 15 brings about the

highest preservation rate. This is because it has the highest
9

value of k and the lowest value of l. A high value of k leads to
a high number of buckets with small size in each layer and
a low value of l makes ST

l closer to 1 and thus, eliminating
condition more strict.
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Fig. 8. Pareto optimal configurations by considering both average classification
oss and preservation rate. The knee point has the configuration of k = 25,
l = 20, and ST = 7.

• Reducing ST from 10 to 7 is accompanied by a fairly signif-
icant drop in the average preservation rate in most of the
configurations (especially for k = 25 and l = 15), but only
slight changes in the average classification loss. Thus, ST = 7
(or 8) can be considered as the value that strikes a balance
between the preservation rate and classification loss.
• Although ST < 3 results in very small subsets of training

data and consequently faster training phase, these values
notably raise the classification loss and cannot be considered
as optimal values of ST .

Finding the best configuration (k, l, and ST ) can be con-
idered as a multi-objective problem since there are two con-
lict performance criteria (objectives) that should be simultane-
usly minimized [76]. Unlike single-objective problems, multi-
bjective problems usually present several optimal solutions that
re found by using the Pareto optimality theory [58]. According to
he Pareto optimality theory, an optimal solution (configuration)
s the one that is not dominated by other feasible solutions
i.e., there exist no other solutions that improve one of the objec-
ives without degrading another objective). A set of all optimal
olutions forms the Pareto set which is referred to as the Pareto
rontier in the objective space [77].

Among all 60 various configurations, 32 of them are Pareto op-
imal and are shown in Fig. 8. The non-optimal configurations are
ot shown in this figure to avoid cluttering. As it is evident, there
s a set of optimal alternatives in such a way that an improvement
n classification loss can be achieved at the expense of deteri-
ration of the preservation rate and vice versa. Therefore, each
oint in Fig. 8 can be regarded as the final preferred configuration
epending on the importance of each criterion (preservation rate
nd classification loss).
If there are no additional problem-specific preferences, the

ost preferred solution can be the one that best balances inher-
nt trade-offs. This type of solution that is referred to as the knee
oint is well-matched to the point of maximum curvature in the
areto frontier curve [59]. Due to the discrete nature of the Pareto
rontier, there has not been a closed-form and well-defined for-
ulation for finding the point of maximum curvature [78]. In this

esearch, in order to locate the knee point in the Pareto frontier,
he L-method is used because of its simplicity and efficiency [79].
he notion of the L-method is that the placement of a knee point
as the minimum total root mean square error of the two straight
ines fitted to the left and right sides of it. In essence, two straight
ines are fitted to the left and right sides of the candidate point.
10
Fig. 9. Comparing the performance of LSH-IS-S, PSDSP, Random, and DR.LSH.

The point that has the minimum total root mean square error is
considered as the knee point. Fig. 8 shows the knee point that
has the configuration of k = 25, l = 20, and ST = 7. This
onfiguration is also approved by the explanations of Fig. 7.
Table 3 shows the effects of DR.LSH on the execution time

and classification accuracy of SVM, obtained through the repeated
stratified cross-validation scheme. DR.LSH could significantly re-
duce the number of instances and execution time without con-
siderably affecting the original classification accuracy. In other
words, the execution time becomes 55 times shorter while the
effect of DR.LSH on the original classification accuracy is not
significant.

The performance of DR.LSH is benchmarked against PSDSP,
LSH-IS-S, and random selection. Taking advantage of linear time
complexity, PSDSP and LSH-IS-S are computationally feasible and
appropriate for handling 23,750,000 samples. To make the com-
parison fair, six various (near)-optimal configurations of PSDSP
and LSH-IS-S are selected in such a way that relatively similar
preservation rates of DR.LSH (less than 0.2%) are obtained.

Fig. 9 compares the performance of the methods in terms of
the average preservation rate and classification loss. Since these
methods are compared by using two criteria (multi-objective),
non-dominated points are selected by Pareto optimality theory.
As indicated in Fig. 9, all the Pareto optimal points are from the
group of DR.LSH and neither LSH-IS-S nor PSDSP nor random
could dominate DR.LSH . This shows that DR.LSH has the best per-
formance in comparison to other methods. Thus, it is sufficiently
effective to be used for building extraction in the study area.

The binary map of buildings/non-buildings is extracted by
applying the SVM classifier, which is trained on the data selected
by DR.LSH , to the whole pixels of the study area and utilizing a
morphological filter afterward. More precisely, first, DR.LSH with
the configuration of the knee point (k = 25, l = 20, and ST = 7)
is used to select the instances for hyper-parameter optimization
and training the SVM. Then, the trained SVM with the optimized
hyper-parameters is used to classify the pixels to building and
non-building classes based on their input feature values. Finally,
a morphological opening with a circular shaped kernel as the
structuring element is applied to eliminate the objects whose
size is smaller than the smallest building in the row aerial image
(removing salt-and-pepper effects). The footprints of buildings
extracted are shown in Fig. 10.

Table 4 represents the evaluation results of the output map in
terms of completeness, correctness, and quality for both pixel-
level and object-level [80,81]. In the object-level measures, if
more than 50% of an object is detected, it is considered as a
correct detection. As it is clear, having the values of all the
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Table 3
Preservation rate, classification accuracy, and execution time.

Preservation rate
(%)

Classification
accuracy (%)

Execution time
(s)

SVM 100 99.99 26915
DR.LSH (knee point) + SVM 0.026 99.98 492
d
a

Fig. 10. The buildings extracted by utilizing the trained SVM and a
morphological opening.

Table 4
The assessment results of the extracted buildings.
Level Completeness (%) Correctness (%) Quality (%)

Pixel-based 98.6 98.8 97.4
Object-based 93.1 75 71.1

measures greater than 70% indicates that the classifier could be
successfully trained on the data selected by DR.LSH .

. Conclusion and future work

It is not always necessary to have a large training set since
any of training samples provide no significant contribution

o the classification and may not be informative. This is es-
ecially a case in pixel-based building extraction from high-
esolution aerial images by SVM. Including all pixels of training
arts in the training phase gives rise to having a big dataset that
ontains many unnecessary instances. This is because neighbor-
ng pixels in high-resolution aerial images have similar feature
alues. A smaller training set that is free of similar samples
nd satisfactorily provides a description of each class is often
dequate.
In this paper, an instance selection method (DR.LSH) with

inear time complexity (O(n)) was developed. It is able to select
amples (pixels) that convincingly cover the spectral variability
nd extent of each class in the feature space. The reliance of
his method on the property of approximate distance-preserving
apping (i.e., hashing data into buckets), simplicity, and integer-
ased calculations (low required memory) make it a suitable tool
n the big data analysis toolbox. By tuning the input parameters
f DR.LSH (k, l, and ST ), a smaller training dataset that is suitably
umerous and effectively represents the extent of each class is
cquired.
DR.LSH was evaluated on a huge dataset obtained from the fu-

ion of aerial images and point clouds for building extraction. The
11
ataset consists of 23,750,000 samples with several features such
s height and vegetation index. DR.LSH was also benchmarked

against LSH-IS-S and PSDSP that have linear time complexity as
well as a random selection method. Pareto optimality theory was
used for a fair comparison of the instance selection methods. The
experiment showed that DR.LSH , by rapidly selecting a small sub-
set of samples, significantly accelerates the training phase of SVM
without substantially impairing the discriminatory power of SVM.
Moreover, the results indicated that DR.LSH could outperform
LSH-IS-S, PSDSP, and the random selection method in terms of
preservation rate and classification loss.

Although DR.LSH is effective in handling huge datasets, there
is still room for improvement. In this paper, only the first sample
among similar ones is preserved to make DR.LSH fast. Some steps
can be added to the algorithm to intelligently select samples
without significantly affecting the execution time. For instance,
adding some heuristics to select outer samples that are closer to
decision boundaries may improve the performance of the algo-
rithm. In addition, DR.LSH can be integrated with an analytical
approach or an optimization algorithm such as particle swarm
optimization [82] and whale optimization [83] algorithms for
automatic tuning of the input parameters.

The k-nearest neighbors classifier [84] is one of the most
well-known classifiers because of its effectiveness and simplicity.
However, this method has high memory and computational com-
plexities with respect to the number of instances. Since DR.LSH
quickly identifies and removes similar instances, it is a potential
instance selection method for the k-nearest neighbors classifier.
Thus, further work includes evaluation and/or development of our
method to the k-nearest neighbors classifier. Another potential
research line is to adapt DR.LSH to prototype generation as a
promising research line that was not considered in this paper.
This idea can be developed by analyzing the structure of buckets
obtained by LSH.
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Appendix. Proof of linearity of DR.LSH’s time complexity

The total computational cost of DR.LSH consists of the time
complexity for 1- hashing instances into buckets (lines 2–7 of
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Fig. A.1. (a) and (b) two layers of buckets. (c) the buckets obtained by intersecting (a) and (b).
t
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the algorithm) and 2- removing similar instances of each class
based on the similarity index (lines 8–26). In what follows, the
time complexity of each part is separately explained.

A.1. Time complexity of lines 2–7 in DR.LSH algorithm

Since each instance is projected from the feature space into
a new space by using k hash functions in l layers, the time
complexity is O(nkl) where n is the number of instances.

A.2. Time complexity of lines 8–26 in DR.LSH algorithm

To simplify the proof of time complexity, it is assumed that
1- instances of each class are evenly distributed in each bucket,
2- buckets have regular shape, and 3- each layer has the same
number of buckets. The upper bound of the time complexity of
the second part happens when ST = l. In this case, the number
of iterations of lines 11–23 of the algorithm is equal to the total
number of buckets obtained by intersecting l layers of buckets
(rather than the number of instances). This is because only one
instance in each bucket, obtained by intersecting the layers, is
preserved and other instances that share the same bucket are
removed and will not be checked in next iterations.

Fig. A.1 shows an example of intersecting two layers of buckets
in the feature space. B is the number of buckets in each layer
and B′ is the total number of buckets produced by intersecting
the layers. It should be noted that instances are not shown in
this figure to avoid cluttering. If it is assumed that DR.LSH goes
through instances from left to right and down to up (for the sake
of simplicity), the total number of instances of class C retrieved
and processed in the iterations of lines 11–23 is calculated as
follows (nC is the number of instances in class C):

np1 = 2
nc

B

np2 = 2
nc

B
−

nc

B′
(1+ 0)

np3 = 2
nc

B
−

nc

B′
(2+ 0)

.

.

.

+ npB′ = 2
nc

B
−

nc

B′
(B− 1+ B− 1)

npT = 2
nc

B
B′ −

nc

B′

⎛⎝B−1∑
i=0

B−1∑
j=0

i+ j

⎞⎠ = 2
nc

B
B′ −

nc

B′
(
B2 (B− 1)

)
(A.1)
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The general form of the above equation for l layers is:

npT ≃ l
nc

B
B′ −

nc

B′

⎛⎝B−1∑
i1=0

B−1∑
i2=0

· · ·

B−1∑
il=0

i1 + i2 + · · · + il

⎞⎠
≃ l

nc

B
B′ −

nc

B′

(
Bl(B− 1)l

2

)
≃ nc l

(
B′

B
−

Bl(B− 1)
2B′

)
(A.2)

The total number of instances retrieved and processed for all
classes is:

NpT ≃ nl
(
B′

B
−

Bl(B− 1)
2B′

)
(A.3)

Thus, the upper bound of the time complexity of the second
part is O

(
nl

(
B′
B −

Bl(B−1)
2B′

))
.

A.3. Total time complexity of DR.LSH algorithm

The upper bound of DR.LSH ’s time complexity is O(
nl

(
B′
B −

Bl(B−1)
2B′

)
+ nkl

)
. As it is clear, it is linear with respect

o n.
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