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1. Introduction
Increasing information capacity of radar and navigation systems is an urgent task. A main direction here is 
enhancing angular resolution. It is especially important when carrying out various measurements, selection 
and recognition of objects, as well as for remote sensing and radio astronomy.

The proposed methods for processing the results of observations can improve the effective resolution 
without making any changes in the system design (Dudík et al., 2007; Herman & Strohmer, 2009; Lagov-
sky, 2014a; Lagovsky et al., 2015a, 2015b; Morse & Feshbach, 1953; Odendaal et al., 1994; Radoi et al., 2004; 
Stoica & Sharman, 1990). To achieve this, however, one has to increase the size of antenna systems and 
make their structure more complicated. This raises the system cost and is not always possible technically.

In recent years, many countries have intensified the research aimed at creating specialized techniques and 
signal processing systems in order to reach angular superresolution. The developed approaches include 
ultrahigh resolution, deconvolution of signals, the use of phase weighting coefficients, corner weighing, 
MUSIC, ESPRIT, maximum entropy, thermal noise, Bordzhotti Lagunas, etc. (Dudík et al., 2007; Herman 
& Strohmer, 2009; Lagovsky, 2012a, 2012b, 2014a, 2014b; Odendaal et al., 1994; Radoi et al., 2004; Ramani 
et al., 2012; Stoica & Sharman, 1990; Waweru et al., 2014; Zha et al., 2016).

However, these methods and the corresponding algorithms are not universal and not always efficient, espe-
cially at high noise levels. When solving two-dimensional problems, many of these methods face significant 
difficulties, including those of a fundamental nature. In this case, the signal processing time increases many 
times up to the need to use parallel processing. On the other hand, they do not allow the use of a priori 
information, although it is well known that this information significantly improves the stability of solution 
to inverse problems.

Another disadvantage is that the superresolution methods and algorithms such as MUSIC, ESPRIT, and 
many others employ narrow-band signals and are not applicable for ultra-wideband radars.

We propose new methods and algorithms for digital signal processing called algebraic methods. They are 
based on further development of the solution techniques for Fredholm integral equations stated in the well-
known monograph (Morse & Feshbach, 1953). The methods utilize the search for approximate solutions in 
the form of expansions in a given sequence of functions.

In Lagovsky (2009, 2012a, 2012b, 2014a, 2014b), Lagovsky et  al. (2015a, 2015b), and a number of other 
works of the authors, an algebraic method for obtaining radio images of signal sources with superresolution 
was developed. The content of each of them corresponds to the solution of some previously unconsidered 
problem or to modifications of approximate solutions that improve their quality.

Abstract The results of theoretical studies and mathematical modeling indicate the possibility of 
obtaining the angular superresolution and its limits by using algebraic methods of imaging. The necessary 
algorithms are created on the basis of solution to inverse problems. The limiting levels of the achieved 
angular superresolution are found depending on the signal-to-noise ratio for objects of various types. A 
number of specific advantages of the method are shown as applied to the solution of two-dimensional 
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So, in Lagovsky et al. (2015a, 2015b), an iterative approach is used employing indefinite Lagrange mul-
tipliers. However, this specific technique for obtaining superresolution is applicable only to small group 
targets. In Lagovsky (2009), the possibility of using the eigenfunctions of the integral equation for solutions 
based on the algebraic method is estimated. In addition, it is shown that the use of UWB signals does not 
affect the applicability of the algebraic method, in contrast to a number of other methods for obtaining 
superresolution.

In Lagovsky (2012a, 2012b, 2014a, 2014b) and Lagovsky et al. (2015a, 2015b), the achievement of superres-
olution using the methods of interpolation, extrapolation, and eigenfunctions of an integral equation are 
considered.

In this paper, we study the optimization of the choice of various one- and two-dimensional systems of func-
tions for representing solutions as well as of the determination of unknown coefficients in the expansions 
for the selected sequence of functions. Considerable attention is paid to the use of a priori information of 
various types when representing a solution with the aim to improve its quality and the achieved degree of 
superresolution.

It should be emphasized that algebraic methods allow to consistently increase the resolution by increasing 
the number of the used functions as long as the solution to the inverse problem remains stable. This makes 
it possible to construct iterative processes of digital signal processing, which enables one to achieve the 
highest possible degree of angular superresolution in each specific case.

The algorithms implementing algebraic methods are relatively simple, and the signal processing time is 
much less than that characteristic for other approaches.

These improvements allow one to use relatively simple computational devices and perform real-time 
signal processing, particularly when scanning and tracking targets which is very important in practical 
applications.

2. Statement of the Problem
For objects that are in the far field, the angle resolution based on the Rayleigh criterion is represented as

/ ,l d  (1)

which corresponds to the beam width of the directional pattern (DP) θ0.5, where d is the size of the aperture 
and λ is the wavelength. Evaluation of the width in the form Equation 1 is fundamental; it follows from 
the uncertainty relation in physics. The value of angular resolution in Equation 1 is introduced somewhat 
artificially based on the possibility of visual distinction between two closely spaced objects. This gives the 
of principle possibility to increase the resolution when processing observation results with the help of spe-
cially developed algorithms.

Suppose that in the scan sector of one of the coordinates the object with finite angular dimensions is locat-
ed. Let the angular distribution of the reflected signal amplitude be denoted by I(α) and DP for the antenna 
system of one of the angle coordinates f(α). Then at the output of the receiver when scanning we obtain 
the dependence envelope of the signal denoted U(α). Quantities I and U and DP f(α) are coupled by a linear 
Fredholm integral equation of the first kind of the convolution type

     
Ω

,U f I d      (2)

where Ω is the angular location of the source region.

Everywhere in the analysis, an antenna system is supposed to be an antenna array (AA). As f(α) of a linear 
equi-distant AA is taken in the analysis and numerical modeling of one-dimensional problems a DP. This 
kind of AA comprises 2N + 1 elements with a uniform amplitude distribution
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where d is the distance between the neighboring elements, k = 2π/λ, and f0(α) is the DP of the single AA 
element.

The problem is to recover the distribution I(α) based on the analysis of the received signal U(α) and the 
known DP of the antenna system with the highest possible angular resolution (superresolution).

It is well-known that the first-kind Fredholm integral equation is an inverse problem. Therefore, attempts to 
increase the resolution in comparison with the classical value in Equation 1 by solving Equation 2 bring to 
instabilities in solutions. According to the theory of inverse problems, substantial improvement in the qual-
ity of solutions of inverse problems can be achieved by using a priori information. In this work, we will em-
ploy this basic knowledge and consider several inverse problems where the preliminary information is used.

3. Algebraic Methods for Solving Inverse Problems
The presented methods of digital signal processing which can be called algebraic are promising as far as 
solution to inverse problems is concerned. They allow to carry out parametrization of problems and reduce 
Equation 2 to the solution of a system of linear algebraic equations (Lagovsky, 2009, 2012a, 2012b, 2014a, 
2014b; Lagovsky et al., 2015a, 2015b). To do this, we take into account that the required solution I(α) can 
be represented as an expansion over a complete orthonormal system of functions gm(α) in Ω; as a result, we 
obtain:

     
1 1

.
N

m m m m
m m

I b g b g  


 
   (3)

Next, using Equation 2 we show that the received signal is expressed as a superposition of functions Ψm(α):

     
1 1

,
N

m m m m
m m

U b b    


 
   (4)

where

     
Ω

.m mf g d       

To construct an approximate numerical solution, the expansion in a finite system of N functions gm(α) is 
used.

Introduce the scan sector Θ. Its angular dimensions exceed Ω. This sector is specified by the angular po-
sition of the axis of scanning DP such that the received signal still provides the acceptable level of signal/
noise ratio (SNR).

Expansion coefficients bm can be found by minimizing the standard deviation δ2 of a finite sum from the 
investigated signal U(α) in the scan sector Θ, that is, from the system of equations

       
1Θ Θ

1,2, , .
N

j m j m
m

U d b d j N        


    (5)

in matrix notation by introducing

       ,
Θ Θ

,j j j m j mV U d G d           (6)

we obtain the system of linear equations for coefficients bj forming vector B

.V GB (7)
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Coefficients bj can be found in a different way, by setting a sample of N values of angles αm ∈ Θ, m = 1,2…N 
(Lagovsky, 2012a, 2012b; Lagovsky et al., 2015a, 2015b). In this case, the problem reduces to the solution of 
the system

,U H B (8)

where U is the vector of values U(αm) and H is the matrix with elements Hm,j = Ψj(αm).

Numerical experiments on mathematical models have demonstrated that the condition numbers of matri-
ces G and H depend on the chosen system of functions gm(α).

Solutions in Equation 8 do not generally provide the best mean-square approximation of U(α). However, for 
any system of functions the stability of solutions is higher, as evidenced by the lower value of the algorithm 
condition numbers obtained on the basis of matrix H as compared to G. They differ by more than an order 
of magnitude already at N = 3 and this difference increases exponentially with increasing dimensions of 
the matrices.

The choice of systems gm(α) is crucial as far as the application of the algebraic method is concerned. In 
Lagovsky (2009) and Lagovsky et al. (2015a, 2015b), when solving the problems under study, the systems 
of orthogonal functions were selected based on the comparison of the condition numbers of various matrix 
equations of the type 7 and 8. The estimates were carried out on the basis of standard programs in Lagov-
sky (2009) and numerical estimates in Lagovsky et al. (2015a, 2015b).

Stability of algorithms for determining the solution based on the sample of angles allows to use a greater 
number of functions gj(α) and hence to improve the angular resolution.

It should be noted however that at a high level of noise, numerical studies showed a higher stability of solu-
tions when using Equation 7. This can be explained by averaging the influence of random signal compo-
nents when calculating the integrals Vj from Equation 7. When U(αm) is used in Equation 8, such averaging 
is not performed.

When increasing the area of angles Θ in which the received signal U(α) is analyzed, the stability of solutions 
increases. The signal, however, always contains random components. To obtain an adequate solution of the 
inverse problem, the SNR must be sufficiently high. This condition can be met only in a limited range of 
angles α ∈ Θ ≥ Ω.

Thus, when solving inverse problem in Equation 2, we select the sector size as large as possible, however, 
limited to the values of the angles at which SNR is at the minimum acceptable level.

Increasing the stability of solutions can be achieved when functions Ψm(α) are orthogonal in Θ. In this case, 
the non-zero elements are located only on the main diagonal of G. One can avoid solving ill-conditioned 
systems in Equations 7 and 8 because coefficients bm are found directly from each of Equation 5:

     2
Θ Θ

, 1,2,..., .m m mU d b d m N         (9)

Functions in Equation 2 can be taken as orthogonal functions Ψm(α). However, their numerical determina-
tion, even in the case of a degenerate kernel, is an ill-posed problem and, consequently, causes instabilities. 
In addition, Equation 2 is an oscillating functions with a decreasing oscillation period (Lagovsky, 2012a, 
2012b). The number N of functions in Equation 3 is significant to adequately represent many types of sourc-
es I(α), and larger N dramatically reduces the stability of the algorithms.

One can carry out simultaneous orthogonalization of the function systems describing received signal Ψm(α) 
and its source gm(α). The obtained systems of functions allow us to simultaneously represent the desired 
solution I(α) and signal U(α) in the form of expansions in orthogonal functions, which increases the sta-
bility of the numerical solution to the inverse problem. This method improves the stability of solutions 
(Lagovsky, 2012a, 2012b; Yu, 2015).

The solution of inverse problems by algebraic methods are constructed as an iterative process. The num-
ber N of functions in Equation 3 is successively increased. Iterations continue until stable solutions are 
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obtained. Carrying out this process consecutively increases the required degree of superresolution. Thus, 
for each specific problem and measurement conditions, the maximum possible degree of superresolution 
is achieved.

The quality of the solution obtained with the same number of functions used depends on the specific sys-
tem gm(α) chosen.

Comparison of the proposed method with the known approaches is of considerable interest. In the idealized 
case, with accurate measurement data and a negligible noise level, the considered algebraic method allows 
one to obtain exact solutions with an appropriate choice of the initial system of functions gm(α).

This statement can be easily verified. Let the signal source be described by the function h(α). Divide the area 
of the source location into M intervals. As a system of functions we choose gj(α) = h(α) on the jth interval, 
j = 1, … M, and equal to zero outside this interval. It is obvious that the chosen orthogonal system gm(α) 
provides an exact solution to the problem.

Thus, the algebraic method potentially provides the highest achievable solution quality and is superior in 
this respect to many popular approximate methods.

At the same time, the question of choosing the optimal system of functions remains open. It can be argued 
that for each specific problem there is its own optimal system gm(α) (not necessarily constructed as above), 
which allows one to obtain a solution close to the exact one.

With an unsuccessful choice, for example, using delta functions to describe smooth dependences h(α) char-
acterizing the source, the solutions found lose to solutions obtained by many other methods.

Thus, when analyzing each specific problem, it is impossible to assert in advance that the proposed meth-
od is superior to others or inferior to them. Much depends on the choice of the particular system gm(α). 
Approaches to optimizing the choice of the system, including those based on a priori information, are dis-
cussed in Sections 3.1 and 3.2.

When practical problems are solved, with an increasing number of functions used in decomposition, the 
condition number rises exponentially. Solutions are becoming less stable, their quality gets worse, and in-
creasing errors appear in the form of false signal sources. Each added function in Equation 3 usually dou-
bles the angle resolution. As shown by our numerical studies, this, on average, leads to a decrease in the 
permissible level of random components in the signal by 10 times.

For every problem, there is a specific number of functions N and exceeding this number leads to unstable solu-
tion. As a result, it is possible to obtain superresolution but up to a certain limit determined by the noise level.

This behavior is also characteristic of many other methods of obtaining superresolution. Usually, when the 
resolution is doubled, the minimum SNR required to obtain a sustainable solution increases by an order of 
magnitude.

Substantial improvement in the quality of solutions of inverse problems can be achieved by using a priori 
information about the solution which may take different forms discussed partially in the end of this section. 
The ability to effectively use such information distinguishes algebraic methods from many of the previously 
mentioned approaches.

The use of algebraic methods allows one to use preliminary information about the solution in the form of: 
selection of an appropriate sequence of functions, location, size, and shape of the investigated one- and 
two-dimensional domains; additional conditions imposed on the types of equations and inequalities; and 
formation of the signal samples U(αj).

Consider several inverse problems where preliminary information is used. Let the receiver system be a 
linear equidistant AA consisting of 2K + 1 elements whose DP may be taken equal to a constant within the 
investigated narrow angular sector. Its DP f(φ) focusing in the direction α with respect to the normal to the 
array can be represented, for equal amplitudes of currents at the emitters, up to a constant value, as:
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Substituting DP from Equation 10 into Equation 2, we obtain an integral equation with a degenerate kernel. 
Then the solution of Equation 2 after some algebra can be expressed as a finite sum with unknown coefficients:

     exp sin ,
K

m
m K

I C ikdm   


   (11)

where η(α) is taken, as it is usually done when solving the first-kind Fredholm integral equations, as an 
arbitrary function orthogonal to all exponential functions in Equation 4 on the interval

   Θ sin / 2 ,sin / 2 .d d     (12)

One has to take into account that for radar problems, the presence of an arbitrary function in the solution 
means that only an approximate description of target in the form of sum in Equation 11 is possible in the 
course of direct observation.

Note that now the received signal is the finite sum:

   2 exp sin .
K

m
m K

U C ikdm
d

 


  (13)

The values of coefficients Cm are calculated using the orthogonality of exponential functions by multiplying 
two sides of Equation 13 by corresponding exponents and integrating over region Θ.

The solution in the form of sum in Equation 11 corresponds to the Rayleigh criterion.

3.1. Use of a Priori Information About the Location of the Source Area

Further increase in resolution can be obtained only through the search or estimation of function η(α) includ-
ing the use of a priori information about the solution or grounded assumptions concerning the properties of 
the signal source: monotonicity or smoothness of functions, convexity of solutions, the range of the inten-
sity variation, restrictions on the gradient, location of the source region, etc. (Lagovsky & Chikina, 2017).

The application of a priori information about the signal source in the form of a set of individual point tar-
gets or targets with known distributions I(α) turns out to be effective (Lagovsky et al., 2016). In particular, 
when it is known that the source is represented by a set of small or point targets, it is desirable to use del-
ta-functions or systems of step functions.

Suppose, for example, that it is known a priori that the source is localized in a domain Δ much less than 
Ω. In this case, η(α) may be taken as a partial sum of any functions gm(α) orthogonal on the interval Δ with 
unknown coefficients:

   
1

.
N

m m
m
b g   

‐
 (14)

Values of N coefficients bm can be found from the known coefficients Cm. To do this, substitute Equations 10 
and 11 into Equation 2 and, taking into account that now the integration is carried out over Δ, equate coeffi-
cients of the same exponents on both sides of the resulting identity. As a result, we obtain a system of linear 
algebraic equations. Denoting the vectors of coefficients bm and Cm by B and C write linear systems in the 
matrix form (Lagovsky, 2012a, 2012b; Lagovsky et al., 2015a, 2015b):

,C GB (15)

where the entries of matrix G are
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   ,
Δ
exp sinm n mG ikdn g d    (16)

so that determination of coefficients bm is reduced to numerical solution 
of a linear system. To increase the stability of numerical solution the fol-
lowing additional condition obtained on the basis of Equations 11–13 is 
used:

     2 2

Ω Δ Δ
| |U d f I d d          (17)

Note that a priori information is implicitly used in common radar prob-
lems. For example, the signal received by AA from a point source has the 

form of Equation 13, as shown above. The same signal can be received from any source of finite dimensions 
having the form of Equations 11 and 12. The usual interpretation of signal in Equation 13 as received from 
a point source is based, strictly speaking, on a priori information or plausible assumptions. Only if function 
η(α) in Equation 11 is a part of the expansion of the delta function in a Fourier series for m > K, the source 
turns out to be a point source.

3.2. Use of a Priori Information About the Type of Angular Distribution of the Amplitude of the 
Signal Emitted by the Source

In this case, one can choose optimal functions for the problem solution. Successful function selection for 
the representation of solutions provides significant gain in the achieved degree of superresolution with 
the same number of N functions. If it is known that the angular distribution of the source amplitude is 
described by a continuous function with a relatively small gradient the use of smooth functions is efficient. 
Another possibility is to use the Fourier series.

When it is known that the source is represented by a set of small or point targets, it is desirable to use del-
ta-functions or systems of step functions.

Different types of wavelets occupy intermediate position between sinusoidal functions and delta-function. 
In fact, wavelets are able to represent local features of the signal more accurately if to compare with the 
signal decomposition in the Fourier series. In addition, wavelets can simultaneously describe general form 
of the source and simulate local non-smoothness including discontinuity of the first kind (jumps).

Another possibility of optimizing the system of functions is to select gm(α) based on a comparative analysis 
of the angular spectrum of the received signal F[U] and the angular spectral composition of the images of 
gm(α), that is, functions Ψm(α) from Equation 4, F[Ψm], where F[..] is the Fourier transform. A similar anal-
ysis can be performed based on the mutual correlation functions U(α) and Ψm(α).

4. Numerical Results
4.1. Examples of Using a Priori Information About the Type of Angular Distribution in the 
Form of a Smooth Curve

A method of increasing resolution is studied using a mathematical model 
of the linear array antenna with uniform excitation. The distance d be-
tween emitters was chosen to be 0.6 days/λ and the length of the array 
30 days/λ.

Initially, the target has the intensity distribution I(α), curve a in Figures 1 
and 2, where the received scanning signal U(α) is shown by curve b. The 
next stage of modeling is to solve the inverse problem of reconstructing 
the image on the basis of U(α) by solving Equation 8.

Suppose, it is known that the source is located in the region not larg-
er than the beam width and can be described with a smooth curve; in 
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Figure 1. Restoring the symmetric source images.

Figure 2. Restoring the asymmetric source images.
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this case, it is reasonable to use decomposition of the signal in series of 
smooth functions; here the use of Fourier series is an efficient method.

The next stage is reconstructing the image on the basis of U(α) by solving 
Equations 11–17 involving Fourier series. Solutions are determined with 
increasing resolution, that is, by performing successive increase of the 
number of functions used in Equations 3 and 8.

In Figure 1, curve c shows the results of the image of targets reconstruction 
achieved with maximum superresolution. Figure 2 shows the results of the 
image reconstruction of an asymmetric source with the same notation.

The resulting solutions shown in Figures 1 and 2 are stable, and the po-
sitions of maxima are determined with good accuracy. The function de-

scribing angular distribution of the amplitude of the signal sources is found with some quantitative errors, 
although in general, it correctly describes characteristics of the source.

Without signal processing these sources are resolved at a distance of 1.3θ0.5 and 1.7θ0.5, that is, the Rayleigh 
criterion is exceeded three and seven times, respectively.

4.2. Examples of Using a Priori Information About the Type of the Amplitude Angular 
Distribution of the Source with Additional Orthogonalization

If a priori information is available about continuous distribution of the signal emitted by a source with a 
relatively small gradient in the investigated sector, then smooth functions can be used for obtaining the 
solution, for example, trigonometric functions.

Figure 3 shows the results of image reconstruction of two identical signal sources not resolved by direct 
observation. The source image is formed using the first six functions of the Fourier series. The algorithm is 
based on Equations 11–17 solved without orthogonalization (which allows to restore the image with small 
error (curve b), the source is shown by curve a). At the same time, however, false sources appear in the form 
of oscillations whose amplitudes increase as SNR decreases.

A preliminary orthogonalization allows to increase stability and quality of the solution (curve c). The recon-
structed images are close to the true (original) image, their location is determined with high accuracy, and 
the false amplitude oscillations are damped.

If one has a priori information about continuous distribution of the emitted signal amplitude with large 
gradients of the signal amplitude, then various types of wavelets should be used.

Compared with decomposition of the signal in Fourier series, wavelets provide much more accurate deter-
mination of the local features of the signal. Wavelets can simultaneously describe the general view of the 
source and its local features including discontinuities of the first kind (jumps).

Next, we studied the solution of the inverse problem with a high noise level when using a priori informa-
tion. It was known that several separate small-sized sources were under consideration. This information 
predetermined the use of step functions when representing the solution. The solution to the problem is 
shown in Figure 4.

Сurve a presents the true position and amplitudes of the signals emit-
ted by the source. Initially, the problem was solved without using any 
preliminary information and trigonometric functions were chosen as the 
system of functions {g(α)} orthogonal in sector Ω. Curve b shows the re-
constructed image. In general, the approximate solution determines the 
location areas of individual sources; however, its significant drawback is 
the appearance of false targets.

Additional information enabled us to sharply increase the quality of the 
obtained solution (curve c) without reducing its stability. The studied sig-
nal U(α) is shown in the form of curve d.
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Figure 3. Formation of source image using the first six Fourier 
harmonics.

Figure 4. Radio image of the signal source at high noise level.
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One of the main advantages of the representation of signals as a super-
position of wavelets is the possibility of splitting into two groups of func-
tions: approximating, that is, rough, with sufficiently slow dynamics of 
changes, and detailing, with local and fast dynamic changes.

Unlike the solutions obtained as expansions in a system of orthogonal 
functions, a solution based on wavelets is constructed as a double sum

   , ,
,

.
N

m n m n
m n

I b    (18)

Using different wavelet basis functions, the constructed systems repre-
sent angular distribution of the amplitude of the signal source based on a 
given a priori data or obtained on the basis of the assessment of Ω.

Selection of a particular kind and type of wavelets is largely dependent on a priori information about the giv-
en signal source. For example, if it is known that the signal source is a set of small sources, the MHAT-wave-
lets (“Mexican hat”) can be effectively used in expansion (Equation 11).

Figure 3 shows the results of restoring the sources with the highest resolution achieved using such infor-
mation. Note that when searching for solutions with the help of MHAT-wavelets its additional optimization 
is performed. On this basis the selection of specific MHAT-wavelets from a set Ψm,n, the best representation 
of the desired solution is achieved. As an example, a dashed line in Figure 5 denotes the original intensity 
distribution, and the continuous thin and solid lines show the reconstructed image using four and six wave-
lets, respectively.

The resulting approximate solution based on six wavelets allows to resolve two small objects with high ac-
curacy and reproduce the angular position and the amplitude of the signal sources.

Note that the amplitude values of the false signal sources for six wavelets are close to zero. Stable solutions 
with an angular superresolution are obtained that exceed the Rayleigh criterion by 5 times and provide 
localization of the signal sources with an accuracy θ0,5/10.

Figure 6 shows an example of source image reconstruction with large gradients of the angular distribution 
of the signal amplitude and small localization regions compared to the beam width at SNR of 18 dB. The 
following items are shown: a is the true distribution; b is the distribution found using MHAT wavelets 
without a priori information; c is the distribution determined both using a priori information and the data 
obtained during the iterative construction of the solution. For illustration, the received signal d is shown, 
the processing of which made it possible to reconstruct the source images.

Thus, it is shown that the use of MHAT-wavelets, especially with additional optimization allows one to ob-
tain stable solutions with an angular superresolution and restore the image of the source signals with large 

gradients of intensity and at higher noise level as compared with many 
known algorithms.

The developed algebraic methods demonstrate good performance when 
solving two-dimensional problems; in this case, a two-dimension-
al representation of solution (Lagovsky et al., 2018) is used in place of 
Equation 3:

     ,
1 1

,
N N

n m n m
n m

I b g g   
 

   (19)

Unlike many other methods, solving a two-dimensional problem slightly 
increases the signal processing time. The stability of solutions with the 
resolution equal to that characteristic for one-dimensional problems is 
almost the same (Lagovsky, 2014a, 2014b; Lagovsky et al., 2018).

As an example, Figure 7 shows the results of image restoration of four 
close-to-point sources of signals with different intensities that cannot be 
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Figure 5. Restoring of two equal source images using MHAT-wavelets.

I

Figure 6. Restoring of images of two different sources. Using MHAT-
wavelets at high noise level.
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resolved using direct observation. The received two-dimensional signal 
U(α,φ) is shown as curve a while b are the restored four small-size sourc-
es. As a system of functions in Equation  19, we used systems close to 
delta-functions located at different distances Δx and Δy from each other.

The achieved effective resolution in each of the coordinates turned out 
to be 1/4θ0.5, that is, four times exceeding the Rayleigh criterion. The re-
sulting solution made it possible to resolve all objects and almost exactly 
find their location. The intensities were determined with a small error, 
ranging from 2% to 5%.

5. Conclusion
We have developed algebraic methods of image restoration with im-
proved angular superresolution. Suggested methods for each specific 
problem allow one to approach the maximum achievable effective an-
gular resolution. We have confirmed that the use of a priori information 
about angular distribution of the intensity of the source allows one to 
strongly increase the quality of solutions.

Numerical experiments have shown that the proposed algebraic signal processing techniques enable one 
to receive stable image signal sources with an angular resolution 3–4 times higher than that provided by 
the Rayleigh criterion when simpler algorithms are used and 5–10 times higher when more sophisticated 
signal processing is applied (Lagovsky, 2009, 2012a, 2012b, 2014a, 2014b; Lagovsky et al., 2015a, 2015b). The 
results of numerical studies have shown that angular superresolution can be obtained with SNR starting 
from 12 to 15 dB, that is, at significantly lower values than the known methods and algorithms can provide. 
The developed technique makes it possible to successfully solve two-dimensional problems of achieving su-
perresolution without significantly complicating the algorithms and increasing the signal processing time.

The developed fast-acting high-performance algorithms allow one to use the proposed method in real time.

Data Availability Statement
Data were not used, nor created for this research.
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