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Key Points: 8 

• The well-posedness of determining the inclusion parameters by single- and multi-frequency 9 

experiments is verified 10 

• Convergence conditions for the least squares method are established 11 

• Estimates of the optimal experimental parameters are found 12 

Abstract 13 

An inverse problem of reconstructing real permittivity of a plane-parallel layer in a perfectly conducting 14 

rectangular waveguide or in free space from experimental data using an explicit expression for the 15 

scattering matrix is considered. In general, this problem is improperly posed and may be unsolvable due to 16 

inaccuracy of the experimental data, and for a perfect noiseless experiment the solution may be not unique 17 

because the scattering coefficients curve has self-intersection points. It is shown that the traditional 18 

multi-frequency method of measurements applied in vector network analyzers can be justified. The 19 

following facts are rigorously proved in the paper: nonuniqueness of the solution can be removed if the 20 

frequency resolution is sufficiently small; and an algorithm for processing measurement results using least 21 

squares provides an approximate solution to the problem that converges to the exact one when the quality 22 

of the experiment improves, the convergence rate depends on the number of frequencies used in the 23 

experiment. 24 

1 Introduction 25 

Knowledge of the properties of dielectrics is critical for numerous applications in material science, 26 

microwave engineering, and beyond. This is a crucial issue for developing and improving modern 27 

measurement technology and techniques implemented in advanced vector network analyzers (Rhode & 28 

Schwarz, 2012).  29 

The known resonant and non-resonant methods for determining electrodynamic properties of 30 

materials employ mathematical models of the propagation of electromagnetic waves in the following 31 

devices: capacitors, open, volume and ring resonators (Chen et al. 2004), as well as more widely 32 

applicable devices for measuring the transmission of electromagnetic waves through a sample in free 33 

space or in a rectangular waveguide (Rothwell et al. 2016). Their use is based on an explicit formula 34 

(Nicolson and Ross, 1970) relating complex permittivity and permeability of the sample and the scattering 35 

matrix elements specifying the reflection and transmission. Due to the properties of the functions of one or 36 

several complex variables entering the reconstruction formulas, this algorithm has phase ambiguity. In 37 

(Weir, 1974) it was proposed to use a multi-frequency approach to remove the non-uniqueness using a 38 

finite-difference approximation of the solution phase derivative on the frequency mesh. However, it was 39 

not taken into account that this algorithm is unstable when inaccurate experimental data are applied. 40 

 In this paper, we attempt to overcome this drawback and develop a method employing a version of 41 

the NRW formula that couples the transmission coefficient of an electromagnetic wave with the real 42 



dielectric constant of a lossless layer in a waveguide and in free space. We study the well-posedness 43 

condition for the inverse problem of determining the layer parameters from this formula; namely, the 44 

existence and uniqueness of solution and its continuous dependence on the input data. Unfortunately this 45 

algorithm is improperly posed. In fact, (a) the range of the function specifying the transmission coefficient 46 

is a curve on the complex plane (has the zero measure); therefore the probability that the experimental data 47 

belongs this curve is equal to zero; and (b) the parametric curve of the function on the complex plane has 48 

self-intersection points which means that the solution may not be unique.  49 

We show that the traditional multi-frequency method of measurements realized in vector network 50 

analyzers can be modified so that ill-posedness of determining the dielectric constant of a lossless sample 51 

can be removed. In fact, for the single-frequency case, the transmission coefficient is a (scalar) function 52 

which is one-to-one if the quantity equal to the ratio of the layer width to one half of the wavelength in the 53 

layer is less than 1. In the multi-frequency case, when a vector function on a multiple frequency set is 54 

applied, a sufficient condition for the problem well-posedness is that the difference between the values of 55 

the quantity defined above at the adjacent frequencies is less than 1; for a more detailed explanation, we 56 

refer to Proposition 1 and formulas (11) and (12) below. This can be achieved by reducing the frequency 57 

resolution taking into account a priori estimate of the desired value of the dielectric constant. Therefore, 58 

the solution of the inverse problem is unique for a noiseless experiment that perfectly matches the 59 

mathematical model. 60 

For an actual physical experiment, the least squares method (LSM) can be applied for the solution 61 

of the inverse problem under study. The LSM solution converges to the desired value of the layer 62 

permittivity if the quality of the experiment (determined both by noise and defects of the measurement 63 

setup and material samples) is improved. The convergence rate is enhanced if the number of frequencies 64 

used in experiment is taken large enough. 65 

2 Problem settings 66 

We study the problem of determining permittivity of a dielectric inclusion (a layer) in a standard 67 

rectangular waveguide (a measurement setup is displayed in Fig. 1) from the elements of the scattering 68 

matrix or the transmission coefficient of the principal waveguide mode.  69 

 70 

 71 

Figure 1. Rectangular waveguide with a layer (Tomasek et al., 2015). 72 

 73 

The measurement data registered at the layer boundaries have the form (Nicolson et al., 1970) 74 
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while the values of the scattering matrix elements measured at the waveguide flanges and calculated from 75 

the complex amplitude of the harmonic Maxwell’s equations solution 
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where ,2 f  f  is the source frequency satisfying the condition of a single-mode waveguide: 78 

,)0,2()0,1( fff    ,2/)0,1( acf   ,2 )0,1()0,2( ff   )0,1(f , )0,2(f  are the cutoff frequency for 10TE , 20TE  79 

modes, 9)0.1()0.2( 1052.6  ff  (GHz), and 
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00 )(  c  is the speed of light in vacuum. 80 

In formulas (1) and (2)  81 
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a  is the waveguide width, ,)(wgd
)(layerd  are the waveguide and layer lengths, 

1d , 
2d  are the distances 85 

between the ports (points of the source and field measurements) and the layer, ,21
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)(layer   is the layer relative dielectric constant, and 0  is the dielectric constant of vacuum; 87 
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are the phase shift values inside the waveguide. 90 

Introduce the transmission coefficient of the principal mode in a single-mode perfectly conducting 91 

rectangular waveguide scattered by the dielectric layer  92 

 ).(/),(),( )(

12

),(

12 fSfSfF wglayerwg    (3) 

Here ),(

12

layerwgS  is the element of the scattering matrix corresponding to the transmission of the wave 93 

through the waveguide containing the dielectric layer and )(

0

)(

12

wgwg ZS   is the corresponding element of 94 

the scattering matrix for an empty waveguide.  95 

In the presence of a dielectric insert of arbitrary shape the measurement results change due to the 96 

occurrence of, in addition to the harmonic waves in the principal mode, a countable number of evanescent 97 

waves. These are standing waves that exponentially decay along the axis of the waveguide. 98 

The transmission coefficient of the principal mode through a lossless dielectric layer can be found 99 

as 100 

 ),(/)(),( )(
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where 101 
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   ,)(sin)( )()( layerz dfkfs    )()( )(cos)( layerz dfkfc   , (6) 

and ),/1(5.0)( xxxH  .0x   102 

Along with the problem for the layer in a waveguide, we consider a similar problem for the layer in 103 

free space as a limiting case ( a ) of the first setting, when 104 
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(exp),...,1 Nn  , 
(exp)N  is the number of frequencies used in the experiment, and (4) is the explicit formula 105 

of the transmission coefficient of the principal mode through an infinite lossless dielectric layer with 106 

 )()()(),( 2/1 fsHifcfg    , (8) 

   ,)(sin)( )(layerdfkfs    .)(cos)( )(layerdfkfc    (9) 

Formula (4) together with expressions (5), (6) or (8), (9) constitute the exact solution (obtained 107 

from Maxwell’s equations) for the transmission coefficient of the principal mode for both the waveguide 108 

containing a layer and an infinite layer in free space, with a distinction in determining the wavenumbers; a 109 

recurrent formula generalizing (4) to the case of a multilayer inclusion is given in (Shestopalov et al., 110 

2015). They are equivalent to expressions (3), (2) known since 1970 (Nicolson et al., 1970), where 111 

representations (1), (2) enter the NRW formulas. According to these formulas complex parameters of a 112 

slab are determined explicitly from the scattering matrix elements )(

11

layerS , )(

12

layerS  using the expressions  113 

  ,/
1/2

121 cc    ,
2/1

211 cc  114 

,)1/()1( 22

1 c   ,)/(ln
2)(

2

layerdZcc   115 

,)(

11

)(

121

layerlayer SSV  ,)(

11

)(

122

layerlayer SSV  ),/()1( 2121 VVVV   116 

,)1( 2/12  XX ).1/()( 11  VVZ  117 

Due to the properties of function zln  of a complex variable z , this algorithm has phase ambiguity. 118 

The ambiguity was removed in (Weir, 1974) using the data taken at several frequencies to find the average 119 

group delay through the sample by means of finite-difference approximation of the derivative of the phase 120 

Z  with respect to f . Another difficulty of this algorithm is that it is not stable due to instability of 121 

approximate differentiation employing inaccurate data. 122 

Using this example we show how the properties of a multi-frequency approach can be used to 123 

solve inverse problems, which is a goal of this study. Next, we discuss an alternative to the NRW method 124 

for determining the value of the dielectric constant of an inclusion solely from the transmission coefficient 125 

(3), (4). An advantage of the multi-frequency experiment for solving this improperly posed inverse 126 

problem using the approach developed in this work is as follows: with a sufficiently small frequency step 127 

the problem becomes properly posed for an experiment that perfectly matches the mathematical model, 128 

and the solution found by LSM approximates the desired value of the dielectric constant of the sample 129 

when the quality of a physical experiment is improved. 130 

3 Algorithms of Experimental Data Processing 131 

Introduce the vectors 132 


 (exp),...1

}{
Nnnff ℝ
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(exp)(exp) }{
NnnFF ℂ

(exp)N  133 

of the frequency and complex-valued measurement data of 
(exp)N  experiments. Consider the equation 134 
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for the (unknown) dielectric constant of the layer 1)( layer , where 135 
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with g  defined in (5), (6), or (8), (9), 137 
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We formulate inverse problems that constitute different permittivity reconstruction scenarios of 140 

the layer in free space. To this end, let 141 

},1:{)(   },1:{)(    142 
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denote the set of values of function ),( fg   for the selected frequency vector f  (it is a curve in 145 
(exp)N -dimensional complex space). 146 

Problem 1 147 

Find a real 
)()(  layer
 satisfying relation (10) for a given complex vector  )((exp) ,  fg G  with 148 

the selected frequency vector f . 149 

Problem 2 150 

Find a real 
)()(  layer
 satisfying relation (10) for a given complex vector (exp)

g ℂ
(exp)N

 with the 151 

selected frequency vector f . 152 

Check the fulfillment of the well-posedness condition for these problems; namely, the existence 153 

and uniqueness of solution and its continuous dependence on the input data. Problem 1 describes a perfect 154 

experiment exactly corresponding to the mathematical model, it is solvable by the definition of the set 155 

  ., )(fG  However, its uniqueness may be violated. In fact, if 1(exp) N  for any chosen frequency the 156 

solution is not unique due to the existence of a countable set ,}{ ,...1mm  satisfying the relation 157 

0))(sin( )( layerdfk
m

 that specifies self-intersections points of curve ),( )(fG  (see Fig. 2). 158 

 159 
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Figure 2. The branches of the curve  )(, fG , GHz,25.9f }0.90.1:{)(   , corresponding 161 
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 164 

Using a priori information about )(layer  we can achieve the uniqueness of solution by adjusting 165 

domain )(
  and a frequency range ].,[ (exp)1 N

ff  However, the formally properly posed problem may be 166 

ill-conditioned in the vicinity of the intersection points mentioned above where the parameter values are 167 

such that the quantity ))(sin( )(layerdfk  in the denominator virtually vanishes. 168 



Proposition 1 below demonstrates that the solution to Problem 1 is unique if the frequency 169 

resolution is sufficiently small. In fact, ),( fg   becomes a one-to-one vector function of real variable   170 

for a fixed set of frequency values f . 171 

Problem 2 simulates the processing of noisy experimental data. This problem is also improperly 172 

posed since it may be unsolvable: in actual experiments, it is typical that ),( )((exp)  fg G  because the set 173 

(a curve) has the zero measure on the complex plane. We will replace Problem 2 with an LSM problem 174 

such that its solution approximates the sought solution of perfect Problem 1 when the defects of the 175 

experimental setup and measurement error decrease. 176 

4 One-to-One Correspondence 177 

We consider the problem of determining the value of the dielectric constant of the lossless 178 

inclusion assuming that this quantity is real (not complex). One can show that the transition from a 179 

single-frequency experiment to a multi-frequency one improves the properties of the inverse problem 180 

providing its unique solvability. The following statement is valid both for the cases of waveguide and free 181 

space; the proof will be given for the second case to clarify major ideas of the approach.  182 

 183 
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Proposition 1 190 

Set 1(exp) N . For any 1  there is one-to-one correspondence between )(
  and ),( )(

fG  for 191 

the selected frequency f  if 192 

 
1

)(5.0

)(


f

d

E

layer


. (11) 



Assume that 2(exp) N . For any 1  there is one-to-one correspondence between )(
  and 193 

),( )(
fG  for the selected frequency vector f  if the following condition is satisfied in at least one of the 194 

two equivalent forms: 195 

 
1

)(5.0)(5.0

)(

1

)(


 nE

layer

nE

layer

f

d

f

d


, (12) 

1,...,1 (exp)  Nn , or 196 

 
2/1)(

)()( 1

2 Ed

c
hh

layer

f

E

f  . (13) 

Proof 197 

For 1(exp) N  the proof is trivial. Now suppose 2(exp) N . We show that if (13) holds then curve 198 
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Corollary 219 

To satisfy inequality (16) and therefore to obtain a one-to-one vector function, it is sufficient to 220 
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following conclusions are valid: (i) condition (11) shows that for the single-frequency case, the solution to 225 

Problem 1 is unique for a sufficiently narrow layer whose width is less than one half of the wavelength in 226 

the layer; (ii) in the multi-frequency case, the well-posedness condition (12) or (13) can be fulfilled for a 227 

layer of any width by reducing the frequency step (Figure 3). 228 
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If the conditions of Proposition 1 are violated, we give two examples of self-intersection of 230 
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Proof 246 
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right-hand side of (19) follows from condition (13). ■ 262 

The following statement together with Proposition 1 shows that for a sufficiently small frequency 263 

resolution Problem 1 is properly posed; that is, its solution is unique and continuously depends on the 264 

input data entering the right-hand side of the equation.  265 

Define the condition number as 266 
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Proposition 3 268 

If the conditions of Proposition 2 are satisfied, then the solution to Problem 1 depends 269 

continuously on the experimental data; i.e., if   270 
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From inequalities (29), (30) it follows that under the conditions of Proposition 2 the following 291 

estimates are valid: 292 
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A consequence of (31), (33) is the estimate 297 
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Finally, inequality (35) proves the sought limiting relation (23). ■ 299 

Quantities 1  and 2  given by (32) and (34) are upper bounds for the condition number   defined 300 

in (21). The estimate 1  is not the best because a small frequency step enters the denominator. The 301 

estimate 2  can be improved by increasing 
(exp)N . Note that both estimates are no longer bounded if a 302 

priori values of the sought layer relative permittivity are close to 1 (vacuum) or become too large. 303 

Thus, at any frequency ,f  the parametric curve representing the set of the values of function 304 

),( fg   has a countable number of the touch points of loops in the complex plane. On the other side, the 305 

curve corresponding to the vector function  ),(),...,,(),( (exp)1 N
fgfg  fg  for a selected set of 306 

frequencies ),...,( (exp)1 N
fff  in a multidimensional complex space is not self-intersecting if the 307 

measurement frequency step belongs to the admissible range which can be determined for the given 308 

parameters of the problem. Moreover, the function inverse to ),( fg   is continuous for a fixed f . For that 309 

reason Problem 1 of reconstructing the layer real permittivity from the perfect noiseless data becomes 310 

properly posed.  311 

In the next section, we consider the LSM problem which replaces improperly posed Problem 2 312 



simulating a physical experiment to search the dielectric constant of the layer in free space. A more 313 

complicated case of a layer in a waveguide was discussed in (Sheina et al., 2019). 314 

5 Multi-frequency least squares method 315 

Problem 3 (least squares method, LSM) 316 
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Proposition 4 320 

The Problems 3 is solvable.  321 

Proof 322 

This follows from Weierstrass theorem on the minimum of a continuous function on a compact 323 

set.■ 324 

Note 325 

The solution to Problem 3 may not be unique, since the parametric curve  )(, fG  is not convex 326 

set. 327 

Proposition 5 328 

If the conditions of Proposition 2 are satisfied and 329 
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according to (19) and the frequency step does not exceed the admissible upper bound defined by condition 343 

(13) based on a priori estimate of the dielectric constant of the sample. ■ 344 

Estimate (39) shows how a small error in the measurement data affects the accuracy of the 345 

approximation of the exact value of the dielectric constant by the value determined using LSM. The 346 

estimate takes into account the effect of the size of the layer, the resolution of the frequency and the 347 

number of frequencies used in experiment. 348 

Applying these results one can get the best possible rate of convergence of the approximate 349 

solution to the sought value by improving the quality of experimental data, as shown in Figure 4 for an 350 

actual experiment (Ivanchenko et al., 2016).  351 

 352 

 353 

Figure 4.  Data (exp),...1

(exp) |}{|
NnnF


 of an experiment with a Teflon layer (a dielectric permittivity 354 

1.201.2  ), the frequency range 5.95.8  (GHz) with no self-intersection points of the curve 355 

 )(, fG ,    is (exp),...1

)( |}),({|
Nnn

LS fF


  calculated by LSM. 356 

 357 

Example 358 

The upper bounds of the admissible frequency resolution defined by (13) are 359 

5.0,6.1,5.3,5)( f

Eh (GHz) for a priori estimates of the dielectric constant of the inclusion 100,10,2,1E  360 

for vacuum, Teflon, quartz, and water, respectively; )(03.0)( md layer  . For quartz ,10E  361 

6.1)( f

Eh (GHz), and for 1.0 , 2/2/1(exp) EN  16, so that 4.13)(1  , and 2 30. 362 

6 Conclusions 363 

We have shown how to modify the traditional multi-frequency measurement technique in order to 364 

overcome ill-posedness of reconstructing the layer permittivity in a rectangular waveguide and free space. 365 

The well-posedness can be achieved by reducing the frequency resolution taking into account an a priori 366 

given range of values of the dielectric constant.  367 

The uniqueness of the resulting solution and well-posedness of the corresponding inverse 368 

problems are rigorously proved in a series of mathematical statements. 369 

https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019RS006924#rds20873-bib-0002


The developed approach leads to a practical algorithm of calculating the permittivity employing 370 

LSM.  The solution obtained using this algorithm converges to the sought layer permittivity with the 371 

controlled rate under the condition that the quality of the experiment is improved.  372 
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