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methods. Low concentrations of pollutants were 
measured, far below the EU Environmental Quality 
Standard thresholds and even satisfying the future 
goals for the Environmental Quality Objectives. 
Cleaning the raw data by removing data points in the 
reference data that were below the reference station 
limit of detections (and the synchronous data points 
in the AQM prescaled data) was found to improve the 
performances of the calibration procedures appreci-
ably. Many  NO2 and almost all  PM10 data points in 
this study fell below the AQM limit of detection. 
These low concentrations will probably be a common 
problem in many field studies, at least in areas with 
relatively low air pollution. However, the relative 
errors were sufficiently low for these data points that 
they could be interpreted as accurately representing 
low concentrations and did not need to be removed 
from the datasets. For the  NO2 measurements, a slight 
periodic error correlated with sunlight and increased 
ambient temperature was noted. NO measurements 
correlated strongly with increased traffic.

Keywords AQMesh · Bisquare linear fit · 
Orthogonal regression · Low-cost air quality 
monitor · Linear calibration

Abbreviations
AQM  Air Quality Monitor sensor platform
AQMesh  Brand name for the AQMs used in this 

study

Abstract Field calibrations of  NO2, NO, and  PM10 
from AQMesh Air Quality Monitors (AQMs) were 
conducted during a summer and an autumn period in 
a busy street in a midsize Swedish city. All the three 
linear calibration procedures studied (postscaled, bis-
quare, and orthogonal data) significantly reduced the 
ranges and magnitudes of the performance indicators 
to yield more reliable results than the raw data. The 
improvements were sufficient to satisfy the Euro-
pean Union (EU) Data Quality Objective (DQO) for 
indicative measurements as compared to reference 
data only for  NO2 (above 50 µg  m−3) and NO (above 
30 µg  m−3) during the autumn calibration period. The 
relatively simple bisquare procedure had the best per-
formance overall. The bisquare procedure improved 
the root mean square error by the same amount as 
other studies using complex multivariate calibration 
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bis  Bisquared data generated by a bisquare fit 
of prescaled data to reference data

CP  Calibration periods 1 (CP1) and 2 (CP2)
DQO  Data Quality Objective
EC  Electrochemical (sensor)
EQO  Environmental Quality Objective (envi-

ronmental goals to be reached 2030)
EQS  Environmental Quality Standard (legal 

thresholds for air pollutants)
EU  European Union
Id. no.  Identity number (for AQMs)
LOD  Limit of detection
MNB  Mean normalized bias
MNE  Mean normalized error
NO  Nitrogen oxide
NO2  Nitrogen dioxide
NOx  All types of nitrogen oxides
Orth  Orthogonal data generated by an orthogo-

nal fit of prescaled data to reference data
PM  Particulate matter  (PM10 has an aerody-

namic diameter < 10 μm,  PM2.5 < 2.5 μm 
diameter, and  PM1 <1μm diameter)

Post   Postscaled data fit provided by AQMesh 
of prescaled data to reference data

Pre   Raw data (i.e., prescaled data) from a 
factory-calibrated AQMesh

Q  Quartile. First quartile (1Q), middle quar-
tiles (2–3Q), and fourth quartile (4Q)

Q-Q plot  Graphic test for normal distribution of 
data in SPSS

r  Pearson’s correlation coefficient
r2  The square of the Pearson’s correlation 

coefficient
RMSE  Root mean square error
S.D.  Standard deviation
SEPA  Swedish Environmental Protection 

Agency
SLB  Stockholm Air and Noise Analysis 

(Stockholm Luft och Bulleranalys)
SPSS  Originally Statistical Package for the 

Social Sciences
UK  United Kingdom
Ur   Relative extended uncertainty (defined in 

Eq. 2)
WHO  World Health Organization

Introduction

Globally, 55% of the world population in 2018 
(more than four billion people) resided in urban 
areas (United Nations,  2018). According to 
the World Health Organization, at least 80% 
(WHO,  2016) of this population is exposed to air 
pollutant concentrations exceeding the Air Quality 
Guidelines established with the goal of preserving 
human health and well-being (WHO, 2005).

Increased levels of airborne particulate mat-
ter (PM) are estimated to be solely responsible for 
approximately three million deaths annually, includ-
ing nearly 170,000 children younger than 5 years 
old (WHO,  2016). In the European Union (EU), 
the levels of PM emissions  (PM10 and  PM2.5, i.e., 
PM with an aerodynamic diameter less than 10 and 
2.5  μm respectively) have decreased since 2000 
(European Environment Agency,  2019). Neverthe-
less, it has been shown that long-term exposure to 
low levels of airborne PM may cause cancer and 
cardiovascular and respiratory diseases (Hoek 
et al., 2013) and thereby raise mortality rates. Even 
short-term exposure to high levels of  PM10 induces 
coughing in children with asthma and causes them 
to have difficulty breathing (Weinmayr et al., 2010).

The main sources of PM in urban environments 
in Sweden are wood combustion, road dust, and 
vehicle exhaust (SEPA,  2019). Emissions from 
wood combustion primarily originate from the use 
of small domestic stoves and fireplaces. Road dust 
particles are generated from wear debris from vehi-
cle brakes and tires as well as road surface asphalt. 
The use of studded tires has been shown to signifi-
cantly contribute to the latter problem, and there is 
also a clear connection between the use of studded 
tires and the amount of road dust (Swedish Environ-
mental Research Institute, 2018).

In Sweden, more than 86% of the population is 
urban, and this fraction is expected to exceed 90% 
by 2030 (United Nations,  2018). At present, the 
urban population’s exposure to PM is compara-
tively low. According to the Swedish Environmen-
tal Protection Agency (SEPA), levels of PM in 
Swedish cities have been below the Environmental 
Quality Standards (EQS)-stipulated mean annual 
threshold (≤ 40  µg   m−3) during the past 10  years 
(SEPA, 2019). The EQS-threshold is the legal limit 
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that should not be exceeded. The present levels 
may also be compared to the Environmental Qual-
ity Objective (EQO) level for PM, which is the goal 
for how clean the air should be by 2030. In 2016, 
all large and many medium-sized cities exceeded 
the Swedish EQO mean annual (≤ 15  µg   m−3) 
and daily (≤ 30  µg   m−3) levels of  PM10 exposure 
concentrations.

The concentration of nitrogen dioxide  (NO2) in the 
air is strongly dependent on the level of traffic (Pleijel 
et al., 2004), and  NO2 is commonly used as an air qual-
ity indicator. Animal studies have demonstrated that 
 NO2 exposure causes numerous effects on several organs 
(WHO,  2005), and studies on lung cells in mice have 
shown that the lowest observed effective concentra-
tion of  NO2 required for alteration at the cellular level is 
0.2–0.4 ppm or 384–768 µg   m−3, which corresponds to 
rush hour traffic emissions (WHO,  2000). Long-term 
exposure to  NO2 in children aged 5–12  years has been 
reported to cause a 20% increase in the risk of respira-
tory disease for every increase in  NO2 concentration of 
28.3 µg  m−3 (two-week average) (WHO, 2000). Evidence 
suggests that simultaneous exposure to  NO2 and aeroaller-
gens has a synergistic effect in inducing asthma in children 
(WHO, 2000). Evidence for the negative health effects of 
short-term exposure to  NO2 is not as clear as that of short-
term exposure to PM: some recent research on the short-
term effects of  NO2 on children with asthma indicates 
that  NO2 has an adverse effect on their respiratory health, 
but no explicit conclusion has been drawn (Weinmayr 
et al., 2010).

Like  NO2, nitrogen oxide (NO) primarily origi-
nates from combustion engine vehicle exhaust (Spindt 
et al., 1956), but it can also originate naturally from a 
photochemical reaction in which sunlight splits  NO2 
into NO and O. Sweden does not have an EQS level 
specified for NO by itself but includes NO in its mean 
annual concentration of 30 µg  m−3 for mixed nitrogen 
oxides  (NOx) in areas unaffected by cities or traffic 
(SEPA, 2019).

Monitoring air quality in populated areas is cru-
cial for discovering pollution and preventing its nega-
tive effects on human health and the environment. 
According to the Air Quality Directive 2008/50/EC 
(EU, 2008), which applies to all EU member states, 
facilities for measuring air quality must be established 
in all urban areas. The reference stations employed 
should (requirements depend on the level of air 

pollution and city size) measure the concentrations of 
sulfur dioxide,  NO2, NO, PM  (PM2.5 and  PM10), lead, 
benzene, and carbon monoxide according to rather 
strict criteria for measurement accuracy. These refer-
ence stations are now part of a global network report-
ing results to WHO and the EU. Currently, continual 
measurements of air quality are conducted in at least 
3000 cities in 103 countries (WHO, 2016).

The comparatively high cost of reference stations 
(that meet the required measurement accuracy) lim-
its the number of possible sampling points. However, 
more detailed mapping of air quality within urban 
areas is of increasing interest. One way to achieve 
increased mapping is to use low-cost multi-sensor 
platforms that are sufficiently accurate to indicate air 
quality in many different locations of a city. Easy, 
reliable access to data in real time from such air qual-
ity monitors (AQMs) could also be used to improve 
online city maps of the local air quality. Recent 
studies have proposed many small-sized and low-
cost AQMs as candidates for these tasks (Popoola 
et al., 2018; Munir et al., 2019; Suriano et al., 2015; 
Borrego et al., 2016; Hamm et al., 2016).

Our study focuses on one of the aforementioned 
AQMs, namely, AQMesh (Castell et al., 2016, 2018; 
Hickman et  al.,  2017). Specifically, our objective is 
to evaluate the performance of calibration procedures 
for this AQM under field conditions. For this study, 
eight AQMesh AQMs were co-located with a refer-
ence station, and the technical performances of three 
calibration procedures were investigated.

Methods

Measurement devices

The AQMesh AQM (Environmental Instruments 
Ltd., UK, Gas algorithm v4.2.3 and PM algorithm 
v2.0) is an air quality multi-sensor platform capable 
of measuring particles of different size fractions with 
an optical particle counter, several gases with electro-
chemical (EC) gas sensors, temperature, and humid-
ity (AQMesh, 2017). In this study, these AQMs were 
equipped with EC sensors (B4-series, Alphasense, 
UK) to measure NO,  NO2, and ozone  (O3). The  PM1 
(PM with diameter < 1  μm),  PM2.5, and  PM10 size-
fractions are estimated by binning and converting 
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AQM particle counts into PM size-based fractions 
on the assumptions of spherical particle shape and 
standard density. Only the measurements of the 
 PM10 fraction will be used and compared to the ref-
erence station data in this paper. The AQMesh lim-
its of detection (LODs) for NO,  NO2, and  PM10 were 
estimated by the manufacturer to be 6.25, 19.2, and 
30  µg   m−3, respectively (AQMesh, 2017). The indi-
vidual sensors were factory-calibrated and mounted 
into the AQMs, and all AQMs were then co-located 
with the air quality reference station in Gävle. Data 
from the AQMs were uploaded via individual SIM 
cards and GPRS communication to a remote data-
base. The transmitted raw data as directly obtained 
from the AQMs will be referred to as prescaled data.

The reference station, maintained by SLB-analys 
(Stockholms Luft- och Bulleranalys, Sweden) and 
approved by SEPA (SEPA, 2013), was equipped with 
a Chemiluminescent  NOx Analyser Model AC32M 
(Environnement SA, Poissy, France) for measuring 
nitric oxide (NO) and  NO2 and an Ambient Particu-
late Monitor (TEOM® 1400AB, Thermo Scientific, 
Franklin, Massachusetts, USA) for measuring  PM10. 
The LODs of the reference station NO,  NO2, and 
 PM10 were 3.375, 5.185, and 2.000  µg   m−3, respec-
tively (SEPA,  2013). The reference data, in which 
 PM10 data were corrected for volatility (SEPA, 2013), 
were kindly provided by SLB-analys. The scope of 
this paper includes calibration of the AQMs by using 
the reference data. In this case, reference data were 
available for NO,  NO2, and  PM10.

Field calibration

Eight AQMs were mounted side by side at a height 
of 3m near the inlet of an air quality reference sta-
tion (Fig. 1) located on the west side of a busy street 
in Gävle, Sweden. One of the eight AQMs had a 
solar panel power supply. The other seven AQMs 
had battery packs. The measurement interval was 
15 min, and a battery pack lifetime of 7 months was 
expected. The street is approximately 25  m wide, 
runs north–northwest, and is surrounded by three- to 
five-story buildings along each side (Fig. 2). Since a 
seasonal variation was expected in the performance 
of the reference station and the AQMs, the interval 
between the calibration periods (CPs) was set to 4 
months. This study used two CPs: (1) from June 10, 
2017 to June 22, 2017 (CP1) and (2) from October 

19, 2017 to December 4, 2017 (CP2). The sunrise 
and sunset times during CP1 were approximately 
03:19 and 22:24, respectively. During CP2, the sun-
rise time varied from 07:42 to 08:36, and the sunset 
time varied from 17:28 to 14:45. The angle of the 
street, placement of the sensors, and height of the 
western buildings meant that shadows were cast on 
the area of the sensors at the end of the day, which 
was found to affect the measurements (see below). 
During CP2, data obtained from 2 days (October 
28–29, 2017) were removed to avoid synchroniza-
tion problems between the reference station and the 
AQMs due to the end of daylight-saving time. The 
reference data and prescaled data from the AQMs 
were synchronized and converted to hourly averages 
in order to reduce fluctuations and to comply with 
common reporting requirements (e.g., the Swed-
ish EQS; SEPA, 2019). In addition, if a reference 
data point fell below the reference station’s LOD, 
that data point and the corresponding synchronous 
prescaled data point were removed from the datasets 
(see further discussion on data validation below). 
The resulting mean hourly concentrations were then 
used in the calibration procedures and for further 
analyses.

Fig. 1  The experimental setup with 8 AQMs on top of a refer-
ence station
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Calibration procedures

Three different field calibration procedures were 
compared. The resulting calibrated datasets defined 
below will be referred to as postscaled data, bisquare 
data, and orthogonal data. All calibration procedures 
are based on a linear transformation of the prescaled 
data given by the following equation:

where i refers to a time slot, yi is the calibrated esti-
mate of the true concentration, xi is the prescaled con-
centration, m is the slope, and b is the offset.

(1)yi = mxi + b

Field calibrated data provided by the manufac-
turer of the AQMs will be referred to as postscaled 
data. The company uses three different methods for 
creating postscaled data from prescaled data of co-
located AQMs and reference data (if provided). How 
the company chooses its method was not disclosed, 
but in general, the AQMs are primarily calibrated 
against reference data (if available), secondarily 
calibrated against a “golden AQM,” and lastly cali-
brated against the average of all co-located AQMs. 
The golden AQM method involves selecting one of 
the AQMs as a “reference station” and calibrating 
the other AQMs against this golden AQM. The final 

Fig. 2  The measurement location on the west side of a busy street in Gävle, Sweden
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method for generating postscaled data is to create 
reference station data from the average of all AQMs 
and to calibrate the AQMs against this average.

The bisquare data were obtained using the bis-
quare linear fit function in the Curve Fitting Tool 
provided by MATLAB (v.R2018a). This robust 
method uses an iteratively reweighted least square 
algorithm. Its advantage is that outliers are weighted 
less than data points that are more in agreement 
with the reference station. The fitting parameters 
obtained (slope m and offset b) are then applied to 
the prescaled data according to Eq. (1).

Orthogonal regression is a commonly used cali-
bration method that has the advantage of taking 
the accuracy of both the sensor system and the ref-
erence station into account, and this method usu-
ally performs better than ordinary least squares 
(Dissanaike & Wang, 2003). The difference is that 
orthogonal regression minimizes the perpendicu-
lar distance between the observations and the fitted 
line, whereas ordinary least square regression mini-
mizes the vertical (or horizontal) distance (ibid). 
In this study, orthogonal regression linear fits were 
calculated using the Orthogonal regression tool in 
Minitab (v.19.1.1). For each AQM, prescaled data 
(Y) and the corresponding reference data (X) and 
the ratios of error variances (Y/X) used were 3.7 
for  NO2, 3.7 for NO, and 15 for  PM10. The fitting 
parameters obtained were then applied to Eq.  (1). 
The resulting data are here called orthogonal data.

Performance indicators

In the Data Quality Objective (DQO) of the Euro-
pean Air Quality Directive (EU,  2008), the rela-
tive expanded uncertainty (Ur) is the metric that 
determines whether a sensor system (for indicative 
measurements) meets the DQO when compared to 
outside reference data. The requirements relevant  
to this study are that Ur × 100% should be below 
25% for  NO2 and  NOx and below 50% for  PM10 (EU,  
2008). According to the DQO (ECWG, 2010), Ur is 
evaluated by the following equation:

(2)

Ur

�
yi
�
=

2

�∑
(yi−b0−b1xi)

2

(n−2)
− u2

�
xi
�
+ (b

0
+
�
b
1
− 1

�
xi)

2

�1∕2

yi

where b1 is the slope and bo is the offset from an 
orthogonal regression linear fit, xi are the refer-
ence data points, yi are the AQM-data points (i.e. 
prescaled, postscaled, or bisquare data points), and 
u is the uncertainty of the reference station (which 
is 5.0% for NO and  NO2 and 0.8% for  PM10). Note 
that to calculate Ur, an orthogonal regression is per-
formed. Because our datasets referred to as orthog-
onal data were the orthogonal regression linear fits 
of prescaled data, Ur values were not calculated for 
the orthogonal data. Therefore, for each AQM, Ur 
values were evaluated only for the prescaled, post-
scaled, and bisquare data corresponding to NO, 
 NO2, and  PM10, respectively.

Root mean square error (RMSE), mean nor-
malized bias (MNB), and mean normalized error 
(MNE) were calculated according to Eqs. (3–5):

where n is the number of measurements, yi are the 
data points (i.e., prescaled, postscaled, bisquare, 
or orthogonal data), and xi are the reference data 
points. By sorting all datasets by the correspond-
ing signal strength in the reference data, the RMSE, 
MNB, and MNE performances may also be com-
pared based on reference data quartiles. These per-
formance metrics are often used to evaluate signal 
quality. The advantage (and disadvantage) of the 
RMSE metric is its sensitivity to outliers, which is 
caused by summing the squared errors in Eq. 3. The 
MNE metric is more robust to outliers than RMSE, 
and as defined in Eq. 5, is the mean absolute rela-
tive error. Summing the absolute values has the 
advantage that negative and positive errors cannot 
cancel each other out, and both types will add to 
the sum. In the MNB metric, positive and negative 
errors may cancel each other. If the MNB is 0, the 
errors cancel and the signal is unbiased with respect 
to the reference (i.e., “true” values). Otherwise, 
a negative or positive MNB means that the signal 

(3)RMSE =

√
1

n

∑n

i=1
(yi − xi)

2

(4)MNB =
1

n
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1
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tends to underestimate or overestimate, respectively. 
The normalization in MNE and MNB emphasizes 
the relative errors but renders these metrics more 
sensitive to signal noise. For all performance indi-
cators presented above, smaller values signify better 
agreement between the test dataset and the refer-
ence data.

An optimal calibration procedure should satisfy 
the EU DQO, give low errors (low RMSE and MNE), 
and not introduce unwanted bias (low MNB). In real-
ity, it is a question of judicial appraisal. It is reason-
able to choose a biased calibration method that gives 
the lowest MNE as long as the bias is acceptably low. 
If the AQMs are to be used for regulatory purposes, 
then the EU DQQ should be fulfilled. However, a pre-
requisite for successful calibration is that the AQM 
raw data are correlated with the reference data.

Linear correlations between the AQM prescaled 
data and the corresponding reference data were ana-
lyzed using the two-tailed Pearson correlation (r) in 
SPSS (v.24.0.0.2). SPSS was also used for calculating 
r2 and investigating the Q-Q plots. Cross-correlations 
were tested using MATLAB (v.R2018a) to investigate 
possible lags in AQM response times compared to 
reference station response times.

Results and discussion

Low pollutant concentrations are recorded

The average concentrations of NO,  NO2, and  PM10 
for the two calibration periods (the reference data) are 
presented in Table 1. The recorded levels for all moni-
tored pollutants in CP2 are higher than those recorded 
in CP1, and the same trend is reflected in the maxi-
mum mean hourly concentrations. The range between 
the minimum and maximum values compared with 

the period mean values shows that there are large 
fluctuations in the mean hourly concentrations. This 
pattern reflects the diurnal traffic patterns, with much 
higher pollution loads during weekday rush hours and 
around midday on weekends than during the other 
times.

The large fluctuations in the mean hourly concen-
trations are smoothed out by looking at averages over 
longer time periods (running averages). This pro-
cedure is necessary for improving the discernibility 
while showing a longer time series. Figure  3 shows 
the 5-day running averages of the reference data NO, 
 NO2, and  PM10 mean daily concentrations along with 
temperatures and relative humidities for the whole 
measurement period and clearly demonstrates that 
the pollution loads of NO,  NO2, and  PM10 are higher 
in the autumn (CP2) than in the early summer (CP1). 
Note that comparatively low levels of the pollutants 
are recorded for both periods, and that CP2 is roughly 
five times longer than CP1.

Some trends can be seen when comparing the aver-
ages for both time periods to the running averages. 
For example, the reference data mean period concen-
trations for NO were, for both CP1 and CP2, below 
the rural EQS (legal threshold) mean annual thresh-
old: 30 µg  m−3. In Fig. 3, the 5-day running average 
of the NO mean daily concentration in CP2 occasion-
ally exceeds 30  µg   m−3, but the overall average is 
below this limit. For  NO2, the mean period concen-
tration for CP1 is lower than the Swedish EQO (goal 
for 2030) mean annual concentration: 20  µg   m−3 
(SEPA, 2019). It is slightly above this EQO for CP2, 
but the pooled average for both periods CP1 and CP2 
(i.e., 18.7 µg   m−3) is below the EQO. The  NO2 ref-
erence data during CP2 were occasionally higher 
than the Swedish EQO mean hourly concentration: 
60 µg  m−3 (SEPA, 2019). During CP2, the latter was 
exceeded only 23 h or 2.7% of the total measurement 

Table 1  The reference data NO,  NO2, and  PM10 mean period 
concentrations (µg  m−3), as well as the minimum and maxi-
mum mean hourly concentrations, for the two calibration peri-

ods CP1 (June 10, 2017–June 22, 2017) and CP2 (October 19, 
2017–December 4, 2017)

Calibration period 1 Calibration period 2

Mean (S.D.) Min Max Mean (S.D.) Min Max

NO 11.4 (8.8) 3.4 85.2 26.6 (23.7) 3.9 138.3
NO2 15.5 (8.9) 5.3 49.9 23.2 (14.5) 5.2 86.9
PM10 9.8 (6.1) 2.2 35.7 10.4 (9.1) 2.1 73.4
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time. During CP1, this EQO was not exceeded at any 
time. The  NO2 reference data never exceed the Swed-
ish EQS thresholds: 90 µg  m−3 for the mean hourly or 
60  µg   m−3 for the mean daily concentration (Swed-
ish government, 2019). For  PM10, both the maximum 
values for the mean daily concentration (during CP1: 
14.5  µg   m−3 and CP2: 24.3  µg   m−3, not shown in 
Table 1) were clearly below the Swedish EQO mean 
daily concentration (30 µg   m−3). In spite of the fact 
that the measurements are conducted beside one of 
the busier streets in Gävle, the recorded pollutant 
loads are sufficiently low to already satisfy the EQO 
goals in most cases.

Measuring such low concentrations of pollut-
ants is a challenge for the reference station and even 
more for the AQMs. For  NO2, 16.9% and 15.3% of 
the raw reference data fall below the reference sta-
tion LOD in CP1 and CP2 respectively. The cor-
responding numbers for the raw NO reference data 
are 26.4% and 18.9% and for the raw  PM10 refer-
ence data, 4.9% and 1.1%. The corresponding AQM 
LOD statistics based on the reference data during 
CP1 and CP2 were:  NO2, 77.4% and 57.3%; NO, 
47.5% and 29.5%; and  PM10, 99.2% and 95.1%. As 
described above, all data points below the LOD for 

the reference station were removed from the raw 
reference data together with the synchronous AQM 
prescaled data points, and the resulting cleaned 
datasets will be referred to as reference data and 
prescaled data below. After data cleaning, most of 
the reference data for NO, and to a lesser extent 
the reference data for  NO2, will be above the AQM 
LOD. These conclusions are based on the reference 
data, but since the goal for the prescaled data is to 
estimate the reference data, the same conclusions 
are also expected to hold for the prescaled data. For 
 PM10, most reference data will still be below the 
AQM LOD, but this is a likely outcome for meas-
urements in any small city in Sweden, as will be 
demonstrated by this study. Cleaning the raw data-
sets in the manner described ensures that the cali-
bration procedures are performed against the best 
possible reference data.

Pearson’s correlation between reference data and 
prescaled data and other statistical tests

The Pearson correlation coefficient (r) and the more 
commonly reported r2 were evaluated for each AQM 
prescaled dataset in relation to the reference data. 
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Data cleaning did not change the correlation coef-
ficients appreciably. Note that the data from any lin-
ear calibration of the prescaled data will have the 
same correlation coefficient as the prescaled data. 
All Pearson’s correlation coefficients evaluated were 
statistically significant (p < 0.01). For all AQM NO 
prescaled data, evaluated correlation coefficients in 
CP1 and CP2 were 0.6–0.93 and 0.97–0.99, respec-
tively. The corresponding correlation coefficients for 
 NO2 were 0.68–0.85 and 0.86–0.94, and for  PM10, 
0.35–0.58 and 0.32–0.56, respectively. As expected 
from the number of data points higher than AQM 
LODs in the prescaled data, the prescaled data for 
both NO and  NO2 showed stronger correlations 
between AQMs and the reference data than the  PM10 
prescaled data. Nevertheless, the r2 values reported in 
this study are comparable to those reported in other 
studies for AQMesh and other low-cost sensors (see 
Table 2).

Testing for cross-correlations yielded no apparent 
time lag in the prescaled data from the AQMs com-
pared to the reference data. Since the reference and 
prescaled data are attempting to estimate the same 
underlying variable, the difference between them 
should ideally be normally distributed. However, 
such a distribution was not observed for most AQMs 
in this study. Using the Shapiro-Wilk’s test for nor-
mality in the differences, most values fall below the 
acceptance limit (0.05). Qualitative observations of 

the SPSS Q-Q plots revealed that deviations from 
normality mostly occur in the low and/or high end 
of the concentration range. One interpretation of the 
deviations from normality is that the prescaled data 
include outliers, which was one of the reasons that we 
chose the more robust bisquare fitting method as one 
of the calibration procedures to be tested.

Comparisons of r2 with other air quality sensor 
platforms

Most studies report the square of the correlation coef-
ficients (r2), and it is convenient to use this metric to 
compare studies with each other. Studies using other 
types of AQMs to measure NO (see Table  2) have 
reported low correlations between AQM data and ref-
erence data. For instance, Borrego et al. (2016) evalu-
ated an r2 value of 0.34 when comparing another 
type of AQM (SNAQ) data with reference data. The 
SNAQ AQM used in that study has the same type of 
Alphasense sensors as the AQMesh AQM used in this 
study. Munir et al. (2019) compared the mean of the 
NO data obtained from ten E-MOTE AQMs around 
the campus of the University of Sheffield with the NO 
data obtained from a reference station in the city, but 
not co-located with the sensors. That study reported 
an r2 value of 0.25 after a linear regression fit and 
showed that this value could be improved to 0.51 by 
performing multiple linear regression fits using the 
variables NO and  NO2 concentrations, wind speed, 
relative humidity, and temperature.

The r2 values of  NO2 measurements varied consid-
erably among the different studies (Table 2). Borrego 
et  al. (2016) reported high r2 values for the SNAQ 
and ECN Airbox AQMs, but relatively low r2 values 
were reported for the NanoEnvi AQM and very low r2 
values for the AuTh-ISAG and ENEA AQMs. Munir 
et al. (2019) reported a very low r2 value of 0.15 for 
the E-MOTE AQM when fitted using linear regres-
sion; they found that the r2 value could be improved 
to 0.65 when the data were fitted using a multiple lin-
ear regression model. In the present study, compara-
tively high r2 values were observed for the AQM  NO2 
and NO data.

For  PM10 data from low-cost AQMs, studies using 
optical particle counters demonstrate rather poor cor-
relations with reference data (see Table  2). Borrego 
et  al. (2016) reported r2 values of 0.33–0.36 for the 

Table 2  The square of the correlation coefficients (r2) when 
NO,  NO2, and  PM10 measurements obtained using different 
low-cost AQMs are compared with data from reference sta-
tions (see table legend for references)

a Borrego et al. (2016)
b Cordero et al. (2018)
c Munir et al. (2019)
d This study

Sensor platform r2 (NO) r2  (NO2) r2  (PM10)

SNAQa 0.34 0.84 0.12–0.15
E-motec 0.25–0.51 0.64
ECN  Airboxa 0.89 0.33–0.36
NanoEnvi  sensora 0.57
ENEA Air-Sensorsa 0.06 0.33
AuTh-ISAG AQ 

Microsensor  boxa
0.02

AQMesha,b 0.18–0.93 0.56–0.89
AQMeshd 0.36–0.98 0.46–0.89 0.12–0.34
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ECN Airbox and ENEA Air AQMs, but they observed 
even lower correlations (0.12–0.15) for the SNAQ 
AQM. In this study, the  PM10 r2 values for the AQMs 
and reference data were in the range of 0.11–0.41, 
with a mean r2 value 0.22 and standard deviation of 
± 0.07. During CP1 and CP2, even the TEOM 1400ab 
particle sensor in the reference station occasionally 
was observed to perform poorly, reporting unphysi-
cal negative values. The latter results were naturally 
removed by the data cleaning. Overall, the low cor-
relation coefficients for the  PM10 data observed in 
this study are comparable to those observed in other 
studies.

Calibration performance indicators

While the Pearson correlations were not appreciably 
improved by the data cleaning, that procedure greatly 
improved the performance indicators RMSE, MNE, 
MNB, and Ur. Note that data cleaning is based on the 
LODs of the reference station and that AQM data below 
AQM LODs may still remain in the datasets. The per-
formance indicators obtained from the prescaled data as 
well as from the calibrated postscaled data, bisquare data, 
and orthogonal data are each discussed in the following 
sections. Aggregating the results for all AQMs according 
to each performance indicator (except Ur) into a single 
boxplot simplifies the presentation of results, but still, 
18 figures are required (all of which are presented in the 
Supplementary material). The Ur calculations (that gen-
erate a separate figure for each AQM, dataset, CP, and 
pollutant) would theoretically yield 144 figures, although 
some cases were omitted due to, e.g., AQM failures (all 
Ur figures are presented in the Supplementary material). 
In the following discussion, a selected sample figure is 
composed for each of the performance indicators. For 
each pollutant considered, the most informative figure for 
RMSE, MNE, or MNB was selected together with two 
of the Ur plots. Trends in the relative performances of 
the calibration procedures are relatively easy to discern 
in this study. Calibration generally improves the perfor-
mance indicators, and the relative improvements between 
the calibration procedures basically follow the same 
trends for all of the performance indicators.

Nitrogen dioxide

As noted above, the concentrations of  NO2 are 
slightly higher in the autumn (CP2) than in the early 

summer (CP1). Measurements when reference data 
fell below the AQM LOD also occurred more fre-
quently during CP1 than during CP2. These factors 
contribute to the observed higher Pearson correla-
tion coefficients for CP2. Similarly, the  NO2 RMSEs 
were generally smaller in CP2 as compared with 
CP1. Figure 4 shows boxplots summarizing the  NO2 
RMSE results of all AQMs and for each dataset, i.e., 
prescaled, postscaled, bisquare, and orthogonal data, 
with respect to the reference data. Each boxplot sum-
marizes the following statistics of the RMSEs for all 
active AQMs: minimum, first quartile, median, fourth 
quartile, and maximum. Note that RMSEs were also 
calculated according to quartiles to highlight dif-
ferences in performance that depend on the level of 
concentration measured. The RMSE results for the 
four datasets are grouped (from left to right) into 
the first quartile (1Q), middle quartiles (2-3Q), and 
fourth quartile (4Q) with respect to the reference data. 
Performance boxplots for the entire datasets (includ-
ing all quartiles, 1-4Q) are presented at the far right-
hand side in Fig.  4. In CP1, one AQM performed 
much worse than the other AQMs in the prescaled 
data. This was remedied by calibration in the bis-
quare and orthogonal data, but only partly in the post-
scaled data. The higher frequency of low concentra-
tions during CP1 appears to have resulted in slightly 
higher median RMSEs for the 4Q than for the other 
quartiles. For CP2 (Fig. 4b), the median RMSEs were 
more uniform over the quartiles but were still slightly 
higher in 4Q. The ranges of AQM RMSEs, both in 
terms of box size and max–min, were larger for the 
4Q in both CP1 and CP2 than for the other quartiles. 
Postscaled data only slightly reduced the ranges of 
RMSEs compared to prescaled data. Orthogonal data 
reduce the ranges more, and, in CP1, bisquare data 
reduce the ranges even more. In the CP2 bisquare 
data, one AQM performed appreciably better than the 
other AQMs. Overall, the improvement of the median 
RMSEs was small, but performances increased in the 
order prescaled, postscaled, orthogonal, bisquare data 
(ranges and medians of RMSE decreased in the order 
pre > post > orth > bis).

NO2 MNEs were lowest for the 4Q and increased for 
the other quartiles (compare with Fig. 7, for NO MNEs, to 
see the general trends). The medians for the  NO2 MNEs 
for the entire datasets (1–4Q) range from 30 to 55%. The 
performances increased, and ranges and medians of MNE 
decreased in the order pre > post > orth > bis.
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The medians for the  NO2 MNBs for the entire 
datasets (1–4Q) ranged from −30% to + 10%. The 
orthogonal data were the least biased with only + 6% 
and + 4% in CP1 and CP2, respectively. Postscaled 
data performed slightly better than bisquare data 
in CP2, but the situation was reversed in CP1.  NO2 
MNBs were predominantly negative in all quartiles 

for prescaled and postscaled data in CP1 and for 
prescaled data in CP2. For the orthogonal and bis-
quare data (and also for the postscaled data in CP2), 
the  NO2 MNBs went from positive values in the 1Q 
to negative in the 4Q. The performances increased 
and ranges and medians of MNB decreased in the 
order pre > post ≈ bis > orth.
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Fig. 4  RMSE for  NO2 during CP1 (a) and CP2 (b). Boxplot 
of all AQMs (8 AQMs during CP1 and 6 AQMs during CP2) 
divided into quartiles. 1Q is the first, 2–3Q is the second and 
third, 4Q is the fourth quartile, and 1–4Q is the entire data. The 

whiskers show the min-max, the middle line is the median, and 
the tops and bottoms of the boxes are the first and third quar-
tiles. Pre, Post, Bis, and Orth are prescaled, postscaled, bis-
quare, and orthogonal data, respectively
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Ur may be the most important performance indica-
tor because the EU DQO requires it to be less than 
25% for indicative measurements of  NO2 for regu-
latory purposes. In CP1, when approximately half 
of the AQM  NO2 data points were below the AQM 
LOD, Ur rarely fell below 25%. While both postscaled 
and bisquare data substantially reduced the range 
of Ur, compared to prescaled data, this improve-
ment was generally greater for bisquare data. On the 
other hand, postscaled data performed slightly better 
than bisquare data at higher concentrations. In CP2, 
when approximately a third of the AQM  NO2 data 
points were below the AQM LOD, the improvement 
of field calibration was less evident but followed the 
same general trend. Above 50 µg  m−3, most Ur-plots 
for both postscaled and bisquare data (and sometimes 
even prescaled data) satisfied the DQO. Figure  5 
shows  NO2 Ur plots for postscaled and bisquare data 
from one representative AQM in CP1 (which were 
generally less satisfactory than in CP2). All  NO2 Ur 
plots are supplied in the Supplementary material. In 
this study, none of the AQM  NO2 datasets in CP1 sat-
isfied the DQO Ur threshold; however, most datasets 
in CP2 did. Calibration improved the Ur values with 
respect to those for the prescaled data in most cases. 
The postscaled data and the bisquare data performed 
equally well.

Both the lower correlation and higher number of 
data points below AQM LOD probably contributed 
to the failure to satisfy the DQO in CP1. However, 
during CP2, most of the  NO2 postscaled and bisquare 
data satisfied the DQO above 50 µg  m−3. To summa-
rize the  NO2 measurements, the performances of all 
three calibration procedures were roughly equal, and 
all calibration procedures generally improved perfor-
mances with respect to the prescaled data.

A periodic systematic error pattern that was 
observed in the measured  NO2 concentrations for 
all AQMs is illustrated in Fig.  6. The difference 
between the reference data and the calibrated bis-
quare data show that the  NO2 concentrations were 
consistently overestimated starting at approxi-
mately 18:00 and ending at 03:00 the next day, fol-
lowed by an interval of underestimation starting at 
03:00 and ending at 18:00. We hypothesize that the 
observed periodic error may be caused by the AQM 
being exposed to sunlight, as one of the breakpoints 
(03:00) corresponds to the approximate time of sun-
rise. The other breakpoint occurs much earlier than 
the sunset time, which might be because the build-
ings on the same (west) side of the street shadowed 
the AQM in the evening (before sunset proper) 
(see Fig.  2). In the mornings, when the sun rose in 
the east (i.e., was shining from the other side of the 
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street), the shadowing effect of the east buildings was 
much smaller. Sunlight increases temperatures in and 
around the AQMs, and it could also initiate photo-
chemical conversion of  NO2 to NO. However, the NO 
AQM data revealed no corresponding periodic pat-
tern (see below), and it is possible that the  NO2 AQM 
response simply decreases with increasing ambient 
temperature.

Nitrogen oxide

NO measurements have a clear correlation to traf-
fic (e.g., morning, lunchtime, and evening peaks), 
but no clear correlation with sunlight was observed 
in the AQM data. As with  NO2 described above, the 
concentrations of NO were slightly higher in autumn 
(CP2) than summer (CP1). Most of the few cases 
when NO reference data fell below the AQM LOD 
probably occurred in CP1. Both conditions contrib-
ute to the very high correlations (r2) observed for the 
NO prescaled data during CP2 (0.96–0.98). Similarly, 

the NO RMSEs were predominantly smaller in CP2 
than in CP1. NO RMSEs were often smaller than 
the corresponding  NO2 RMSEs. The performances 
increased, and ranges and medians of NO RMSEs 
decreased in the order pre > post > orth > bis. The 
relative performances of the NO RMSEs were similar 
to those observed in the  NO2 RMSEs (Fig. 4).

Figure  7 shows boxplots summarizing the NO 
MNE results of all AQMs and for each dataset. 
NO MNEs were lowest for the 4Q and increased 
in the other quartiles. The median NO MNEs were 
small (11–18%) in CP2 with the exception of the 
median NO MNEs for the prescaled data. In CP1, 
the median NO MNEs were higher and ranged from 
43 to 105%. The performances increased, and the 
ranges and medians of MNE decreased in the order 
pre > post > orth > bis.

Median NO MNBs for the entire datasets (1–4Q) 
ranged from −46% to + 48%. The dataset perfor-
mances increased, and ranges and medians of MNB 
decreased in the order pre > post > bis > orth. 
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Orthogonal data performed best with median NO 
MNBs +11% and −1.0% in CP1 and CP2, respec-
tively. The bisquare data median NO MNBs followed 
closely with +15% and −1.2%, respectively.

Ur is required to be less than 25% for indicative 
measurements of  NOx according to the EU DQO. 

In the absence of other nitrogen oxides, this DQO 
should apply to NO. The Ur plots for the datasets 
rarely satisfied this DQO in CP1. It is unclear whether 
this was due to AQM sensitivity issues and/or insuf-
ficient correlation with NO reference data (0.6–0.93). 
As observed in the Ur plots in CP1, for  NO2 (shown 
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Fig. 7  MNE for NO during CP1 (a) and CP2 (b). Boxplot of 
all AQMs (8 AQMs during CP1 and 7 AQMs during CP2) 
divided into quartiles. 1Q is the first, 2–3Q is the second and 
third, 4Q is the fourth quartile, and 1–4Q is the entire data. The 

whiskers show the min-max, the middle line is the median, and 
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tiles. Pre, Post, Bis, and Orth are prescaled, postscaled, bis-
quare, and orthogonal data, respectively
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above), the bisquare data reduced the range of Ur 
more than the postscaled data. Postscaled data per-
formed slightly better at higher concentrations. In 
CP2, prescaled data correlations (r) with respect to 
reference data were higher than 0.97, and the level of 
NO-concentrations was higher than during CP1. The 
Ur plots for the bisquare data performed significantly 
better than the postscaled data, as shown in Fig.  8. 
All NO Ur plots are supplied in the Supplementary 
material. At levels of approximately 30  µg   m−3, all 
Ur plots for bisquare data satisfied the DQO. None 
of the Ur plots for postscaled data satisfied the DQO, 
and postscaled data showed even worse performances 
than prescaled data.

For the NO measurements, the bisquare data per-
formed as well or better than the other calibration 
procedures. The orthogonal data performed better 
than the postscaled data. Only the bisquare data in 
CP2 satisfied the DQO at levels higher than approxi-
mately 30 µg  m−3.

Particulate matter

The Pearson correlations and r2 values for  PM10 
measurements indicated a low linear correlation 
between the AQMs and reference data during both 

CPs, and the results revealed no clear difference in r2 
between CP1 and CP2. The lack of correlation may 
partly be because over 90% of the  PM10 reference 
data fell below the AQM LOD, levels at which the 
AQM’s accuracy may be questionable. Furthermore, 
many  PM10 data points were clustered at low values. 
In the reference data, the median  PM10 value was 
approximately 70% of the average value.

The weak correlation was also reflected in the very 
small reduction in  PM10 RMSEs for both the post-
scaled and bisquare data, as compared to prescaled 
data. The orthogonal data performed even worse 
than the uncalibrated prescaled data. The perfor-
mances increased, and ranges and medians of RMSE 
decreased in the order orth > pre > post > bis. Simi-
lar trends were observed for  PM10 MNEs. Median 
 PM10 MNEs for the entire datasets (1–4Q) ranged 
from 50 to 95%. In CP1, performances increased, and 
ranges and medians of MNE decreased in the order 
orth > post > pre > bis. In CP2, median  PM10 MNEs 
for the entire datasets (1–4Q) ranged from 39 to 60%, 
and the performances increased in the order orth > 
pre > post > bis.

Figure  9 shows boxplots summarizing the  PM10 
MNB results of all AQMs and for each data set, 
i.e., prescaled, postscaled, bisquare, and orthogonal 
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Fig. 8  The relative expanded uncertainty (Ur) for NO for postscaled (a) and bisquare data (b) from AQM Id. no. 734150 during 
CP2. The solid line is the DQO, and the dashed line is the low-cost AQM LOD
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data. The order of performances was different in the 
different CPs. In CP1, performances increased, and 
ranges and medians of MNB decreased in the order 
pre > post > bis > orth. In CP2, the order changed 
to pre ≈ orth > post > bis.

The EU DQO requires Ur to be less than 50% for 
indicative measurements of  PM10. Only a few data points 
in the Ur plots for CP1 and CP2 satisfy this DQO, as may 
be expected if and when most  PM10 data points are below 

the AQM’s LOD. However, as observed for  NO2 and 
NO, bisquare data suppressed the ranges of Ur between 
the AQMs more than postscaled data. Figure 10 shows 
 PM10 Ur plots for postscaled and bisquare data from one 
representative sensor in CP2. For this particular AQM, 
the percentages of Ur × 100% data points below 150% 
were 34% and 75% for postscaled and bisquare data, 
respectively. The data points in Fig. 10 are in a V-shape, 
with bisquare data Ur performing worse than postscaled 
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Fig. 9  MNB for  PM10 during CP1 (a) and CP2 (b). Boxplot 
of all AQMs (8 AQMs during CP1 and 7 AQMs during CP2) 
divided into quartiles. 1Q is the first, 2–3Q is the second and 
third, 4Q is the fourth quartile, and 1–4Q is the entire data. The 

whiskers show the min-max, the middle line is the median, and 
the tops and bottoms of the boxes are the first and third quar-
tiles. Pre, Post, Bis, and Orth are prescaled, postscaled, bis-
quare, and orthogonal data, respectively
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data at higher concentrations. This anomaly probably 
arises from fitting the AQM data with a very low linear 
correlation to the  PM10 reference data. All  PM10 Ur plots 
are in the Supplementary material.

In this study, very low  PM10 concentrations were 
recorded. As noted previously, this situation will prob-
ably be encountered in many field studies in smaller cit-
ies. Data cleaning by removing the data points below the 
reference station  PM10 LOD and the corresponding syn-
chronous AQM data points improves the performances 
of the calibration procedures in terms of RMSE, MNE, 
MNB, and Ur. It is therefore important to calibrate against 
the best possible reference data. As a consequence of the 
low values recorded, performances of the calibration pro-
cedures for  PM10 concentrations above the AQM LOD 
could not be evaluated in this study. However, for data 
points below the AQM’s LOD, the MNEs are still less 
than 50% after calibration which means that the AQM 
 PM10 data points below the AQM’s LOD can still be 
interpreted as (almost) indicative of low  PM10 concentra-
tions, and these data points need not be removed.

Hardware reliability and data transfer

For the most part, the functionality of the optical 
particle counters in the AQMesh AQMs for  PM10 

measurement remained functional for the entire 
7-month measurement period of this study, the 
exception being a single AQM. One AQM’s (Id. no. 
693150) counter had a systematic error in which 
every 16th measurement (15-min interval) failed for 
an unknown reason, and these data were therefore 
simply treated as missing. The  NO2 sensors failed in 
three AQMs (Id. nos. 788150, 734150, and 706150). 
None of these sensors were replaced before CP2, and 
their failures occurred between October 4 and 10, 
2017, a period with a considerable amount of rainfall 
and fluctuating temperatures. Humidity accumulation 
in the chemical sensors will eventually make them 
“burst” and leak electrolytes (Alphasense, 2013). The 
relative humidity was indeed high during the autumn 
of the measurement period in this study, thus possibly 
explaining the malfunction of the sensors. Two NO 
sensors failed: AQM 845150 failed on September 12, 
and this sensor was replaced at the beginning of CP2; 
AQM 788150 failed on December 30 and was not 
replaced. Seven AQMs were powered by batteries, 
and their expected battery lifetimes (nominally seven 
months) were exceeded by 7 to 31  days. One AQM 
(1776150) was powered by a small solar panel. This 
solar panel did not deliver the required voltage to the 
AQM when the surrounding buildings at the location 
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Fig. 10  The relative expanded uncertainty (Ur) for  PM10 for postscaled (a) and bisquare data (b) from AQM Id. no. 707150 during 
CP2. The solid line is the DQO, and the dashed line is the low-cost AQM LOD
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of the reference station blocked the sun. Transmis-
sions from this AQM ended in the time between CP1 
and CP2.

Data were downloaded from the air sensor data-
base at least once a week during the 7-month meas-
urement period. A problem with data downloading 
was that only a few days’ worth of NO,  NO2, and 
 PM10 data could be downloaded at a time.

Evaluation of the AQM sensors and the calibration 
procedures

Chemical sensors in AQMs deteriorate over time, 
leading to loss of sensitivity and a decrease in meas-
urement accuracy (Wei et  al.,  2018). In this study, 
the AQMs were brand new with intact sensors dur-
ing CP1. At the start of CP2, the AQMs had been in 
use outdoors for more than four consecutive months. 
We therefore expected better sensor performances in 
CP1 than in CP2, but the opposite was observed—the 
observed AQM performances were better for CP2 
than for CP1. This observation can most probably 
be explained by the fact that the mean concentra-
tions of  NO2, NO, and  PM10 were lower in summer 
(CP1) than in autumn (CP2). Increases in the AQM 
uncertainty of measurements at lower concentra-
tions are probably the reason for the lower r2 values 
as well the higher values for the performance indica-
tors seen in CP1 compared to CP2. Previous research 
using AQMesh AQMs also reported that lower con-
centrations affected the uncertainty of measurements 
and had a drop in r2 values during summer (Castell 
et al., 2016), which is corroborated by the results of 
this study. Castell et  al. (2016) speculated that the 
reason for the seasonal drop in correlation could be 
that r2 varies with the air composition, meteorological 
conditions, and biases due to sensor detection limits; 
this study suggests that the latter factor may be the 
most important.

This work shows that AQM prescaled data need 
to be calibrated in field conditions to yield more reli-
able results. In the words of Cross et  al. (2017), “it 
cannot be overstated that EC-sensor systems … can 
return reliable data only if calibrated over the full 
range of pollutant concentrations and meteorological 
parameters that will be encountered when they are 
deployed.” In this study, three different calibration 
procedures were compared, i.e., postscaled, bisquare, 
and orthogonal data. All three calibration procedures 

reduced the magnitudes, and the ranges of the perfor-
mance indicators RMSE, MNE, MNB, and gave more 
reliable results as compared to the prescaled data. The 
performances in general increased in the order post-
scaled, orthogonal, and bisquare data. Bisquare data 
introduced a very slight bias (shown by the MNBs) 
as compared to orthogonal data but performed better 
for RMSEs and MNEs. In terms of Ur, bisquare data 
reduced the range of Ur better than postscaled data. 
Thus, bisquare data performed better than both post-
scaled data and orthogonal data in most cases.

The low concentrations encountered at field condi-
tions in this study pose the greatest challenge for the 
AQMs, but also for the linear calibration procedures. 
When many AQM data points are below the AQM’s 
LODs, the relative uncertainties of the AQM meas-
urements increase, and the linear correlations with 
the reference data deteriorate. As a consequence, 
performance indicators of the calibration proce-
dures increase, as observed in this study. Imposing 
a linear fit on badly correlated data may also lead to 
unphysical anomalies, such as the V-shaped Ur clus-
ters observed for the  PM10 bisquare data (e.g., see 
Fig.  10). Even though most  PM10 data points were 
below the estimated AQM’s LOD, we found the rela-
tive errors (MNEs) to be on the order of 50% after 
calibration, which means that calibrated data below 
the LOD, for this AQM, may almost be interpreted as 
indicative.

Comparison with other AQMesh studies

Several studies using AQMesh have been pub-
lished recently (e.g., Borrego et  al.,  2016; Castell 
et  al.,  2016, 2018; De Vito et  al.,  2020; Hickman 
et  al.,  2017; Ottosen & Kumar, 2019; Topalović 
et al., 2019). Cordero et al. (2018) obtained meas-
urements from four AQMesh AQMs placed in 
two different locations that had been calibrated 
against reference stations. For  NO2 measurements, 
they reported squared correlation coefficients (r2) 
between prescaled and reference data on the order 
of 0.76 ± 0.13 (mean ± standard deviation [S.D.]), 
which is slightly higher than the r2 values for  NO2 
obtained in the present study (0.70 ± 0.13). (As 
stated above, most studies report r2, and it is there-
fore a convenient parameter to use for compari-
sons.) Castell et  al. (2018) measured  NO2 outside 
kindergartens in Norway and derived an r2 value 
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of 0.89, indicating a high correlation between the 
measured data and data obtained from the reference 
station. For NO, Cordero et al. (2018) and Borrego 
et  al. (2016) reported r2 values of 0.70 ± 0.27 and 
0.80, respectively, which are equal to or lower than 
the r2 values we obtained (0.80 ± 0.19). The accu-
racy of AQMesh is highly dependent on the meas-
ured concentration (Castell et  al.,  2016), and cau-
tion should be exercised in comparing correlations 
between various studies that have been conducted 
under different conditions and concentrations.

We were also concerned with comparing RMSEs 
obtained for different calibration procedures. Cordero 
et al. (2018) report  NO2 and NO RMSEs for prescaled 
data in the range 12.9–6.8 µg  m−3, which decreased to 
7.09–3.36 µg  m−3 when calibrated using machine learn-
ing. For comparison, the NO and  NO2 RMSEs obtained 
in this study for prescaled data were 16.2–2.9 µg  m−3, 
which decreased to 7.4–1.7 µg   m−3 for bisquare data. 
Although drawing detailed conclusions from the com-
parison of machine learning and the calibration proce-
dures used in this study would be difficult, it appears as 
though our calibration methods reduce the NO and  NO2 
RMSEs by nearly the same order of magnitude. While 
other studies favor complex multivariate calibration 
methods (Cordero et al., 2018; Topalović et al., 2019), 
the bisquare data used in this study suggest that intro-
ducing a slight bias in a linear calibration method 
may improve the performance indicators by the same 
amount.

Conclusions

The prevailing meteorological conditions in Gävle 
were challenging for the NO and  NO2 gas sensors in 
this study, and these chemical sensors failed unusu-
ally often during and before our second measurement 
period (CP2), which was a relatively humid autumn 
season. In our first measurement period in the early 
summer (CP1), the linear correlations between AQM 
data and reference data were lower than they were dur-
ing autumn. These lower correlations in CP1 may have 
been caused by different meteorological conditions or 
(more probably) by the lower concentrations meas-
ured. The squared correlation coefficients (r2) obtained 
in this study for  NO2, NO, and  PM10 are comparable 
to or better than those obtained by other studies using 

low-cost AQMs. A small periodic systematic predic-
tion error was observed for the AQM  NO2 calibrated 
data with respect to reference data. This error corre-
lated with illumination by sunlight and was probably 
due to a decrease in the AQM  NO2 signal as the ambi-
ent temperature increased. NO measurements corre-
lated more strongly with higher traffic.

Low concentrations of pollutants, far below the 
EU EQS and even satisfying the Swedish EQO, were 
recorded. Measuring these low concentrations was 
challenging for the AQMs, but also for the refer-
ence station. Cleaning the raw data by removing data 
points in the reference data that were below the refer-
ence station’s LODs (and the synchronous data points 
in the AQM prescaled data) was found to improve the 
performances of the calibration procedures appre-
ciably. For the AQM NO data, the data cleaning 
removed most data points below the AQM NO LOD. 
Leaving the AQM  NO2 and  PM10 data that may have 
been below the AQM’s LODs did not seem to create 
big problems for the calibrations. For the AQM  PM10 
data, where more than 90% of the data points were 
projected to be below the AQM  PM10 LOD, the rela-
tive errors (MNEs) after calibration were shown to be 
on the order of 50%. While the EU DQO in terms of 
Ur were not satisfied for the AQM  PM10 in terms of 
Ur, these observations may still be interpreted as rep-
resenting low  PM10 concentrations.

Field calibration of the AQMs prescaled data 
against reference data was necessary. All three cali-
bration procedures used in this study significantly 
reduced the ranges and magnitudes of the performance 
indicators (as compared with prescaled data) to yield 
more reliable results. Lesser improvements of the per-
formance indicators were observed when prescaled 
and reference data were less strongly linearly corre-
lated. Presenting the performance indicators binned 
into first quartile (1Q), middle quartiles (2–3Q), and 
fourth quartile (4Q) of the reference data gave further 
information about the relative performances of the 
calibration procedures. Overall, the performance of 
the postscaled data was roughly equal to that of the 
orthogonal data. The bisquare data usually performed 
better than the other two. The bisquare data improved 
the RMSE by the same amount as other studies using 
complex multivariate calibration methods. The bis-
quare data improvements of the performance indi-
cator Ur were sufficient for the AQMs to satisfy the 
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EU DQO for  NO2 (above 50 µg  m−3) and NO (above 
30 µg  m−3) during CP2.
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