

FACULTY OF ENGINEERING AND SUSTAINABLE DEVELOPMENT
Department of Computer and Geospatial Sciences

Lara Aula

2021

Degree project, Basic level (Professional degree), 15 HE
Computer Science

Study Programme in Computer Engineering

Supervisor: Julia Åhlén
Examiner: Carina Pettersson

Improvement of Optical Character Recognition
on Scanned Historical Documents

 Using Image Processing

i

ii

Acknowledgements

I would like to thank my supervisor Julia Åhlén for believing in this project.

Without her insightfulness and exceptional competence in the area of data

visualization and image processing, this research would not be possible. I also want

to thank my family for their support throughout this entire process. Lastly, I want to

thank AK for wholehearted motivation and encouragement.

iii

v

Abstract

As an effort to improve accessibility to historical documents, digitization of

historical archives has been an ongoing process at many institutions since the

origination of Optical Character Recognition. The old, scanned documents can

contain deteriorations acquired over time or caused by old printing methods.

Common visual attributes seen on the documents are variations in style and font,

broken characters, ink intensity, noise levels and damage caused by folding or

ripping and more. Many of these attributes are disfavoring for modern Optical

Character Recognition tools and can lead to failed character recognition. This study

approaches stated problem by using image processing methods to improve the result

of character recognition. Furthermore, common image quality characteristics of

scanned historical documents with unidentifiable text are analyzed. The Optical

Character Recognition tool used to conduct this research was the open-source

Tesseract software. Image processing methods like Gaussian lowpass filtering,

Otsu’s optimum thresholding method and morphological operations were used to

prepare the historical documents for Tesseract. Using the Precision and Recall

classification method, the OCR output was evaluated, and it was seen that the recall

improved by 63 percentage points and the precision by 18 percentage points. This

shows that using image pre-processing methods as an approach to increase the

readability of historical documents for Optical Character Recognition tools is

effective. Further it was seen that common characteristics that are especially

disadvantageous for Tesseract are font deviations, occurrence of non-belonging

objects, character fading, broken characters, and Poisson noise.

Keywords: Image pre-processing, Tesseract, Optical Character Recognition,

Historical documents, Precision and Recall.

vii

Table of contents
Acknowledgements .. ii

Abstract .. v

1 Introduction ... 1

1.1 Aim ... 2

1.2 Research questions ... 2

2 Theoretic Background ... 3

2.1 Related work .. 3

2.2 Image enhancement methods .. 4

2.2.1 Blur: Gaussian Lowpass Filtering .. 5

2.2.2 Binarization: Otsu’s optimum global thresholding 6

2.2.3 Morphological operations ... 7

2.3 Data extraction and calculation methods ... 10

2.3.1 Open-source Optical Character Recognition: Tesseract 10

2.3.2 Precision and Recall ... 11

3 Method .. 13

3.1 Implementation .. 13

3.1.1 OpenCV ... 14

3.1.2 Scikit-image ... 14

3.1.3 Pytesseract .. 14

3.2 Execution ... 14

3.2.1 Data classification process .. 15

3.2.2 Pre-processing methods .. 16

4 Result .. 21

4.1 Evaluation with Precision and Recall .. 21

4.2 Visual image characteristics ... 23

4.2.1 Classification results for images with blue background 23

4.2.2 Classification results for images with red background 24

5 Discussion ... 26

5.1 Experimental results .. 29

6 Conclusion .. 31

References .. 32

1 Introduction

The technique used to print, handle, and read documents is something that has changed

drastically throughout history, more so with the birth of technology. What used to be

woodblock printing and typewriting has now been overrode with digital creation and

printing of documents. Along with this evolution, the technique of scanning documents

also emerged.

Today it is possible to scan almost any type of physical document and have it handled like a

digital one, but a raw scan of a document usually does not contain any metadata. Initially,

it is just a high-quality image of a physical page but can become a file where every figure,

paragraph and table become their own composites that build up a complete document,

using software tools. This has huge significance for the handling of historical documents.

Since every physical document can be digitalized, the scanning technology has been used

to scan an enormous amount of old historical documents. It ranges from old Finnish [1]

and Australian [2] newspapers to British historical medical texts [3] and much more. An

approach to making these documents more accessible would be to use an Optical

Character Recognition (OCR) tool to extract the textual data that they contain.

Optical Character Recognition is a process that makes it possible to convert characters on

an image to digital characters. Using OCR can simplify many tasks and make more content

accessible and searchable. The tool works best when the image to be read fills certain

quality conditions like high image quality, good lighting, clear segments of text and more.

Even with those requirements met, errors still occur. Therefore, when a document is

visually flawed because of its age, those criteria are many times not fulfilled.

The age of a physical document to be digitalized is a problematic factor since disadvantages

like outdated vocabulary, unusual fonts, inconsistency and/or unusual prints of characters

follow with them [3], [4]. In addition to those factors, over time and use of physical

documents, characters might have faded, creases might have appeared caused by folding

and the document itself might have damages like holes or parts that have been ripped off.

Even attributes like stains or color changes on the document can have been acquired over

time.

When it comes to historical archived form-type documents, there is even a bigger issue

since they contain unique form values. Those values could be a name, a unique

identification number, so forth, and in historical form-type documents they were most

likely not automated and consequently visually varying. In cases where tools like

typewriters were used, it is common to see characters overlapped with each other or lines

and doubled characters. Although OCR is a great tool, it is not flawless. When handling

documents with bad condition, like most historical documents, the OCR-tool can misread

text and consequently lose a lot of important information.

Figure 1: Example of old historical documents with flaws such as doubled characters, character breakage,
different fonts, stains and line overlapping.

Even if all cases of damaged data are not possible to go around, for instance when the area

of interest is completely missing or severely damaged, many times these problems can be

handled. In most cases, it is possible to completely or to a great measure reconstruct the

text and retrieve the missing information with the help of image processing methods.

Occasionally, though the text of an image looks perfectly readable for the human eye,

OCR-tools can still fail to retrieve the correct data.

1.1 Aim

The aim of this study is to identify possible reasons as to why OCR-algorithms applied to

old historical documents might fail. The similarities of the images that gave failed

recognition are analyzed and presented. Further it will be researched if various image

processing techniques applied to prepare images with common visual defects provides an

improved OCR-result. A comparison between the OCR result of non-processed and pre-

processed images will be demonstrated.

1.2 Research questions

The research questions that will be answered in this study are the following:

1) Is it possible to improve the result of an Optical Character Recognition tool by

using image processing methods to increase readability of scanned historical

documents?

2) Are there common image quality characteristics in scanned historical

documents where the text is unidentifiable?

2 Theoretic Background

The following section goes through relevant research about the subject of OCR and image

processing alongside in-depth explanations of methods used to conduct this research.

2.1 Related work

In multiple researches [1], [3], [4], [5], it has specifically been pointed out how historical

documents have common features of unusual and varying fonts, broken characters, ink

fading, and old vocabularies, which in turn are attributes found to cause difficulties during

OCR-scans. There have been slightly different approaches to overcome these types of

problems. Keerthana, Pai, Meda et al. [6] performed a research on handwritten letters

where the main issues were varying styles and fonts. They used different methods to pre-

process the images in the following order: color conversion to grayscale, noise-removal

with a bilateral filter, Canny edge detection, image cropping and warping, and lastly

thresholding. This alone was not enough. Since the character fonts of handwritten text

vary a lot, they used supervised machine learning that stood for the greatest part of their

positive results. A neural network was trained with a total of 200 alphanumerical samples

and 100 special character samples. Finally, they used a dictionary based post-processing

method to correct eventual character errors in a word.

In some cases, post-processing with a dictionary is not helpful. Garain, Jain, Maity and

Chanda [7] conducted a research to improve OCR-scans of low-quality images containing

historical text taken with a handheld camera. They used Otsu’s method for segmentation

and binarization, along with closing and opening morphological operations. A critical

discovery was that even if appropriate pre-processing methods are implemented, the text

of some images are not extracted correctly. They speculated that the underlying reason for

that is because the texts extracted were names or terms that were absent in a lexicon. This

also hints that when it comes to reading text that does not contain any words and only are

character sequences, some OCR-tools may fall short. This makes it important to choose a

tool that allows for scanning without using a lexicon for word correction as a post-

processing method. By using proposed methods, they improved the character recognition

accuracy with 57.3% and the word recognition accuracy with 68.6%.

In 2017, efforts to digitize Historical newspapers were made in Finland [1]. In the

comparative literature study, it was found that Gaussian lowpass filtering is the most

effective for noise removal. Furthermore, it presents a case where problems occurred

with merged and broken characters. The k-nearest neighbors (kNN) classification

algorithm was used to classify these characters and it managed to correctly classify 91% of

the broken characters. Next, the training function of the open-source OCR-tool Tesseract

was used to recognize the Finnish fraktur font. A set of image processing methods adapted

to work against problems like ink bleeding, scratches, tears, among others, that are

common for historical documents were decided. The best result for that data was

essentially binarization combined with histogram equalization and linear normalization

techniques which colloquially can be called contrast stretching. The binarization method

used was one where the threshold value was adaptive. However, it was noted that

improvements like morphological operation and even better image enhancement could be

made for a more accurate result.

Even in Australia, a similar study [2] was made going through an extensive analyzation of

which factors that are significant for OCR improvement. A detailed step-by-step

description of efforts to improve the quality of an OCR-scan was presented. Elaboration

on the importance of image quality was made. It gave specific criteria stating that the

image to be scanned should have a resolution of minimum 300 dpi. Furthermore, the

importance of using lossless formats like “.tiff” instead of the more common “.jpg” and

“.png” image file extensions was explained. The authors argue that a part of image

optimization is to create good contrast so that the binarization will give good result. In

addition, it was pointed out how the characters should be optimized by smoothing and

rounding their edges, and also by making them sharp by increasing contrast of the image.

Lastly it is mentioned that training the OCR engine with your own character dataset could

be a time-consuming but crucial part in correctly detecting them.

Even if broad research has been made in the subject area of image processing and OCR-

methodology, a systematic search for studies regarding pre-processing to improve OCR

results of historical documents with text that are not words could not be found. In the

situation explained, there is no post-processing word-correction method that can be

applied. Hence, there will be a heavy dependence on an appropriate choice of pre-

processing methods. Even if historical documents have similar visual problems, they can

look completely different. Subsequently, there is no template of pre-processing methods

that will apply on all types of historical documents.

2.2 Image enhancement methods

For most OCR-tools, a raw image will not give good text extraction results and it is

preferred if the image is treated with different image processing methods [8]. This

following section will give a thorough explanation of relevant image enhancement

methods to use for improving the output of an OCR-scan.

(1)

(2)

2.2.1 Blur: Gaussian Lowpass Filtering

When obtaining images from physical sources like cameras and scanners it is hard to avoid

noise in them. Noise come in many forms, but the common denominator is that it is an

undesired image attribute in most cases. It can come in form of graininess in different

colors and can lead to unwanted small clusters of pixels passing through a segmentation

process.

To soften the high frequency noise from passing through image processing steps, the image

can be blurred to soften the harsh differences in pixels of the image. A way to achieve this

is by using Gaussian lowpass filtering [9]. The process of blurring an image is one of many

filtering methods falling under the category of what is called image convolution. The

purpose is to filter an image by convolving a matrix with an image. Those matrixes are

called kernels. For Gaussian lowpass filtering, a Gaussian kernel is needed. In the

convolution process, the pixel of interest is always multiplied with the highest value in the

kernel (convolution matrix).

A Gaussian kernel is a convolution matrix with a special structure that can be explained

with (1)

𝐺(𝑥, 𝑦) = 𝑒
−

𝑥2+ 𝑦2

2𝜎2
where G(x,y) = Gaussian kernel

 x & y = kernel dimensions

 σ2 = the standard deviation expressed by (2)

The standard deviation is calculated by using mean value of all pixels in an image

subtracted from each dimension coordinate. Then all those are summed up and the mean

value of that sum becomes the standard deviation as shown in (2).

𝜎2 =
1

𝑛
∑(𝑥𝑖 − �̅�)2(𝑦𝑖 − �̅�)2

𝑛

𝑖=1

where σ2 = standard deviation

 x & y = kernel dimensions

What is significant about a Gaussian kernel is that the center value is always the largest,

and the further away a cell is from the center cell, the smaller the value becomes. Figure 2

shows a noisy image and what it looks like after Gaussian lowpass filtering has been applied

using a 15x15 Gaussian kernel.

Figure 2: (a) Noisy image. (b) Result after filtering with a Gaussian filter.

2.2.2 Binarization: Otsu’s optimum global thresholding

For humans, it is easy to separate and name different objects found in a picture, but

computers do not work like humans so all processes must thoroughly be defined. To

prepare an image for a computer to process, there must be some sort of separation or

categorizing of objects in an image. A step towards achieving such a thing is through image

segmentation. Image segmentation is a technique used in image processing where the

pixels of an image get categorized into to two or more classes [9]. These classes are

essentially objects that an image contain, such as cats, dogs, flowers and more.

Many methods can be used to segment images. When it comes to gray-scale images, the

interesting classes are often background and foreground pixels, and a threshold value is

needed to separate the two. In that case, a segmentation will give you a binarized image. A

binarized image only consists of two color values: black (0) and white (255). Sometimes

there can be uneven lighting with shadows and highlights on the desired object to

segment. Consequently, image segmentation can be unsuccessful if a single global

threshold value is used for the pixel separation [5].

Otsu’s method is a global histogram-based thresholding algorithm that bases the

segmentation method on the luminance of an image. It is effective to use on an image

where two classes are expected [6]. To explain briefly, the idea is that the luminance

intensity of the image pixels stand for a clear separation of classes. The distinctive feature

of Otsu’s method is that the algorithm is nonparametric and automatically calculates the

optimal threshold for segmentation [7]. Figure 3 shows an example of the histogram of an

image along with the segmentation result using Otsu’s optimum global thresholding

method.

(3)

Figure 3: (a) Original image. (b) Histogram of image. (c) Segmentation result using Otsu's method.

After the segmentation of (a), (c) is now binarized.

2.2.3 Morphological operations

After a binarization process, objects that do not belong in an image can remain. They can

be clusters of both white and black pixels and can visually look like holes, gaps or outlying

objects and can disrupt the image. To preserve the shape of an object but remove those

nonbelonging objects, morphological operations can be used. Using a morphological

operation on an image creates a new morphed version of it where a matrix – called

structuring element – decides what shape to use as a footprint in the morphing process [6].

This following section will go through some of the necessary morphological operations to

use for improving the quality of textual images. Examples of each operation will be shown

in images and Fig. 4 shows the reference image. The white pixels correspond to the

foreground while the black pixels make up for the background. The structuring element

used for all morphological operations is a 5x5 rectangular matrix.

Figure 4: The binarized image that will be used to show the results of morphological operation.

2.2.3.1 Erosion, Dilation, Closing and Opening

Dilation is a morphological operation where the structuring element is used as a

blueprint to thicken the foreground [6]. This can remove small holes and connect broken

parts of the foreground. It can be expressed as (3)

𝐷𝑒(𝐼) = {𝑝 ∈ 𝐼|𝑇𝑝(𝑒) ∩ 𝐹(𝐼) ≠ ∅}

where I = input image

 De(I) = dilated image

 p = each pixel of the image I

(4)

 e = structuring element

 Tp(e) = structuring element e translated at p

 F(I) = image foreground

If the junction between Tp(e) and F(I) is not empty, then p becomes the foreground. This

means that at least one pixel under the structuring element must be of value 1 for the

structuring element to print its shape in the corresponding pixel position of the dilated

image De(I). Figure 5 shows a dilation of Fig. 4.

Figure 5: The result of dilating Figure 4.

Erosion removes all pixels near the edge of the object to morph and gives a thinner

version of the foreground in the input image. Erosion is ideal to use for separating them

small objects or removing small clusters of pixels and is expressed by (4)

𝐸𝑒(𝐼) = {𝑝 ∈ 𝐼|𝑇𝑝(𝑒) ⊂ 𝐹(𝐼)}

where I = input image

 Ee(I) = eroded image

 p = each pixel of the image I

 e = structuring element

 Tp(e) = structuring element e translated at p

 F(I) = image foreground

If Tp(e) fits entirely in the image foreground, p is kept in the resulting foreground of image

Ee(I). Otherwise, p becomes the background. In other words, all pixels under the

structuring element must be of value 1 for the structuring element to print its shape in the

corresponding pixel position of the dilated image Ee(I). Figure 6 shows an erosion of Fig.

4.

Figure 6: The result of eroding Figure 4.

Closing is a morphological operation equivalent to a dilation followed by an erosion.

Opening is equivalent to an erosion followed by a dilation [6]. Examples of these

morphological operations are shown in Fig. 7 and Fig. 8.

Figure 7: Original image (left) and the result of a closing operation (right).

Figure 8: Original image (left) and the result of an opening operation (right).

2.2.3.2 Skeletonize

When analyzing an object there can be much to unpack, and some visual factors might be

distracting or redundant. When only the structure of an object is of interest,

skeletonization can be used [6]. Through skeletonization, the shape of an object is

represented with a connected thin line that is one pixel thick. The skeleton can be used for

comparison with a target shape to see if they are the same type of object. Figure 9 shows a

skeletonized version of Fig. 4.

Figure 9: The result of skeletonizing Figure 4.

Sometimes skeletonization can lead to branches appearing. Branches are lines of pixels

sticking out of the object that has been skeletonized. A case when a skeletonized object has

excessive branching can be seen in Fig. 10. A complementary method to solve that type of

issue exists, and it is called pruning [5] which essentially is a name for algorithms that can

shorten or completely remove the branches. However, this method does not work

satisfactory for all type of images.

Figure 10: (a) The object with excessive branching. (b) The branches colored in green.

2.3 Data extraction and calculation methods

The following section will give an explanation of the OCR-tool and evaluation method

used to acquire the result.

2.3.1 Open-source Optical Character Recognition: Tesseract

Tesseract is an open-source OCR-tool found on the version control platform GitHub [8].

It was established by Hewlett Packard 1985, and was made open sourced in 2005. From

2006 until now it is supported by Google and keeps on getting improved by contributors

on GitHub.

Tesseract provides relevant documentation and instructions on how to improve the result

of an OCR-scan. On the first page of its documentation, it says very clearly that the image

to be read oftentimes needs quality improvement to give better OCR results. In a report

by Smith[9] that gives an Overview of the Tesseract OCR engine, the workaround method

for issues like separation of merged characters and classification of broken ones are

presented. These seem to work best on documents that have been created digitally at

some point.

The attribute of it being open-source and so heavily contributed allows for many

functionalities that lets a user adapt the tool for their own purpose of use. There are

possibilities to train Tesseract to recognize other languages or character patterns [10].

Tesseract’s own recommendations for improving the OCR result is to use an image with a

size of at least 300 dpi and they encourage to enlarge images that doesn’t meet that

requirement [11]. The Otsu binarization method is said to be used internally in the OCR

engine, but might not always give desirable result. It is suggested to use tools like Pythons

OpenCV and scikit-image to treat the image. Furthermore, methods like rotation

(deskewing) of slanted text, noise removal and morphological operations are

recommended. It is also stated that Tesseract might have a problem reading text of images

with no borders around it, therefore it is advised to add a small border around the text to

avoid scanning problems.

(5)

2.3.2 Precision and Recall

When relying on a machine to do any type of classification, there is a method to evaluate

the correctness of that classification. By conceptualizing a hypothetic situation where a

computer algorithm is created to identify clocks objects in images, the classification

method precision and recall will be explained. A step towards calculating the accuracy of

the clock object detection requires some form of measurement of the result. This can be

made by dividing each possible outcome into their own classes and counting how many

outcomes that fall under each class [12]. These four classes are called True Positives (TP),

False Positives (FP), True Negatives (TN) and False Negatives (FN). If the clock example

is used to explain TP, FP, FN and TN, the following shows the outcome of this

measurement:

True Positive: A clock was identified. There was a clock.

False Positive: A clock was identified. There was no clock.

True Negative: A clock was not identified. There was no clock.

False Negative: A clock was not identified. There was a clock.

These values can be put into a confusion matrix as seen in Fig. 11.

Figure 11: Confusion matrix.

From this confusion matrix, the precision and the recall measures of the classification can

be made [16]. The precision gives the proportion of the true positive identifications in

relation to all positive identifications and can be given as (5).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃

The recall makes up for the proportion of how many correct identifications were made

and hence shows how much real information was lost. The formula can be seen in (6).

(6) 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁

Through the clock example it is evident that the most harmful result of a classification is a

false negative since data can go lost. False positive is also an undesired result because it

essentially accumulates a great deal of redundant data, but then other precautions can be

taken accordingly to further filter out that data.

3 Method

This section will explain the methods used to conduct this research. More specifically, the

implementation of image processing, how the data was collected and finally how the OCR

result was evaluated will be presented.

The materials utilized were 545 scanned images of motorcycle registration cards from the

1930’s to the 1970’s and was provided by the Stockholm archives. The area of interest

was the portion of the card containing the motorcycle license plate numbers, shown in

Fig. 12.

Figure 12: An old Swedish registration card for motorcycles with the area of interest for this research is
zoomed and marked in blue.

These cards come in different shades of red and blue. The registration number area can be

defective by stains, characters overlapping lines, character doubling caused by typewriters,

ink fading due to both age and tear, various fonts and sizes, all of which can be seen in Fig.

1. All images are used in .tiff format as suggested by Holley [2].

3.1 Implementation

The OCR and image processing methods were implemented with the programming

language Python. The following section will briefly go through the most important Python

packages used to implement the code.

3.1.1 OpenCV

The most used package in this project was OpenCV. It stands for Open Computer Vision

Library and is an open-source software toolkit that can be used for computer vision and

machine learning [14]. Almost all image pre-processing methods were used from the

OpenCV library; gray scaling, binarization, resizing, morphology and more.

3.1.2 Scikit-image

The scikit-image package is built on the advanced scipy.ndimage image processing package

[15]. It contains more complex tools in terms of image processing. Where OpenCV was

lacking, scikit had a solution. Methods to fill small holes, remove small objects of a specific

size and skeletonization were used from this package.

3.1.3 Pytesseract

Pytesseract is simply a wrapper-package that enables the use of Googles Tesseract-OCR

engine in Python [16]. This package, along with a computer installation of Tesseract [8]

made it possible to use OCR-scanning functions in the Python programming language.

3.2 Execution

Figure 13 shows the entire work process for this study.

Figure 13: The process of the work execution.

Firstly, an image attribute classification was made based on common characteristics seen in

the dataset. A separate classification was made for images with blue background and those

with red background. This was done in order to enable the possibility to analyze if certain

image characteristics are prone to give poor OCR results. Secondly, the OCR tool

Tesseract was used to perform a scan on all untreated images and the result for each image

was stored in a file for later review.

Next, the images were pre-processed in Python using the image processing modules

OpenCV and scikit-image. By observing similar patterns between images after each

processing step, the next processing method was chosen accordingly. A total of 12-13 pre-

processing methods were applied to the images. Afterwards, the pre-processed images

were scanned by Tesseract and those outputs were also stored.

Finally, both results from the OCR-scan of the untreated and pre-processed images were

evaluated by using the precision and recall classification method. An OCR result was

considered as fully successful if every character had been extracted. If at least one

character was correct or if any non-existing characters were added to a fully extracted

registration number, it was considered as partially successful. Lastly, if there were no

correctly scanned characters, the result was deemed unsuccessful.

3.2.1 Data classification process

545 untreated cropped images containing the registration numbers were classified based

on their attributes. Different attributes can be seen in Fig. 14 and Tab. 1 shows the

different classification categories that were used.

Figure 14: Visual varieties seen in the dataset.

Table 1: Image classification attributes with descriptions along with images from Figure 14 falling under each
category.

Quality noise is a term used in this study to describe the image attribute that visually

exhibits the properties of what is called Poisson noise or shot noise [17] in image

processing. The classification is made to later show if a specific type of image characteristic

is more prone to give an inaccurate OCR result.

3.2.2 Pre-processing methods

The complete image pre-processing procedure consisted of 12 steps if the registration

number had more than three characters and 13 steps if not. The workflow chart of the

Python script that was executed can be seen in Fig. 15.

Image attributes Descriptive questions Images in Figure
14 showing the

attributes

Horizontal lines Does text underline occur? (a), (b), (e), (i), (k)

Overlapping with
horizontal lines

Do characters overlap with the text
underline? Can only be true if horizontal lines

is true.

(b), (i), (k)

Blue background Is the color of the background any shade of
blue?

(c) (e), (i)

Red background Is the color of the background any shade of
red?

(a), (b), (d), (f), (g),
(h), (j), (k), (l)

Character
doubling

Is the character defectively doubled? (c), (d), (l)

Deviant font Is the font any different from the rest of the
dataset?

(g), (k)

Quality noise Is there noise from the scanning process or
from insufficient quality of scanner sensors?

(c), (i)

Object noise Are there any non-belonging objects in the
image?

(h)

Old document
attributes

Do stains, folds, creases or paper damage
occur? Is there wear and tear?

(f), (j), (k), (l)

Ink fading Is the entire text faded? Is a character faded?
Is a part of a character faded?

(b), (e)

Broken characters Is there any breakage in a character? Is the
character not continuous?

(j)

Figure 15: Workflow of the Python script.

The structuring elements seen in Fig. 16 were used for the morphological operations and

they were a 5x5 cross (1) and a 3x3 square (2).

Figure 16: Structuring elements used for the morphological operations.

Figure 17: Original image (left) and the greyscale version (right).

Firstly, the original image is read and turned into grayscale. This is so that the image

matrix becomes two-dimensional since all other methods used only operate on a 2D

matrix. Secondly, the image is lowpass filtered using a 3x3 Gaussian kernel to soften the

image and prepare it for Otsu’s algorithm. This step is particularly effective for images

with the quality noise characteristic. The image is then binarized using Otsu’s optimum

global thresholding and from that process, outlying objects can be noticed.

Figure 18: Result from Gaussian lowpass filtering (left) and binarization (right).

Before handling them, the size of the image is doubled. This is since the foreground is of

small size. Using any structuring element with the dimensions 3x3 or greater will cause

too drastic changes and can deform the shape of the character causing it to become

unreadable. When enlarging the binarized image, the effect of structuring elements give

better results. Next, the image is morphologically opened using structuring element 1.

For those images with characters that naturally have holes – A, B, 0, 4, 6, 8, 9 – this part

is crucial if the hole is small since it prevents it from closing and possibly becoming

unreadable.

Figure 19: Images after enlargement (left) and opening (right).

Following that, an erosion is made with structuring element 2. For some images, the

outcome of the next step makes can look no different than the previous step and for others

it is vital. The image is cleaned and objects smaller than the threshold of 40 pixels are

removed using a scikit-image function. Cleaning is essentially a morphological procedure,

optimized to only remove outlying objects without changing the ones that are larger than

given threshold value.

Figure 20: The result of image erosion (left) and cleaning (right).

The morphology keeps going with closing using structuring element 1 and ends with an

erosion using structuring element 2. The remaining outlying objects should be very small

at this point, if they did not merge into the characters during any of the previous steps.

Figure 21: Result of closing (left) and erosion (right).

The image is then downsized and an attempt to remove the larger part of any horizontal

lines using morphology will be made.

Figure 22: Result of size minimization (left) and removal of horizontal lines (right).

A border of 100 pixels is added to the image to avoid the problem Tesseract can have with

reading text from images with no border. As a final step of pre-processing, the image is

cleaned again and now fully prepared for the OCR-scan.

Figure 23: Result of added border (left) and final clean (right).

Before the scan, Tesseract was configured with a character whitelist, meaning that no

characters other than those specified can be extracted. The whitelist contained characters

A&B and all numbers because they were the only values in the dataset. Finally, the image

was scanned, and the OCR-output was stored in a file.

Through experimental tests, it was found that image rotation by 270° gave satisfactory

results for images with three characters or less. If those images were not rotated,

Tesseract would simply give an empty output. Moreover, when images with more than

three characters given the same rotation were scanned, the output was empty as well.

Thus, an additional step of image rotation was added for images with three characters or

less before using OCR.

4 Result

This section will show all the results acquired in this research.

4.1 Evaluation with Precision and Recall

Table 2 shows the result of Tesseracts character recognition of the untreated images and

Tab. 3 shows the precision and recall that was calculated from them. Table 4 shows the

result of Tesseracts character recognition of the pre-processed images and Tab. 5 shows

the precision and recall that was calculated from them.

Table 2: Classification of OCR result before image processing.

Table 3: Precision and Recall for each character before image processing.

Character True Positive
(TP)

False Positive
(FP)

False Negative
(FN)

Total

A 51 1 394 445

B 32 6 57 88

0 10 0 47 57

1 20 2 179 199

2 16 3 72 98

3 6 2 100 106

4 11 7 91 102

5 30 3 258 288

6 8 3 81 89

7 8 2 97 105

8 0 0 76 76

9 8 1 79 87

Character Precision
𝑻𝑷

𝑻𝑷 + 𝑭𝑷

Recall
𝑻𝑷

𝑻𝑷 + 𝑭𝑵

A 0.98 0.11

B 0.84 0.36

0 1.00 0.18

1 0.91 0.10

2 0.84 0.16

3 0.75 0.06

4 0.61 0.11

5 0.90 0.10

6 0.73 0.09

7 0.80 0.08

8 0.00 0.00

9 0.89 0.09

Total ≈0.77 ≈0.12

Table 4: Classification of OCR result after image processing.

Table 5: Precision and Recall for each character after image processing.

Character True Positive
(TP)

False Positive
(FP)

False Negative
(FN)

Total

A 293 4 152 445

B 60 2 28 88

0 41 0 16 57

1 153 12 46 199

2 72 4 26 98

3 80 3 26 106

4 85 12 27 102

5 218 6 70 288

6 65 4 24 89

7 80 3 25 105

8 59 0 17 76

9 67 11 20 87

Character Precision
𝑻𝑷

𝑻𝑷 + 𝑭𝑷

Recall
𝑻𝑷

𝑻𝑷 + 𝑭𝑵

A 0.99 0.66

B 0.98 0.68

0 1.00 0.72

1 0.93 0.77

2 0.95 0.73

3 0.96 0.75

4 0.86 0.74

5 0.97 0.76

6 0.94 0.73

7 0.96 0.76

8 1 0.78

9 0.89 0.77

Total ≈0.95 ≈0.74

4.2 Visual image characteristics

This section will show the result of the classification of image attributes for each image in

the dataset along with a pie chart showing the number of defects in images whose OCR

result was partially correct or incorrect. An OCR result is deemed fully successful if every

character is extracted. If at least one character is correct or if any extra characters were

wrongly added to a fully correct registration number, it is considered as partially

successful. Lastly, if there are no correctly scanned characters, the result is deemed

unsuccessful. The result for images with blue background and red background were

separated.

4.2.1 Classification results for images with blue background

Figure 24: Image attribute classification result of images with blue background.

Figure 25: Pie chart showing the proportion of number of defects for images with blue background without
fully correct result.

4.2.2 Classification results for images with red background

Figure 26: Image attribute classification result of images with red background.

Figure 27: Pie chart showing the proportion of number of defects for images with red background without
fully correct result.

5 Discussion

The result shows that using image processing methods to improve the quality of scanned

historical documents improve their readability for an open-source OCR tool. By using

pre-processing methods like Gaussian lowpass filtering, binarization and morphological

operations, the recall was increased by 62 percentage points (from 12% to 74%) and the

precision by 18 percentage points (from 77% to 95%). It is evident that the specific

methods used to conduct this research were appropriate for the dataset of this study,

similarly to what was stated by Koistinen [1] and Garain et al. [18] where morphological

operations were recommended alongside lowpass filtering and optimum thresholding.

By observing the classification result, it is seen that for images with red background, the

poor image quality characteristics were object noise, deviant font, and broken characters.

This can be decided since the number of correct scans were less than or equal to the

amount of incorrect and partially correct scans for those attributes. Figure 26 shows that

images with quality noise in relation to the image background color was significantly

greater for images with a blue background than images with a red one. Figure 28 shows an

example of an image with blue background with a high level of quality noise.

Characteristics like ink fading, object noise and quality noise were the most destructive for

the OCR result of blue images. Furthermore, Fig. 25 shows that most of the blue images

that were misread had 2-3 defects whereas the misread red images had 1-2 defects as seen

in Fig. 27. This shows that images with red background were more prone to OCR

misreading with a less amount of defects compared to images with blue background.

Figure 28: Image with blue background with apparent quality noise.

All of the image attributes that caused the most incorrect OCR-scans in relation to fully

correct results were object noise, deviant font, broken characters, ink fading and quality

noise. Deviant font, broken characters and ink fading are all connected to the visual

attributes of the characters. This shows that in any case where the character is not shown

clearly in the image and therefore does not look like a character, it will not be treated as

one. That exhibits the importance of using relevant methods to fully enhance and

reconstruct defective characters, or to use a certain kind of classification method that is

able to detect characters, even if they differ from the rest by being broken, faded or

deviant. The two other attributes, object noise and quality noise do not directly connect

to characters but still affects the readability of them. Figure 29 shows the result of all 12

pre-processing methods executed on Fig. 28.

Figure 29: Result of all pre-processing methods used on Figure 28.

It can be seen that the hole of the “A” has been closed. In Fig. 28 it is apparent that the

hole of “A” originally was small. Since the quality noise is high and relatively close to the

color of the character, the noise inside the hole of “A” has been merged with the character

as a result of morphological operation. Figure 30 shows a case where object noise has

become merged with a character to be read.

Figure 30: Original image with object noise (left) and result after all pre-processing steps (right).

All of the examples stated show that the common feature of all the defective attributes is

essentially that they have failed to be fully extracted and separated. This exhibits that there

is a need for improvement of enhancing and making characters more recognizable so they

easily can be extracted during an image segmentation.

Although the methodology used to conduct this research gave considerably improved

results, it was shown that some elements were not applicable for all situations. Since the

dataset used contained numerous visual varieties, a set of fixed methods would naturally

give variating results. In some cases, it is obvious why the image could not be read. Figure

31 shows a case of bad segmentation caused by stains on the original image that

consequently lead to a loss of data.

Figure 31: Case of bad segmentation with Otsu’s algorithm. (a) Original image. (b) Segmented image.

To improve segmentation problems like this, a local adaptive thresholding method could

be used, as done with the historical Finnish newspapers [1].

The reasoning behind some incorrect OCR results are not as apparent as in Fig. 31.

Figure 32 shows 2 perfectly readable images for the human eye that gave empty outputs by

Tesseract. Even if the second character “5” in (b) is broken, the rest of the characters

should be readable.

Figure 32: Case of good images with no output.

A possible improvement path would have been to implement supervised machine learning

to recognize the characters found in the dataset of this study. This method was commonly

seen in related research such as Keerthana’s study (et al.) where it was applied to their

dataset of handwritten characters [19]. Other studies also used or suggested machine

learning and dataset training as a method to contribute to a higher OCR accuracy [1], [2].

Moreover, Tesseract offers opportunities to train their OCR engine to recognize

characters of the user’s choice. In cases like Fig. 33, where the character font of “4” is old-

fashioned, Tesseract failed to recognize it in all cases. “A” and “B” were also the most

wrongly classified characters as seen in Tab. 4 and Tab. 5. Machine learning

implementation would give a better OCR result in these two mentioned cases as well.

Figure 33: Text with a deviant font for character "4".

Many studies used word correcting post-processing methods [3], [18], [19]. In this

research, applying a similar method would give a disadvantageous result. If an OCR-scan

returns a word with a single incorrect letter, a post-processing method like text

correction can make “Aople” become “Apple”. In the dataset of this study, where the

desired text to be extracted are not actual words, the use of post text correction would

cause very much damage to the result.

Another method used by studies that could not be applied to the historical registration

cards was histogram equalization or contrast stretching. This was experimented with early

in the study, but since the quality noise of the images vary, some images gave great results

while other result images acquired more quality noise from that method.

A discovery was that an image with three characters or less was scanned better when

rotated by 270° but not when the image contained more than three characters. Fig. 34

shows two images with more than three characters that gave no output when flipped.

Figure 34: Rotated images whose OCR output was empty.

Seen with a greater perspective, the methods in this research can improve accessibility to

people with vision impairments. There are other types of documents that are not

necessarily historical that contain the same type of visual defects stated in this study. By

finding effective ways to approach these problems, digitization of physical documents with

OCR offers access to information to people that do not have the opportunity to read by

themselves. Furthermore, by efforts to digitalize physical documents, less paper is used

and thus the effect on global warming that comes from producing paper is avoided. The

material can simply be accessed electronically.

5.1 Experimental results

Another approach experimented with was using skeletonization. The idea behind that

experiment was that if the font can be a disturbing factor for the OCR-tool, extracting a

skeleton of the character might make it easier for Tesseract to find a character match.

Figure 35 visualizes what it would look like if two final steps of skeletonization followed

by morphological dilation were added to the pre-processing procedure.

Figure 35: Skeletonized images with their dilated counterparts below.

Skeletonization was not further studied because of difficulties with excessive branching.

This problem could be approached in a future research where pruning methods are

prepared and attempted. Figure 36 shows an image of a skeleton that has been dilated

where the branches have been manually removed and illustrates a hypothetic result of

pruning. There are even various studies of using skeletons for object detection on other

types of object, and this gives an opportunity to try the same method for characters [20],

[21].

Figure 36: Skeletonized (left) and dilated (right) image where branches have manually been removed.

6 Conclusion

This study demonstrates that using image pre-processing methods like Gaussian lowpass

filtering, Otsu’s method and morphological operations on scanned historical documents

improve their readability by an open-source Optical Character Recognition tool. Further,

it was discovered that image orientation also affects the readability where text with three

characters or less gave better OCR results when rotated by 270°. It was also seen that the

most destructive image quality characteristics for an OCR-tool were character fading,

broken characters, deviant fonts, image quality noise and object noise.

Since the data exhibited great variation in quality, there were images that gave an

incorrect or partially correct OCR-result. To further improve the accuracy of an OCR-

scan in future research, it is suggested that supervised machine learning and training of an

OCR-tool to recognize the characters of the dataset is applied. Additionally, it was

discovered that the common feature for all of the most defective image quality attributes

were related to failing to thoroughly enhance the characters before extracting them

through segmentation. This shows that a more nuanced technique to enhance characters is

needed for all cases of character ink fading, character breakage, so forth. Further, a better

method to separate the characters from quality and object noise would give a better result

and applying methods that more meticulously enhance and separate characters from noise

could be explored in further studies.

References

[1] M. Koistinen, K. Kettunen, and T. Pääkkönen, “Improving Optical Character

Recognition of Finnish Historical Newspapers with a Combination of Fraktur & Antiqua

Models and Image Preprocessing,” Proc. 21st Nord. Conf. Comput. Linguist., no. May,

pp. 23–24, 2017.

[2] R. Holley, “How good can it get?: Analysing and improving OCR accuracy in large

scale Historic Newspaper Digitisation Programs,” D-Lib Mag., vol. 15, no. 3–4, pp. 1–

13, 2009, doi: 10.1045/march2009-holley.

[3] P. Thompson, J. McNaught, and S. Ananiadou, “Customised OCR correction for

historical medical text,” in 2015 Digital Heritage, Sep. 2015, pp. 35–42, doi:

10.1109/DigitalHeritage.2015.7413829.

[4] T. Blanke, M. Bryant, and M. Hedges, “Ocropodium: Open source OCR for small-scale

historical archives,” J. Inf. Sci., vol. 38, no. 1, pp. 76–86, 2012, doi:

10.1177/0165551511429418.

[5] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 4th ed. Pearson, 2018.

[6] A. Telea, Data Visualization, 2nd ed. A K Peters/CRC Press, 2014.

[7] N. Otsu, “A Threshold Selection Method from Gray-Level Histograms,” IEEE Trans.

Syst. Man. Cybern., vol. 9, no. 1, pp. 62–66, Jan. 1979, doi:

10.1109/TSMC.1979.4310076.

[8] “tesseract-ocr/tesseract: Tesseract Open Source OCR Engine (main repository).”

https://github.com/tesseract-ocr/tesseract (accessed May 18, 2021).

[9] R. Smith, “An Overview of the Tesseract OCR Engine.” Accessed: May 27, 2021.

[Online]. Available: http://code.google.com/p/tesseract-ocr.

[10] “Fonts for Tesseract training | tessdoc,” Github. https://tesseract-

ocr.github.io/tessdoc/Fonts.html (accessed May 27, 2021).

[11] “Improving the quality of the output | tessdoc,” Github. https://tesseract-

ocr.github.io/tessdoc/ImproveQuality.html#dictionaries-word-lists-and-patterns

(accessed May 18, 2021).

[12] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognit. Lett., vol. 27, no. 8,

pp. 861–874, Jun. 2006, doi: 10.1016/j.patrec.2005.10.010.

[13] “Classification: Precision and Recall | Machine Learning Crash Course,” Google.

https://developers.google.com/machine-learning/crash-course/classification/precision-

and-recall (accessed May 27, 2021).

[14] “About - OpenCV.” https://opencv.org/about/ (accessed May 27, 2021).

[15] “scikit-image: image processing in Python — skimage v0.18.0 docs,” Github.

https://scikit-image.org/docs/stable/overview.html (accessed May 27, 2021).

[16] “pytesseract · PyPI.” https://pypi.org/project/pytesseract/ (accessed May 27, 2021).

[17] O. Joshua, T. Ibiyemi, and B. Adu, “A Comprehensive Review On Various Types of

Noise in Image Processing,” Int. J. Sci. Eng. Res., vol. 10, no. November, pp. 388–393,

2019.

[18] U. Garain, A. Jain, A. Maity, and B. Chanda, “Machine reading of camera-held low

quality text images: An ICA-based image enhancement approach for improving OCR

accuracy,” Proc. - Int. Conf. Pattern Recognit., pp. 1–4, 2008, doi:

10.1109/icpr.2008.4761840.

[19] C. H. Keerthana, P. S. S, S. S. Pai, V. A. Meda, and M. D. T H, “Character Recognition

of Handwritten Text Using Machine Learning and Image Processing,” J. Opt. Commun.

Electron., vol. 5, no. 2, pp. 11–16, 2019, doi: 10.5281/zenodo.2705098.

[20] B. Altinoklu, I. Ulusoy, and S. Tari, “A probabilistic sparse skeleton based object

detection,” Pattern Recognit. Lett., vol. 83, pp. 243–250, Nov. 2016, doi:

10.1016/j.patrec.2016.07.009.

[21] Xiang Bai, Xinggang Wang, L. J. Latecki, Wenyu Liu, and Zhuowen Tu, “Active

skeleton for non-rigid object detection,” in 2009 IEEE 12th International Conference on

Computer Vision, Sep. 2009, no. November, pp. 575–582, doi:

10.1109/ICCV.2009.5459188.

