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Abstract
River flooding and urbanization are processes of different character that take place worldwide. As the latter tends to make
the consequences of the former worse, together with the uncertainties related to future climate change and flood‐risk
modeling, there is a need to both use existing tools and develop new ones that help the management and planning of
urban environments. In this article a prototype tool, based on estimated maximum land cover roughness variation, the
slope of the ground, and the quality of the used digital elevationmodels, and that can produce flood ‘uncertainty zones’ of
varying width aroundmodeled flood boundaries, is presented. The concept of uncertainty, which urban planners often fail
to consider in the spatial planning process, changes from something very difficult into an advantage in this way. Not only
may these uncertainties be easier to understand by the urban planners, but the uncertainties may also function as a com‐
munication tool between the planners and other stakeholders. Because flood risk is something that urban planners always
need to consider, these uncertainty zones can function both as buffer areas against floods, and as blue‐green designs of
significant importance for a variety of ecosystem services. As the Earth is warming and the world is urbanizing at rates and
scales unprecedented in history, we believe that new tools for urban resilience planning are not only urgently needed, but
also will have a positive impact on urban planning.
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1. Introduction

Flooding is the natural hazard that historically has had
the highest costs in terms of both economic impact and
human deaths (Berz et al., 2001). Using the Emergency
Events Database (http://www.emdat.be), de Brito and
Evers (2016) concluded that between 2000 and 2014,
floods were the most frequent natural disaster world‐

wide causing at least 85,000 fatalities, which had an
impact on the wellbeing of about 1.4 billion people, and
were associated with a total cost equivalent to USD 400
billion in damage.

Among the different types of floods, e.g., coastal sea
and pluvial floods, this article will focus on urban river
floods, as rivers are key features of many urban areas
around the world. This is a major problem especially in
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coastal lowlands (Eldho et al., 2018). Cities and mega
urban agglomerations that occupy delta landscapes typ‐
ically become increasingly flood prone due to the mul‐
tiple processes of climate‐change driven flow‐frequency
changes, sea‐level rise, and subsidence of land when
upstream dams are hindering sediment transport and
wetlands are converted to urban land (Bren d’Amour
et al., 2017; Syvitski et al., 2009). While urban flood‐
ing cannot be entirely prevented, the losses that have
occurred could be dealt with by planning authorities
applying different flood riskmanagement strategies such
as flood risk prevention, flood defense, flood risk mit‐
igation, flood preparation, and flood recovery (Hegger
et al., 2016).

The vicinity of rivers has historically been attractive
for urban development (Montz, 2000), as they provide
transport possibilities, food, water for drinking and for
irrigation, as well as numerous kinds of cultural ecosys‐
tem services, among other benefits. Between 1960
and 2017, global urbanization increased the number of
urbanites from 1 to 4 billion (Ritchie & Roser, 2018),
where a large part of the increase has taken place on
river floodplains (Du et al., 2018). Besides changes as
precipitation patterns and development practices, over
time this has led to a greater share of the global popula‐
tion becoming increasingly exposed to floods (Głosińska,
2014). As the effects of river floods are well known and a
variety of solutions of both technical and strategic nature
are available, solving the river flood problem may sound
like an easy task. However, history has shown that the
human practice of building in low‐lying floodplains or
close to rivers is not easy to change. Although previous
research does discuss how the risk of flooding can be
better tackled, researchers have demonstrated that in
many parts of the worldmaterial damage and death tolls
caused by river floods continue to be high (Kundzewicz
et al., 2018).

Human‐induced global warming has taken place dur‐
ing the last 50 years (Intergovernmental Panel on Climate
Change [IPCC], 2018). This climate change is often
thought to equalwarmerweather and greater risks of for‐
est fires or increased sea levels due to glaciermelting and
thermal expansion of sea water. However, due to chang‐
ing patterns of the weather systems or changes in the
snow–melt cycles, the effectsmay aswell bring increased
rates of rainfall and surface runoff. Predicted future cli‐
mate change will lead to changed river flow frequencies,
which means that the 100‐year flood will be smaller in
some rivers, but larger in others, for instance (Arheimer
& Lindström, 2015). Hence, there is great underlying
uncertainty of what the future will bring in terms of mag‐
nitude of flood flows, as well as an uncertainty inher‐
ent in numerical flood risk modeling and mapping pro‐
cedures (e.g., Merwade et al., 2008).

Previously, much of the urban research has focused
on the sustainability of urban development. Around
the turn of the last millennium, parts of this research
began focusing on resilience (cf. Meerow et al., 2016).

An early treatise of urban resilience and hazards in gen‐
eral was written by Godschalk (2003) with the aim to
start resilient cities initiatives. Since then, attention has
been paid particularly to flood hazards resilience. Liao
(2012) puts forward how the resilience concept can be
used to overcome the conventional view that cities need
flood control as the only flood management tool, and
instead adhere to flood adaptation strategies. Similar rea‐
soning is found in Wenger (2017), who found evidence
of a shift from structural mitigation and levee depen‐
dency to support for alternatives such as ecosystem‐
based measures and development relocation. Bergsma
(2017) further argues that the traditional hard engineer‐
ing kind of solutions should be complemented with
local‐oriented spatial planning expertise. Although the
hydraulic models have proved very valuable in many
cases, there is plenty of evidence that they and their
related flood risk maps are uncertain; from model input,
over model structure and parameterization, to model
output (Di Baldassarre &Montanari, 2009; Lim & Brandt,
2019a). Similarly, Meerow et al. (2016) found evidence
of an increase in academic resilience research, especially
with respect to climate change, that uncertainty and
risk were acknowledged as potential drivers for creat‐
ing urban resilience. Therefore, drawing on Bertilsson
et al. (2019), who point out that an intelligent urban
drainage design used together with emerging resilience
approaches may be an interesting way forward, we con‐
clude that there may be new approaches that can go
beyond and increase the benefits of these hydraulicmod‐
els in relation to spatial planning and resilience. As it is
obvious that urban planners cannot any longer ignore
risks associated with urban floods, neither should they
ignore the uncertainties related to flooding.

Most of today’s urban areas have been developed in
a climate different thanwhat is expected in a near future,
with only relatively limited considerations that climate
change will impact both the magnitudes and the fre‐
quencies of river floods. We therefore argue herein that
to benefit resilience thinking, current practices in urban
planning need to be expanded, for example by develop‐
ing new software tools. Our present and future urban
management and development plans need not only to
consider the uncertainty related to the wider effects of
climate change, but also the uncertainty related to poten‐
tial local impacts (Meerow & Woodruff, 2020). However,
in practice, uncertainty is often seen as something dif‐
ficult to deal with and often leads to maladaptive plan‐
ning (Moroni & Chiffi, in press; Pappenberger & Beven,
2006). Hence, in this article an attempt will be made to
propose a tool that can help using uncertainty as a lever‐
age, or as a management opportunity, which together
with resilience thinking may increase the chances of cre‐
ating not only flood‐resilient urban environments, but
also resilient cities in a more general sense.

The aim of this article is therefore to increase the
opportunities of reducing flood risks by using uncertainty
as an argument and a tool to create more resilient urban
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areas. If this takes place, a number of other positive
effects are then also possible, such as higher quality of
urban ecosystem services for human wellbeing. In pur‐
suit of this aim, the objectives of the article are: 1) to
present a prototype flood‐inundation mapping tool that
creates a buffer zone of varying width around a river
based on uncertainties associated with the digital eleva‐
tion model (DEM) and land cover roughness; and 2) to
discuss how this tool can benefit resilience thinking in
urban planning.

2. Previous Research on Urban Resilience With Respect
to Floods

2.1. Urban Resilience

The concept of resilience can be traced back to Holling’s
(1973, 1986) works. He defined resilience as “the abil‐
ity of a system to maintain its structure and patterns of
behavior in the face of disturbance”; something that is
connected to, but different from, stability, which “empha‐
sizes equilibrium, low variability, and resistance to and
absorption of change” (Holling, 1986, pp. 296–297;
cf. Folke et al., 2003, and Marchese et al., 2018, for
a thorough treatise on the sustainability and resilience
concepts). Meerow et al. (2016, p. 45) further add that
urban resilience needs the ability “to adapt to change,
and to quickly transform systems that limit current or
future adaptive capacity.” From there, one definition has
emerged that particularly focuses on resilience to nat‐
ural disasters, viz. “the ability to prepare and plan for,
absorb, recover from, and more successfully adapt to
adverse events” (National Research Council, 2012, p. 1),
which is particularly relevant for the topic of this article.
Resilience thinking has therefore become a fundamental
framework for understanding complex adaptive systems,
from ecosystems to cities and cells and to economic sys‐
tems (Levin, 1999). In ecology, the concept of resilience
describes the capacity of an ecosystem to absorb distur‐
bance and reorganize while undergoing change so as to
retain essentially the same function, structure, identity,
and feedbacks (Holling, 1973). Central for an understand‐
ing of resilience thinking is an understanding of what role
disturbance plays for system renewal over space and time
(Colding et al., 2003). Disturbances such as fires, heavy
storms, and floods are considered to be a natural part of
the development of many ecosystems, and the renewal
capacity of ecosystems depends on natural perturbations
(Holling, 1986); the trick is tomake sure that the intensity,
duration, and periodicity of a particular disturbance are
not too high, long‐lasting, and too frequent in order to
avoid making them unmanageable (Connell, 1978).

Many human communities adapt to and even
depend on flooding for their survival, such as for irriga‐
tion and fertilization of food cultivars and crops (Colding
et al., 2003). The knowledge gained of flood manage‐
ment practices that promote resilience have enabled
some communities to adapt to floods and their conse‐

quences and even taking advantage of this process. This
is indicative of that the perception of disturbance as a
risk also can be seen as a cultural phenomenon, where
frequent natural disturbances force local‐level manage‐
ment practices into action (Colding et al., 2003). This is
in line with Zevenbergen et al. (2020), who argue that
resilience in flood risk management entails that societies
should learn to live with floods and not seek to entirely
avoid them. However, flooding is commonly perceived as
a nuisance in many societies, and decision makers often
seek to command and control it in an attempt to entirely
prevent the disturbance. Therefore, flood defense pro‐
vides a key resilience strategy with the aim to reduce
the probability of flooded areas through infrastructural
measures such as through dikes, dams, and different
kinds of embankments (Hegger et al., 2016). Such design
and operation flood‐control measures of flood resilient
technologies have proven valuable (Zevenbergen et al.,
2020), but engineering resilience measures risk altering
natural disturbance regimes in such a way that pulse
events are transformed into persistent disturbance or
even chronic stresses (Nyström et al., 2000). Engineering
resilience also presumes that the system remains con‐
stant over time, disregarding the fact that extreme dis‐
turbance events may have profound impacts on the sys‐
tem’s functioning (Zevenbergen et al., 2020).

Social‐ecological resilience involves the interaction
between human societies and natural systems. Such
resilience in a flood risk management context calls for
an adaptive approach in recognition of that conditions
changeover space and time. Adaptability refers to human
actions for sustaining critical functions on which humans
depend and is a process of deliberate change in antic‐
ipation to external stresses (Folke, 2016). The adapt‐
ability concept in resilience thinking therefore captures
“the capacity of people in a social‐ecological system
to learn, combine experience and knowledge, innovate,
and adjust responses and institutions to changing exter‐
nal drivers and internal processes” (Folke, 2016, p. 44).
By virtue of technological sophistication and the oppor‐
tunity of advanced nations to invest in costly exogenous
inputs, flood risk management in urban areas may be
imperiled by focusing too narrowly on flood control by
way of the construction of levees. It risks neglecting
aspects such as coordinated investment in flood retain‐
ing activities and allowing seasonal flooding of catch‐
ment by, for example, providing compensation to land
use that may dampen flood peaks (Johannessen, 2015).
Abandoning building schemes entirely in flood‐prone
land may therefore be a sensible urban planning strategy.
Findings by Lewis et al. (2017) in relation to resilience
management following the catastrophic flooding during
Hurricane Katrina in 2005 indicate that resettlement and
landscapemanagement policies such as flood risk preven‐
tion are important resilience measures. For boosting the
adaptive capacity in social‐ecological systems, Folke et al.
(2003) therefore proposed four key features of social‐
ecological resilience‐building; these include: learning to
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live with change and uncertainty, nurturing diversity for
reorganization and renewal, combining different types of
knowledge for learning, and creating opportunity for self‐
organization toward social‐ecological sustainability.

Knowledge building is integral to strengthening
resilience among people by informing them of the risks
involved in flooding through a risk communication pro‐
cess. The imparted information during risk communi‐
cation forms an important component of the knowl‐
edge base when dealing with hazards and risks, as it
allows the general public, communities, organizations,
and decision‐makers to better comprehend risk, and
to plan and take actions that can reduce costly conse‐
quences of flood disasters (cf. Lewis & Ernstson, 2019).

2.2. Natural Hazard Risk Communication

Risk communication is a significant part of the risk man‐
agement process to cope with natural hazards, mitigate
risks and impacts of disasters, as well as to reduce vulner‐
abilities. At the same time, it helps planners and decision‐
makers generate strategies that can be adopted to make
communities sustainable and resilient (Pine, 2015). One
of the important roles of risk communication in disaster
mitigation is raising people’s awareness about their expo‐
sure and vulnerability to a certain hazard, and informing
them of how they can protect themselves in case the
risks materializes into a disaster (Dransch et al., 2010).

Flood hazard and risk maps are the most com‐
mon tools used in flood risk communication processes.
Mapping as a whole provides a framework for examin‐
ing, determining, and visualizing areas that are under
potential threats of a natural hazard (Pine, 2015). Within
the flood risk management context, risk communication
aims to prepare people for the possibility of floods, so as
to reduce the possible flood impacts to them (Rollason
et al., 2018), thereby promoting resilient behaviors in
terms of preparedness. Hazard maps visualize the geo‐
graphical extents, depths, or velocities of floods at a
given risk probability, while risk maps combine the for‐
mer with the possible economic, social, environmental,
or cultural consequences of flooding (van Alphen et al.,
2009), i.e., taking into account the hazard and vulnerabil‐
ities as it visualizes the scale of the risk.

Recently, the focus on flood risk communication
through maps has shifted to flood uncertainty map‐
ping and visualization, as it is recognized by several
researchers that there will always be associated uncer‐
tainties in flood maps. According to Pang et al. (1997),
the main purpose of visualizing uncertainties is to medi‐
ate information inaccuracies, so as to increase under‐
standing of the information and its limitations, as
well as to facilitate decisions. In flood modeling, there
are different approaches in quantifying uncertainties
(cf. Section 2.3) and showing them on maps. Monte
Carlo simulation results, for instance, where model
inputs are varied to produce different outputs, are often
weighted and aggregated into a single map, visualized

as fuzzy information indicating the probability of the
flood (Di Baldassarre et al., 2010) or the degree of uncer‐
tainty present in the flood map (Horritt, 2006). Results
from fewer simulations are shown by overlaying differ‐
ent results to see how the flooding extents vary as effect
of, for example, the resolution, Manning’s roughness, or
the model used (Lim & Brandt, 2019b). Using a multiple
map display to show the various flood maps generated
for each modeling is an alternative visualization method
if visual overlay is impossible (Horritt, 2006; Lim&Brandt,
2019b; Saksena & Merwade, 2015). Hence, flood uncer‐
tainty communication through maps can help improve
knowledge of the possible miscalculations of risks associ‐
ated with flooding, by being able to recognize the limita‐
tions of the presented information. Such acknowledge‐
ment of the inevitability of uncertainty in flood maps
due to the unpredictability of the flood event allows an
adaptive way of dealing with the unknowns, which is an
important concept in resilience, and in increasing adap‐
tive capacity (Restemeyer et al., 2018). Furthermore,
as Thorne et al. (2018) highlight, to really increase the
implementation of blue‐green infrastructure and sustain‐
able flood risk management, not only biophysical but
also social dimensions and political values need to be
identified and managed in the communication process.

2.3. River Flood Modeling and Inherent Uncertainties

All models include weaknesses and flaws to different
degrees, hydraulic models being no exceptions. Even
though new research findings and more powerful com‐
puters have improved the models over the years, their
results are still uncertain. Those uncertainties may
arise from a variety of sources. Input data uncertain‐
ties depend on the raw‐data acquisition instrument’s
accuracy and the processing methods that precedes
the hydraulic modeling. Hydraulic models require topo‐
graphic data, in the forms of DEMs or cross sections (CS),
to derive the elevation values used in the models’ equa‐
tions. Uncertainties in model results as effect of topo‐
graphic data are often caused by the DEM’s quality (Lim
& Brandt, 2019b; Saksena & Merwade, 2015), the geo‐
metric configuration of the CS (Cook & Merwade, 2009),
and the inclusion of buildings and other structures in
the DEM (Koivumäki et al., 2010) or unforeseen events
such as dike and levee breaks (Apel et al., 2008; Ranzi
et al., 2013). Hydrologic data are used for deriving rating
curves, hydrographs, water stages, and depths that are
used as input boundary conditions in the model. Errors
in these can cause errors in the initial discharges/depths,
which in turn cause uncertainties in flow calculations
in the modeling (Di Baldassarre & Montanari, 2009).
Uncertainties in the model are for example affected by
approximationsmade in the equations applied to reduce
computational complexities. Thus, different models can
produce different results (Hunter et al., 2008). Finally,
there is parameter uncertainty, of which the roughness
coefficient is the most important and to which hydraulic
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models are highly sensitive (Lim & Brandt, 2019b). It is
often expressed by the Manning’s n‐value, which is a
measure of the frictional resistance the water experi‐
ences when it flows over channel bed and land. The resis‐
tance varies according to bed material grain sizes, type
and amount of vegetation, presence of bedforms, sin‐
uosity of the river, and so forth. It is usually assigned
based on land cover type and recommended values in
literature. However, its true value is never known, unless
tested at the specific study site. Furthermore, the rough‐
ness also interacts with the DEM resolution, the bound‐
ary conditions and the discharge used, making its value
difficult to determine.

All sources of uncertainties affect the calculated flow
and hence also the extent of the inundation. How these
uncertainties are dealt with varies. There are both deter‐
ministic and probabilistic approaches available (Beven,
2009; Di Baldassarre et al., 2010), where a common
way to understand, estimate, or even reduce the degree
of uncertainty is by performing a sensitivity analysis
(Pappenberger et al., 2008). With respect to impact on
the positional quality of the modeled flood boundary,
the estimation of channel bed and floodplain roughness
together with the quality of the DEM stand out as cru‐
cial for successfulmodeling (Lim&Brandt, 2019a, 2019b;
Saksena & Merwade, 2015). Roughness estimation is
usually handled through calibration, so that modeled
flood boundaries match field observations as close as
possible, and by varying the roughness, uncertainty esti‐
mates can be derived. The quality of the DEM, on the
other hand, is not that easy to vary. There is consen‐
sus that high‐resolution DEMs provide the best input for
hydraulic modeling, and that if lower resolution DEMs
are used, the uncertainty of the flood predictions corre‐
spondingly increases. However, besides resolution, the
terrain slope also affects the uncertainty, as flat areas
produce more uncertain results than steeper ones. But
the slope depends not only on the DEM’s cell distance;
it is also related to the quality of each measured eleva‐
tion point in the input data. This quality and estimated
uncertainty heavily depends on land cover type, the sen‐
sor quality, and the distance between the sensor and
the ground. Hence, simulating different quality of DEMs
makesmodeling significantlymore difficult and time con‐
suming compared with simulating roughness variation,
where the roughness value can be changed easily for
large geographical areas. Klang and Klang’s (2009) study,
simulating different airplane altitudes of Lidar data gath‐
ering, clearly shows the complexity of producing such
DEMs. The next stage in uncertainty estimation would
then involve using each DEM in the hydraulic modeling
process to add further uncertainties. Due to the amount
of work required to produce DEMs of truly different qual‐
ities, the normal approach to handle DEM uncertainty is
to equate it with cell resolution. To overcome this uncer‐
tainty estimation problem, Brandt (2016) used Klang
and Klang’s (2009) DEMs and developed an empirical
equation for one‐dimensional (1D) flood models, where

the disparity distance between modeled and true flood
boundary is a function of the perpendicular terrain slope,
the DEM resolution, and the percentile of interest (i.e.,
confidence level). Using this approach, it is then possible
to produce uncertainty zones on both sides of the origi‐
nally modeled crisp flood boundary line without needing
to first create several DEMs of different qualities.

3. Development of a GIS Tool to Create Uncertainty
Zones Around Modeled Flood Boundaries

3.1. Disparity Distance (Dd) Algorithm

Brandt’s (2016) algorithm (cf. Brandt & Lim, 2016; Lim,
2018) creates uncertainty zones around predicted flood
boundaries from 1D hydraulic simulations. Whereas
uncertainty zones usually are produced by probabilis‐
tic models (Merwade et al., 2008), disregarding the ter‐
rain slopes, the uncertainty zones here are based on the
characteristics and quality of the used DEM. The algo‐
rithm’s main assumptions are: 1) the disparity between
model and reference data increases as the slope val‐
ues decreases (and vice versa); and 2) lowering the
DEM’s resolution further increases this disparity. Thus,
the disparity becomes a function of the slope perpen‐
dicular to the flow (S), DEM resolution (𝛿), and the
level of confidence used for the uncertainty assessment
(P; Equation 1).

Dd = [𝛿0.9700.000792P1.303] S[0.1124 ln (𝛿)+0.0709 ln (P)−1.0064]
(Eq. 1)

Data needed for the algorithm are the modeled flooded
area, a DEM in Triangular Irregular Network (TIN) format,
and CS. The TIN and CS are used to generate sampling
nodes, while CS and flood boundary produce water sur‐
face elevation (WSE) points (Figure 1).

The algorithm proceeds iteratively, node‐by‐node,
for every CS andpart (left or right) of the channel. It starts
by computing the slope and distance between a given
sampled node and theWSEpoint (i.e., where the CS inter‐
sects the flood boundary). Dd is then calculated and eval‐
uated if it exceeds the actual distance. When exceeded,
the computation stops at this node. The node’s eleva‐
tion information is recorded as the inner or outer (i.e., on
the channel or land side of the modeled flood boundary,
respectively) uncertain height value for that CS and chan‐
nel part, and these are assigned to the sampled nodes.
These uncertain elevation values are afterwards used to
generate one inner and one outer uncertain elevation
TIN, which are compared with the original DEM to iden‐
tify flooded, uncertain, and non‐flooded areas (Figure 2).

3.2. Tool Development

The geographical information system (GIS) tool for delin‐
eating uncertainty zones around amodeled flood bound‐
ary was created with ArcGIS model builder and Python
scripting language. The tool consists of two parts: 1)
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Sampled nodes

N

Cross-sec on (CS)

TIN model’s edges

Modeled flooded area

10 m

Flood boundary (WSE points)

Figure 1. Sampled nodes (black points) are derived by intersecting the TIN model’s edges and the CS. WSE points (red
triangles) are derived where the flood boundary intersects the CS.

preparation of the data to be used for the algorithm
(Figure 3); and 2) implementation of the uncertainty
algorithm and mapping (Figure 4). In the preparation
part, the flood boundary result from a previous 1D
hydraulic simulation, the CS data with the WSE infor‐
mation, stream centerline, flowpaths, and a TIN eleva‐
tion model are preprocessed. These are used to derive
points at the flood boundaries intersecting each CS (i.e.,
WSE points), and sampling nodes from the CS intersect‐
ing the TIN model’s edges (Figure 1). Each node is identi‐
fied with the CS number, its part location (left or right) in

the main channel, as well as if it is inside or outside the
flood boundary, using the stream centerline and flow‐
paths datasets. The x, y coordinates and the height (H)
information derived from both datasets are used to com‐
pute the distance (D, Eq. 1 in Figure 3), slope (S, Eq. 2),
coefficient c and exponent z (Eqs. 3 and 4, derived from
the resolution [𝛿] and percentile [P]), and the disparity
distance (Dd, Eq. 5) between the given node and WSE
point. The status of each node is evaluated whether it
is flooded, dry, or uncertain. Afterwards, all nodes are
grouped per CS, part and side, and sorted according to

Compute D
d
 for all sampled nodes. Go node-by-node and check if D

d
 is exceeded.

If the node’s D
d
 is exceeded, assign inner/outer uncertain eleva on value to

 the height of this node. 

Assign the rest of nodes, from the given cross-sec on, part and loca on with

the uncertain eleva on values derived from the previous step. 

Create an inner and an outer uncertain eleva on models based on the uncertain

eleva on values. 

Compare the inner and outer uncertain eleva on models with the DEM.

Assign areas as flooded/uncertain/not flooded.

Calculate slope (S) and distance (D) between sampled nodes and WSE.

Figure 2. A simplified workflow of the Dd algorithm by Brandt (2016).

Urban Planning, 2021, Volume 6, Issue 3, Pages 258–271 263

https://www.cogitatiopress.com


distance. Tables are then created and named based on
the groupings. Prior to the implementation of the algo‐
rithm, two empty tables that contain the computed outer
and inner uncertain height values are created.

The algorithm (Figure 4) starts with the table con‐
taining nodes from the first CS’s left part and outer side.
It begins the row iteration with the node having the clos‐
est distance from theWSE point. If the status of this node
is uncertain, and the next adjacent node (k+1) has certain
status, the algorithm gets the entire row information for
the next node (k + 1) with the certain status and append
this on the outer uncertain height table. This initially rep‐
resents the outer uncertain elevation value for the spe‐
cific CS and part. Otherwise, the iteration continues to
the next row, until the condition is met. The algorithm
then proceeds to the next table containing nodes in the
inner side of the same CS and part. When the algorithm
has finished appending the preliminary inner and outer
uncertain elevation values in the tables representing all
CS, the height (H) information of the nodes is assessed
for wall effect, using Eq. 6 for all outer nodes, and Eq. 7
for all inner nodes. If Hout < H and Hin > H, then the Hout

and Hin values are assigned to the node, otherwise, the
H of the node is used.

The computed uncertainty information is then joined
with the original nodes data based on the CS and part ID.
These new elevation values are used to create TIN mod‐
els representing the water surface of inner and outer
uncertainty limits. The created TINs are subtracted from
the original TIN elevation model to determine whether
the ground is flooded, uncertain, or not flooded. This
is done through an overlay of polygons representing
these areas.

4. Using Uncertainty Zones as a Resilience Tool

4.1. Study Area, Data, and Hydraulic Model Used

Earlier floodmodeling results by Lim (2011) were used to
test the tool. The study area is located along the Testebo
river, in the northern parts of the city of Gävle, Sweden.
The area consists of arable and pasture lands with sur‐
rounding residential areas, some which are relatively fre‐
quently flooded. The entire river is about 85 km long,

Nodes

P

Flood polygonCross-sec on
Triangular Irregular

Network model

Sample points at

intersec ons

Water Surface

Eleva on points

Get intersec ons

Create edges

Stream centerline

Flowpath

ComputeD (Eq. 1)ComputeD (Eq. 1)

Compute S (Eq. 2)Compute S (Eq. 2)

ComputeComputeCompute

Assign node status:

If: S > 0 AND D
d
< D = Dry

If: S < 0 AND D
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Figure 4. Implementation of the algorithm and generation of the uncertainty zone.

stretching from Åmot in Ockelbo municipality southeast
to Gävle, and has a mean annual discharge of 12.1 m3/s.

The 1D HEC‐RAS steady‐flow model (Hydrologic
Engineering Center, 2008, 2010) was used for the
hydraulic simulations. That means discharge, velocity
and depth all are constant at each CS. 1D models also
consider flows to be unidirectional (parallel to the chan‐
nel). The topographic data used for the modeling were
produced by combining point cloud Lidar data (2.1 m res‐
olution) with bathymetric data into a TIN. The water dis‐
charge usedwas 160m3/s, corresponding to the big flood
event in 1977. Lim’s study ran 500 combinations of chan‐
nel (ch) and floodplain (fp) Manning’s n in a Monte Carlo

simulation to produce multiple flood maps (Lim, 2011).
Two of the results used low (nfl = 0.030 and nch = 0.026)
and high (nfl = 0.098 and nch = 0.049) Manning’s n,
whichwere used as input data for the newGIS tool. These
results were then rasterized using a cell size of 5 m.

4.2. Testing the Resilience Tool

The uncertainty zone produced by the new GIS tool is
based solely on the quality of the DEM and the ter‐
rain slope characteristics. The previous study by Brandt
and Lim (2016) shows, however, that the true flooded
area sometimes may be considerably outside or inside
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this uncertainty zone. To enable capturing some of this
additional uncertainty, it seems most relevant to include
an estimate of roughness uncertainty. Results produced
by the 1D hydraulic model with low Manning’s n gen‐
erate smaller flood areas, which are often underpre‐
dicted, whereas highManning’s roughness produces big‐
ger inundation areas that overestimate the flooding.
Therefore, a wider uncertainty zone can be created by
executing two runs in the hydraulic model, one with
minimum and one with maximum estimated roughness,
respectively, and feeding these into the new GIS tool.
The inner uncertainty boundary is then produced from
the low‐roughness model, while the outer boundary
comes from the high‐roughness model (Figure 5).

By combining the uncertainty of roughness, quality
of DEM, and terrain slope, the probability of encapsulat‐
ing true flood boundaries within the modeled extended
uncertainty zone increases. As urban planning needs to
consider the spatial extent and variation of the rivers,
which can be directly linked to the uncertainty zone out‐
put of the new tool, there is an opportunity not only to
link this uncertainty directly to resilience management
and approaches (cf. Ashley et al., 2020), but also to facil‐
itate resilience thinking and communication.

5. Discussion and Conclusion

New insights in urban sustainability and resilience have
caught the interest of researchers to use the risk of nat‐

ural hazards as a driver and opportunity to promote
resilience thinking and management. Hence, a GIS tool
that emphasizes uncertainty in flood modeling has been
developed to advance such use of risk (i.e., comprising
the probability of an adverse event) further. During the
planning process, areas next to a river that are consid‐
ered as threatened to be flooded are usually visualized
as buffer zones of fixed width or having risk up to a
certain WSE. Very rarely, due to their complexity and
difficulty to perform, probabilistic models of flood risks
are used. However, those models never include the ter‐
rain variation (slope characteristics) to our knowledge.
By using Brandt’s (2016) algorithm, though, it is possible
to incorporate both the quality of the DEM and the ter‐
rain slope for estimating the uncertainty. The tool runs in
the ArcGIS environment and works with new or already
existing hydraulic model results to create uncertainty
zones of varied width around a modeled flood bound‐
ary. One specific advantage of the tool is that it does
not require extensive knowledge in GIS and hydraulic
modeling. Another is that it will work for both rural and
urban environments, provided the hydraulic modeling
as such can be justified. By running the tool twice, for
hydraulic model runs of low and high bed roughness,
respectively, the tool will produce uncertainty zones that
are wide enough to capture most of the uncertainty
of the modeled flood’s spatial extent. If the modeler
wants to have extra uncertainty, the preceding hydraulic
model can be run in a ‘what if’ mode, i.e., by including

(a)

300 m

1977 flood
extent

Certain to be
flooded areas

Uncertain to
be flooded
areas

N

Modeled result
Outer uncertainty
boundary

Inner uncertainty
boundary

(b) (c)

Figure 5. Example of model results for the Testebo river produced by the new GIS‐tool. (a) Uncertainty zones from
low‐roughness 1D model; (b) uncertainty zones from high‐roughness 1D model; and (c) resulting increased uncertainty
zone serving as a resilience zone.
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variations of infrastructure or possible levee breakages.
However, there is the tradeoff that with larger uncer‐
tainty zones municipalities may be prevented from max‐
imizing land utilization in areas with low risk probabil‐
ity, which could lead to loss of revenues. Nevertheless,
with the uncertainties in magnitudes and frequency of
huge flood events, it still remains a possibility that these
low‐risk areas will be flooded in the future. Thus, urban
planners can use the tool’s result not only for discussing
resilience; it should also resort to ways on how they
can utilize the extended uncertainty zones to projects
that are resilient and adaptive to flooding consequences,
especially with respect to climate change. We argue that
whether the uncertainty is modeled with high precision
is not the most important factor, but rather whether
blue‐green areas are included to a sufficient degree in
the uncertainty zones generated. They can then function
as proper and valuable resilience measures, not only for
urban planning and management processes, but also for
floodplain ordinances.

Despite alarming reports by the IPCC about height‐
ened intensity and frequency of storms and flooding
(IPCC, 2014), many urban areas are still planned as if cli‐
mate change does not occur. Making decision‐makers
understand that climate change has and will have conse‐
quences is a huge challenge. Often planners completely
rely on existing engineering solutions, which to a large
extent ignore the natural variation of earth surface pro‐
cesses and climate change, and see the riverine envi‐
ronment just as an attractive zone to build new houses.
Further, as maps are generally used as deterministic
background documents, we believe there is a need to
visualize zones of uncertainty in maps. These should be
used both for policies and solutions that mitigate risk,
and simultaneously should aim to provide citizens with
a plurality of ecosystem services for human wellbeing.
Hence, such zones of uncertainty in maps concurrently
provide decision‐makers with tools to put precautionary
principles in action in urban governance processes. One
reason for this not taking place is probably related to
the fact that decision makers and the public often lack
knowledge and confidence that blue‐green infrastruc‐
ture is vital for building resilience towards climate change
impacts (Thorne et al., 2018). Most people now, how‐
ever, do realize the negative consequences of extreme
floods, and that they might be affected in the future.
This makes the concept of uncertainty a promising tool
for resilience planning of urban areas. If there is a risk
involved, and the size of the area at risk is uncertain,
there should be a fair chance during the planning pro‐
cess that urban planners and decision makers consider
not only the originally modeled extent of a flood event,
but also include an extended area. Reserving and protect‐
ing such areas from undesired urban development will
automatically provide necessary resilience‐rooms for the
dynamic rivers. By doing so, there will be a number of
positive side effects. In addition to a decrease of the neg‐
ative consequences of flooding, there will also be easier

access to the river and strengthening of legal rights of
public access for shoreline areas, which simultaneously
may hold richer levels of biodiversity. Uncertainty, as a
planning approach, would enable green city designs and
opportunities for a number of ecosystem services, such
as flood‐dependent agroforestry, and higher possibility
of yielding cultural ecosystem services that promote peo‐
ple’s health. As the UN prospects urban landscapes for
another 2.5 billion people in 2050, amidst oncoming cli‐
mate change (UN‐Habitat, 2016, p. 38), new tools for
urban resilience planning are therefore urgently needed.
Such tools partly need to embrace uncertainty as a strat‐
egy for dealing with flooding.
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