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Abstract: The availability of wireless networked control systems (WNCSs) has increased the interest
in controlling multi-agent systems. Multiple feedback loops are closed over a shared communication
network in such systems. An event triggering algorithm can significantly reduce network usage
compared to the time triggering algorithm in WNCSs, however, the control performance is insecure
in an industrial environment with a high probability of the packet dropping. This paper presents the
design of a distributed event triggering algorithm in the state feedback controller for multi-agent
systems, whose dynamics are subjected to the external interaction of other agents and under a
random single packet drop scenario. Distributed event-based state estimation methods were applied
in this work for designing a new event triggering algorithm for multi-agent systems while retaining
satisfactory control performance, even in a high probability of packet drop condition. Simulation
results for a multi-agent application show the main benefits and suitability of the proposed event
triggering algorithm for multi-agent feedback control in WNCSs with packet drop imperfection.

Keywords: wireless networked control system; distributed event-based state estimation; event-based
triggering; packet drop

1. Introduction

Recent modern communication, as well as its close combination with control, has
direct consequences for the development of advanced wireless networked control sys-
tems (WNCSs) in industry [1]. Consensus problems for controlling multi-agent systems
in WNCSs have been focused on by many researchers in recent years. This interest is
due to the appearance of a diverse group of systems in engineering and science such as
drone swarm, autonomous vehicles and hierarchical production in the industry like steel
production or building automation, and many others [2–4]. Communication networks
in these systems can be used as an essential tool for coordinating the agents together in
interconnected systems to achieve a common goal of the whole system or improve the
system’s overall performance.

Another active research area in WNCSs is the use of event-triggered control (ETC)
instead of time-triggered control (TTC). In the TTC, data are periodically collected from the
sensors and simultaneously sent to the controller. In contrast, in the ETC approach, data
are not periodically collected. Instead, these are determined by an event-triggered system,
in which the feedback loop is closed only when the states or control parameters satisfy a
certain event condition [5].

Such event-triggered control strategies have recently been applied to multi-agent
systems [2–6]. An important aspect of using ETC control strategies on multi-agent systems
is that the subsystems should be coordinated without any extra components such as a coor-
dinator. Furthermore, each agent has only limited access to the sensor information of other
agents due to the limitations of communication capabilities. Based on these circumstances,
a multi-agent system that is controlled through the wireless network requires a distributed
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control law and distributed control methods for designing the individual controllers for
each agent [6].

Figure 1 shows a cyber representation of a multi-agent system which was introduced
in [7]. Agents are connected through a wireless network to implement a cooperative control
with the multiple agents. The decentralized control method used to converge the consensus
problem on each agent is the model predictive controller (MPC) with a state observer based
on a Kalman filter (KF). Due to the nature of WNCSs, which can be severely affected by
the imperfections of wireless communications, a predictive controller is one alternative to
overcome the shortcomings of such systems.

Figure 1. Cyber representation of a multi-agent system introduced in [7].

The main problem in multi-agent systems is structuring the communication between
the agents to ensure that they eventually take on a common state, track a synchronous
path or achieve a joint task. We mainly focus on a multi-agent system in which they have
mutual dependencies on each other, and they need to update their states in each process.
However, due to the wireless network communication and the fact that the nodes use the
shared bandwidth, the communication resource should be efficiently used. Thus, each
agent should only use the communication resource when necessary. On the other hand,
due to wireless communication, data transmission between the agents is often affected
by environmental parameters such as packet drops, communication delay, and packet
disorder, which should be considered in the controller’s design.

Developing such an event-based control system considering packet drop imperfection
between the agents in a multi-agent system is the focus of this paper. The event-based
method for dynamic state estimation has great importance in such systems. For example,
Kalman filtering is one of the most widely used methods for state estimation in linear
stochastic systems, so the Kalman filter (KF) implementation in the event-based approach
with the presence of wireless communication imperfections like packet drops is of particular
importance [8–10].

The main research question in this work is concerned with the design of the event
triggering law using event-based state estimation in the presence of packet drop in WNCSs,
which indicates when sending new data is necessary. This work uses distributed event-
based state estimation (DEBSE) to estimate and predict the agents’ states in a multi-agent
system. Similar approaches were developed for DEBSE without regarding the shortcomings
of a wireless network in prior works [11–15].

The remainder of the paper is organized as follows. First, a brief review of the literature
regarding this paper and related works are presented in Section 2. Then, the basic idea and
related theory are discussed in Section 3. Section 4 is dedicated to defining the key variables
and notation conventions that are used in this paper. Subsequently, Section 5 describes
the system model of the multi-agent system in which the agents have interconnections in
their process with each other and formulate the event triggering solution. Then, Section 6
is dedicated to illustrating the behavior of the proposed event triggering algorithm in one
application and divided into two parts: modeling a vehicle platooning as an application
and the simulation platform. Finally, Section 7 demonstrates the simulation results and the
benefits of the proposed event triggering algorithm.
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2. Related Work

The importance of a network control system and achieving high-performance control
on a resource-limited system has been recently pointed out by many researchers. For ex-
ample, this can be seen in [2–4,8] for the control of a multi-agent system via event-based
communication, in [9–13] for Kalman filtering as an estimator to design an event-based
state estimation system, and in [16–20] for optimal state estimation in the presence of
packet drop in the networked control system.

State estimations and predictions are the main components of an event-based triggering
system, which mostly compute the states in the sense of minimum mean square error [21,22].
Various studies have been proposed to develop a different type of Kalman filtering in the
presence of wireless communication imperfection, for example, in the presence of data
packet drops [16,23–25]. Due to the distributed systems in WNCSs, recent studies have
been focused on the study of distributed Kalman filtering, where each agent in a WNCS
can compute local states’ estimation and prediction via Kalman filtering based on its own
sensor measurements and the information received from other agents [26–31]. Several
algorithms based on the consensus problem were proposed in these research papers. Most
of the algorithms for the Gaussian systems are based on different types of KF, which are
used to design new methods for the event-based triggering algorithm in WNCS.

In the ETC approach, continuous sampling from the agents has always been required
to determine whether the ET condition has been reached. In order to eliminate such
limitations, the concept of self-triggered control has been proposed [32,33]. With this
approach, it is possible to predict the need for sampling in a future instant and determine
the next triggering time at the previous trigger. However, in both approaches, the trigger
interval must have a lower bound to exclude the Zeno behavior. It is a phenomenon in a
hybrid system and happens when an infinite number of discrete transitions occur in a finite
time interval. To overcome such problems, periodic event-triggered control is proposed for
the synchronization for a discrete-time linear stochastic dynamic system. Various research
studies on periodic event triggering for consensus problems in multi-agent systems were
discussed in [34,35].

Various control design methodologies have been proposed for the consensus problem
of networked multi-agent systems. For example, this can be seen in [36,37] for the state
feedback control of a multi-agent system in the event of data packet drops, and in [38,39]
for a distributed model predictive control algorithm for heterogeneous multi-agent systems
with directional and unidirectional topology. Wang, in [40], presented an event-triggered
consensus strategy with state feedback for a linear multi-agent system, where random
packet losses were taken into account.

To the best of our knowledge, few researchers have proposed DEBSE with a state
feedback control of multi-agent systems and none of the mentioned references considered
the new approach which is the subject of this article, where the event triggering algorithm
is formulated as two parallel decision problems with the use of state estimation and
prediction. The concept of triggering decisions in the presence of data packet drops in
networked multi-agent systems is novel.

3. Basic Idea and Related Theory

The main idea of DEBSE in this work is to use the model-based estimation and
prediction of other agents, which can be used in the triggering algorithm to broadcast new
information to the other agents and prevent continuous data broadcasting. Figure 2 shows
one of the agents in the multi-agent system.

The agent i’s dynamic will be coupled with all or a subset of other agents as follows:

xi
k = Aixi

k−1 + Biui
k−1 + wi

k + ∑
h∈NN ,h 6=[i]

Nh x̌h
k−1 , (1)
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where Nh is the interaction matrix between the agents in the multi-agent system, xi
k ∈ Rnx

denotes the state, x̌h
k−1 ∈ Rnx denotes the remote state prediction of other agents in agent

i, ui
k ∈ Rnu denotes the input, wi

k ∈ Rnx denotes process noise, and Ai, Bi denote the
dynamic system parameters for agent i. A discrete-time linear process with Gaussian noise
is considered for each agent and the interaction between them.

Figure 2. Event triggering algorithm is based on DEBSE for each agent i = 1, . . . , N in a multi-
agent system. The dynamics of each physical plant are connected to its agent via sensors (S) and
actuators (A).

An event triggering decision is based on two parallel algorithms, the first one based
on comparing the state prediction of agent i with the state estimation of this agent, and the
second one is based on comparing the state prediction with the state estimation of other
agents which have communication with agent i (state prediction j and state estimation j).

The first event triggering algorithm is designed to check the accuracy of prediction
without knowing whether the packet drop has happened. Furthermore, the second event
triggering algorithm examines the difference between the estimation and prediction of
other agents in agent i which interact with agent i in their process. In this way, it could be
checked whether the discrepancy between the estimation and prediction increases, which
indicates that in the previous broadcasting of agent i, a packet drop occurred, and now
an event trigger is needed to improve the prediction of agent i in other agents. In this
proposed event triggering algorithm, a few extra instances of communication between the
agents is required, but it is assumed that when an event is triggered in one agent, its states
are sent not only to the agents that interact with them, but also to the agents that receive
interaction from them. In this way, additional communications will be limited, and sending
states work like group broadcasting. This extra communication load could be estimated
based on the multi-agent system’s topology and the interaction between the agents.

The main contribution of this study is the proposal of a new event triggering mecha-
nism for a distributed multi-agent system in the presence of packet drop imperfection to
preserve the system performance under such conditions. The event triggering mechanism
is derived as parallel event triggering compared with the general event triggering for the
distributed system under conditions with a high probability of packet drop.

DEBSE Architecture

The main components of the DEBSE architecture in this configuration are organized
as follows:

1. Local State Estimation agent i: A KF state estimator is used to estimate all states of
the agent i based on the dynamics model of this agent, the measured values from its
sensors, and the other agents’ state prediction that interacts with this agent.

2. Local State Prediction agent i: A KF state predictor considering that the packet drop is
used to predict all states of agent i based on the dynamics model of this agent, the last
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state values that buffered in the previous ET mechanism, and the other agents’ state
prediction that interacts with this agent.

3. State Estimation agent j/i: A KF state estimator considering that the packet drop is
used to estimate all states of the agent j based on the dynamics model of this agent
and its state values, which is received by agent i in the previous ET broadcasting
of agent j. Based on this scenario, in a distributed multi-agent system, the dynamic
model of agent j is affected by the state values of agent i, which is attainable in the
estimation of agent j. The agent j could be all or a subset of agents based on the agents’
dynamics models.

4. State Prediction agent j/i: This state predictor is the same as the state estimator of
agent j, except that the state values of agent i are not attainable in this prediction. Due
to the possibility of packet loss, access or lack of access to the information of the state
values of agent i is not clear for agent j and therefore is not included in the predictor.

5. Event Trigger Algorithm 1: The first decision algorithm decides when the ET needs
to be activated, and a new update is sent to all agents. This is the first part of a
parallel event triggering (PET) algorithm. In this ET, the local state estimation is
compared with the local state prediction, which is the predictor of its own behavior in
other agents.

6. Event Trigger Algorithm 2: The second decision algorithm, similar to the first one,
decides when the ET needs to be activated, but this ET is not based on the local
estimation and prediction. This is the second part of the PET algorithm. In this
ET, the state estimation of agent j is compared with the state prediction of its agent.
The number of ET in this scenario could be a part of the whole number of agents that
their dynamic model is affected by the state values of the agent i.

7. State Prediction agent h: A KF state predictor considering that the packet drop is used
to predict all states of agent h. The agent h could be all or a subset of agents that have
an interconnection with the dynamic model of the agent i.

8. Local Control agent i: The local controller can be designed for each agent indepen-
dently, and it decides for its actuator. However, for the coordination problem, it needs
the information from its state estimation and all other agents’ prediction (agent h)
that have an interconnection with the agent i. The optimal controller for each agent
is given as the solution for coordination or consensus problems by minimizing a
quadratic cost function as an optimal linear quadratic regulator (LQR). The control
decision in this agent is based on its state estimation and prediction of all other agents
influencing this agent (state prediction h).

This structure presents the design of a robust distributed state feedback controller for
a multi-agent system in which each agent has all the necessary information to take the
control decision. The dynamics of each agent are subjected to external disturbances and
under random packet drop in network communication between the agents. The key benefit
of this structure is the improvement of the system performance in the presence of packet
drop imperfection in wireless communication, in such a multi-agent system. Furthermore,
improving the use of communication resources is another benefit of this structure. ET has
been developed in DEBSE to reduce the need for feedback and preserve a certain level of
performance in such a system.

4. Definitions and Preliminaries

The following notation conventions and key variables will be used in this paper.
Ai, Bi, Ci, Qi, Ri denote the dynamic system parameters for each agent. N denotes the set of
all non-negative integers, N>0 denotes the set of all positive integers, R denotes the field of
all real numbers, and for N ∈ N, we write the set {1, 2, . . . , N} as NN . By ‖ · ‖, we donate
the Euclidean norm. Fi is the optimal feedback gain corresponding to agent i and ui

k is the
control input for each agent. xi

k is the state of agent i, x̂i
k is the KF state estimate of agent i,

x̌i
k is the remote state estimate of agent i with the use of the KF predictor, x̂j/i

k is the remote
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state estimation of agent j through agent i’s process, and x̌j/i
k is the remote state prediction

of agent j through agent i. Ξi
k denotes all information gathered from sensors on agent i:

Ξi
k =

{
yi

1, . . . , yi
k, ui

1, . . . , ui
k−1

}
. (2)

Let γi
k ∈ {0, 1} be a communication decision variable for agent i such that γi

k = 1 if
and only if x̂i

k is to be transmitted to all other agents at time k, Γi
k = {γ

i
1, . . . , γi

k} is the set
of communication decision. Therefore, I i

k denotes the information set available to the agent
i at time k:

I i
k =

{
yi

1, . . . , yi
k, ui

1, . . . , ui
k−1, γi

1, . . . , γi
k

}
. (3)

For ease of notation, key variables from this and the later sections are summarized in
Table 1.

Table 1. Summary of main variables and notations used in this paper.

Symbol Definitions

Ai, Bi, Ni, Ci, Qi, Ri Dynamic system parameters for agent i
NN Set of all positive integers {1, 2, . . . , N}
U i

k Set of all inputs on agent i until time k
Y i

k Set of all measurements on agent i until time k
Fi Optimal feedback gain corresponding to agent i
xi

k State of agent i
x̂i

k Local state estimate of agent i
x̌i

k Remote state estimate (predict) of agent i
x̂j/i

k Remote state estimate of agent j in agent i
x̌j/i

k Remote state predict of agent j in agent i
γi

k ∈ {0, 1} Communication decision variable for agent i
Γi

k Set of communication decision Γi
k = {γ

i
1, . . . , γi

k}
I i

k The information set available to agent i at time k
ν

j/i
k Packet dropping random variable, from agent j to i

λj/i Probability of successfully receiving the packet, from agent j to i
I j/i

k The information set available to agent i, from agent j
Ξi

k All information gathered from sensors on agent i
P(E) Predicted or updated estimate covariance
P(P) Predicted or updated predict covariance
E[X1 | X2] Expected value of X1 cond. on X2

Based on Ξi
k, the local state estimates and error covariance are defined by

x̂i
k|k−1 , E

[
xk | Ξi

k−1

]
, (4)

Pi(E)
k|k−1 , E

[(
xk − x̂i

k|k−1

)(
xk − x̂i

k|k−1

)T
| Ξi

k−1

]
, (5)

x̂i
k|k , E

[
xk | Ξi

k

]
, (6)

Pi(E)
k|k , E

[(
xk − x̂i

k|k

)(
xk − x̂i

k|k

)T
| Ξi

k

]
, (7)

and based on I i
k, the state prediction and error covariance are defined by
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x̌i
k|k−1 , E

[
xk | I i

k−1

]
, (8)

Pi(P)
k|k−1 , E

[(
xk − x̌i

k|k−1

)(
xk − x̌i

k|k−1

)T
| I i

k−1

]
, (9)

x̌i
k|k , E

[
xk | I i

k

]
, (10)

Pi(P)
k|k , E

[(
xk − x̌i

k|k

)(
xk − x̌i

k|k

)T
| I i

k

]
. (11)

In the instance when γi
k = 1, agent i broadcasts its local state estimate x̂i

k over a packet

dropping channel to all other agents. Let ν
j/i
k be random variables such that ν

j/i
k = 1 if

the agent j’s states broadcasting at time k is successfully received by agent i, and ν
j/i
k = 0

otherwise. We will assume that {ν} is i.i.d. Bernoulli with:

P
(

ν
j/i
k = 1

)
= λj/i ∈ (0, 1) ∀k ≥ 0, (12)

we assume that ν
j/i
k and ν

i/j
k are independent of each other ∀i 6= j, however, λj/i = λi/j

is allowed.
Based on packet drop information, we will define the information set available to the

agent i which comes from the agent j at time k as

I j/i
k =

{
γ

j
1ν

j/i
1 x̂j

1|1, . . . , γ
j
kν

j/i
k x̂j

k|k, ui
1, . . . , ui

k−1

}
, (13)

and the state estimation of agent j in agent i and its error covariance are defined as

x̂j/i
k|k−1 , E

[
xj

k | I
i
k−1, I j/i

k−1

]
, (14)

Pj/i(E)
k|k−1 , E

[(
xj

k − x̂j/i
k|k−1

)(
xj

k − x̂j/i
k|k−1

)T
| I i

k−1, I j/i
k−1

]
, (15)

x̂j/i
k|k , E

[
xj

k | I
i
k, I j/i

k

]
, (16)

Pj/i(E)
k|k , E

[(
xj

k − x̂j/i
k|k

)(
xj

k − x̂j/i
k|k

)T
| I i

k, I j/i
k

]
, (17)

and the state prediction of agent j in agent i and its error covariance are defined as follows:

x̌j/i
k|k−1 , E

[
xj

k | I
j/i
k−1

]
, (18)

Pj/i(P)
k|k−1 , E

[(
xj

k − x̌j/i
k|k−1

)(
xj

k − x̌j/i
k|k−1

)T
| I j/i

k−1

]
, (19)

x̌j
k|k , E

[
xj

k | I
j/i
k

]
, (20)

Pj/i(P)
k|k , E

[(
xj

k − x̌j/i
k|k

)(
xj

k − x̌j/i
k|k

)T
| I j/i

k

]
. (21)

The decision variables γi
k are computed for agent i based on the self information set,

available to agent i (I i
k) and the information set received from other agents (based on

information available at time k − 1) over a packet dropping channel between agents (I j/i
k ).

Furthermore, the local controller agent i computes the optimal feedback gain based on
these data (I i

k), (I
h/i
k ), which shows that there is an interaction between agents i and h.

5. System Model and Fundamental Triggering

This section will formulate the event triggering solution as two threshold algorithms
for each agent in multi-agent systems. When the event is triggered, the local state estimation
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shall be transmitted to other agents. We wish to jointly design the transmission decisions
and control signal for each agent to solve an optimal feedback problem.

We considered the configuration of a multi-agent system in Figure 3, which was
reduced to the main components for a precise analysis. Agent i, which is called a sensor
agent in this step, broadcasts its local state estimation over the wireless network with a
probability of packet drop in the case of a positive triggering decision (λi

k = 1). These data
are received by agent j with the probability of λi/j. Agent j, which is called the remote agent,
stands representative for any of the agents in a multi-agent system in this configuration
and requires the information from agent i to solve the local control problem. Furthermore,
agent j broadcasts its local state estimates when the event is triggered, and the data are
received by agent i with the probability of λj/i. These data are used to check the accuracy
of state estimation of agent j through agent i in the second event triggering algorithm.
To the best of the authors’ knowledge, event triggering with this parallel mechanism is
a new concept in both estimation and control in an industrial environment with a high
probability of packet drops. Previous works focused on the estimation and prediction of
agent i without considering whether a packet drop has happened.

Figure 3. Event triggering problem. The sensor agent i broadcasts its local state estimate x̂i
k in case of

a positive triggering decision (λi
k = 1) and is received by agent j with the probability of νi/j.

In the following, we introduced the main components of Figure 3 and precisely for-
mulated the event triggering problem.

5.1. Process Dynamics

We considered a discrete-time linear process with Gaussian noise for each agent i with
its interactions with other agents:

xi
k = Aixi

k−1 + Biui
k−1 + wi

k + ∑
h∈NN ,h 6=[i]

Nh x̌h
k−1 , (22)

yi
k = Cixi

k + vi
k , (23)

where xi
k ∈ Rnx denotes the state, x̌h

k−1 ∈ Rnx denotes the remote state prediction of
other agents in agent i, ui

k ∈ Rnu denotes the input, wi
k ∈ Rnx denotes process noise

which is i.i.d. Gaussian with zero mean and covariance Qi, yi
k ∈ Rny denotes the sensor

measurements, and vi
k ∈ Rny denotes the measurement noise which is Gaussian with zero

mean and covariance Ri. The random variables xi
k, wi

k, and vi
k are assumed to be mutually

independent. For the local estimation, Ri can be found by removing the mean value from
the measurements. The calculation for Qi is not straightforward. Parameter uncertainties
can be modeled as the process noise. For the remote estimation, the calculation of Ri and
Qi is the same as the previous method, considering that the measurement data can be lost
due to the message drop via wireless communication. Here, it will be appropriate to define
the auxiliary variable ψi

k = ∑
h∈NN ,h 6=[i]

Nh x̌h
k for the different equations.
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5.2. Local State Estimation Agent i

Local state estimator on agent i has access to all inputs and information gathered from
sensors Ξi

k. The local state estimates and error covariance for this agent can be computed
using the standard Kalman filtering equation:

x̂i
k|k−1 = Ai x̂i

k−1|k−1 + Biui
k−1 + ψi

k−1 , (24)

Pi
k|k−1 = AiPi

k−1|k−1 AT
i + Qi , (25)

x̂i
k|k = x̂i

k|k−1 + Ki
k

(
yi

k − Ci x̂i
k|k−1

)
, (26)

Pi
k|k =

(
I − Ki

kCi

)
Pi

k|k−1 , (27)

where Ki
k = Pi

k−1|k−1CT
i

(
CiPi

k−1|k−1CT
i + Ri

)−1
.

5.3. Local Control Agent i

We want to optimize the following cost function for the control and communication
algorithm for each agent where the optimization algorithm calculates the communication
decision {γi

k} and control signals {ui
k} as follows:

min
{γi

k ,ui
k}
E
[

M−1

∑
k=0

xi
k

TWixi
k + ui

k
TUiui

k + γi
kδi

k + (1− γi
k)(Ei

1|k + Ei
2|k)

]
. (28)

The estimation cost Ei
1 is used to measure the discrepancy between the estimation and

prediction of agent i which we write as the quadratic norm:

Ei
1|k , ‖x̂

i
k − x̌i

k‖
2, (29)

and the estimation cost Ej
2 is used to measure the discrepancy between the estimation and

prediction of agent j in i, which we write as follows:

Ej
2|k , ‖x̂

j/i
k − x̌j/i

k ‖
2. (30)

The estimation cost E1 is related to the first event triggering algorithm, and E2 is
associated with the second one.

The matrices Wi ≥ 0, Ui ≥ 0 are the parameters weighting for the LQR control,
scalar δi

k ≥ 0 is a design parameter to evaluate the accuracy of estimation and prediction
for the event-triggered condition for agent i, Ei

1|k is the estimation cost for agent i, and

Ei
2|k , ∑

j∈NN\[i]
Ej

2|k is the total remote estimation cost of other agents through agent i. The

fact that this optimization problem is mentioned in [8] and used for one process proves that
the design of {γi

k} and {ui
k} can be separated from each other. Furthermore, we can solve

the LQR problem for the first part to calculate the optimal feedback gain for each agent:

min
{ui

k}
E
[

M−1

∑
k=0

(
xi

k
TWixi

k + ui
k

TUiui
k

)
+ xi

N
TWixi

N

]
, (31)

thus, the optimal solution to this problem is of the form:

ui
k−1 = −(BT

i Pi
k−1 + Bi)

−1BT
i Pi

k−1 Ai , −Fi x̂i
k−1, (32)
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where, as mentioned before, in (24), x̂i
k−1 is the state estimation of the agent i with its

interaction with other agents in its dynamic. Furthermore, the minimization problem in (31)
could be reconfigured as a tracking problem to find control law ui

k in such that:

lim
k→inf

‖xi
k − xi

re f ,k‖ = 0, (33)

ui
k = Fi(xi

k − xi
re f ,k), (34)

where xi
re f is the desired states for agent i. The second part of the optimization problem for

event triggering will be subsequently introduced.

5.4. Remote State Estimation Agent i (State Prediction Agent i)

When an event is triggered according to both event triggering algorithms in Figure 3,
the sensor agent communicates its local estimate x̂i

k to all the remote agents, but due to the
possibility of packet loss, agent i has no information with regard to receiving its estimate,
for example, by agent j. Therefore, it can be easily shown that the state prediction process
of agent i in itself can be computed by

x̌i
k|k =

{
Ai x̌i

k−1|k−1 + Biui
k−1 + ψi

k−1 , γi
k = 0

x̂i
k|k , γi

k = 1
, (35)

that is, when the event is not triggered, the predictor in agent i predicts its states according
to the process model and the control input, which are calculated in (32). Furthermore, the
state prediction of the agent i in j can be computed by

x̌i/j
k|k =

 Ai x̌
i/j
k−1|k−1 + Biǔi

k−1 + ψi
k−1 , γi

kν
i/j
k = 0

x̂i
k|k , γi

kν
i/j
k = 1

, (36)

and that is when the packet is dropped, or the event is not triggered, the predictor in agent
j predicts the states of agent i according to that process model, and the control input is also
predicted with the use of state prediction as follows:

ǔi
k−1 , −Fi x̌

i/j
k−1. (37)

In this scenario, when a new agent is added to the network, it should broadcast all
its model parameters to other agents, then each agent can predict the optimal feedback of
other agents and use in (37). The state prediction of agent i in the sensor side (32) is used in
the first event triggering algorithm, as shown in Figure 3.

5.5. State Estimation and Prediction of Agent j in i

To check the accuracy of the agent i’s state prediction in remote agents, we need to
have another estimation and prediction of agent j’s state on the sensor side. This prediction
and estimation are used for the second event triggering algorithm. This event triggering
algorithm shows that the prediction of agent i in j is not sufficiently accurate due to the
possibility of packet loss, and a new event needs to be triggered in agent i. For this purpose,
the previous scenario for the remote state estimation agent i is repeated here. Furthermore,
the estimator knows that agent j has some interaction within the process model with agent
i. Hence, the estimator on the sensor side has access to this information and uses them in
its estimation model. The state estimation of agent j in i can be computed as follows.
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1. Time update:

x̂j/i
k|k−1 = Aj x̂

j/i
k−1|k−1 + Bjǔ

j/i
k−1 + Ni x̂i

k−1|k−1 + ∑
h∈NN ,h 6=[j],[i]

γh
k νh/i

k Nh x̌h/i
k−1, (38)

Pj/i(E)
k|k−1 = AjP

j/i(E)
k−1|k−1 AT

j + NiP
i(E)
k−1|k−1NT

i + ∑
h∈NN ,h 6=[j],[i]

γh
k νh/i

k NhPh/i(E)
k−1|k−1Nh

T + Qj, (39)

2. Measurements update:

(a) if γ
j
kν

j/i
k = 1

K j/i
k = Pj/i(E)

k−1|k−1CT
j

(
CjP

j/i(E)
k−1|k−1CT

j + Rj

)−1
, (40)

x̂j/i
k|k = x̂j/i

k|k−1 + K j
k

(
x̃j/i

s|γj
sν

j/i
s =1

− Ci x̂
j/i
k|k−1

)
, (41)

Pj/i(E)
k|k =

(
I − K j/i

k Cj

)
Pj/i(E)

k|k−1 , (42)

(b) if γ
j
kν

j/i
k = 0

x̂j/i
k|k = x̂j/i

k|k−1, (43)

Pj/i(E)
k|k = Pj/i(E)

k|k−1 , (44)

where x̃j/i

s|γj
sν

j/i
s =1

is the latest state of agent j which is correctly received by agent i from

agent j’s broadcasting in time s ≤ k.
The predictor of agent j in i is designed in such a way that has no access to any

information of interaction processes between other agents, especially agent i. Therefore,
the interaction part is removed in its calculation. This means that if a packet drop has
occurred in the previous broadcasting of agent i, then the prediction of agent j in i loses
its accuracy in front of the estimation of agent j in i which has access to the information
of agent i. This deviation will be used in the second event triggering algorithm. With this
definition, the prediction of agent j in i has not any access to the information of agent i
and becomes what is described as follows.

1. Time update:

x̌j/i
k|k−1 = Aj x̌

j/i
k−1|k−1 + Bj/iǔ

j/i
k−1 + ∑

h∈NN ,h 6=[j],[i]
γh

k νh/i
k Nh x̌h/i

k−1 (45)

Pj/i(P)
k|k−1 = AjP

j/i(P)
k−1|k−1 AT

j + ∑
h∈NN ,h 6=[j],[i]

γh
k νh/i

k NhPh/i(P)
k−1|k−1Nh

T + Qj (46)

2. Measurements update:

(a) if γ
j
kν

j/i
k = 1

K j/i
k = Pj/i(P)

k−1|k−1CT
j

(
CjP

j/i(P)
k−1|k−1CT

j + Rj

)−1
(47)

x̌j/i
k|k = x̌j/i

k|k−1 + K j/i
k

(
x̃j/i

s|γj
sν

j/i
s =1

− Ci x̌
j/i
k|k−1

)
(48)

Pj/i(P)
k|k =

(
I − K j/i

k Cj

)
Pj/i(P)

k|k−1 (49)
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(b) if γ
j
kν

j/i
k = 0

x̌j/i
k|k = x̌j/i

k|k−1 (50)

Pj/i(P)
k|k = Pj/i(P)

k|k−1 (51)

5.6. Event Triggering Condition

Two different event triggering algorithms will be considered in this proposed sys-
tem. These two algorithms are paralleled together and make the final triggering decision.
The sensor agent in Figure 3 makes a decision between using the communication resources
based on these two algorithms to improve the accuracy of prediction or to save the com-
munication resources, but will lose some part of this accuracy in terms of a degenerated
prediction performance.

The communication cost is considered the design parameter δi
k in the optimization

problem (28), and it could be defined based on the use of bandwidth or energy in the
communication system. Based on [8], the design of {γi

k} and {ui
k} can be separated from

each other in the optimization problem (28). Therefore, the triggering decision can be
derived as

min
{γi

k}
E

M−1

∑
k=0

γi
kδi

k + (1− γi
k)(Ei

1|k + ∑
j∈NN\not[i]

Ej/i
2|k)

, (52)

where we assume that δi
k is known for each agent. By solving the optimization problem (52),

the event triggering law is obtained as follows:

at time k : γi
k = 1⇔ E[Ei

1|k + ∑
j∈NN\not[i]

Ej/i
2|k ] ≥ δi

k. (53)

The expected values of each cost function are non-negative, so the trigger law can be
rewritten as follows

at time k : γi
k = 1⇔


E
[

Ei
1|k | I

i
k

]
≥ δi

k
or

E
[

∑
j∈NN\not[i]

Ej
2|k | I

j/i
k

]
≥ δi

k

. (54)

6. Illustrative Application and Simulation Platform

In this section, a platoon of vehicles will be described as an application that uses the
proposed event triggering algorithm in a synchronization problem. Then, the models of
the platoon network topology and longitudinal vehicle dynamics are represented. Further-
more, a simulation platform for simulating the platoon of vehicles in a wireless network
is introduced.

6.1. Application

To illustrate the behavior of the PET algorithm, we consider a vehicle platoon control
problem as a synchronization problem of a wireless networked dynamical system. In this
configuration, the first vehicle is considered as a platoon leader, and a set of followers’
vehicles (two vehicles) interact through a communication network. Vehicle platooning
is regarded as a multi-agent linear time-invariant system with dynamics interaction (1).
They need to update the states of other agents in their control process through wireless
communication. These vehicles are controlled so that the dynamics of the followers
converge towards the dynamics of the leader.
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6.2. Modeling of the Vehicle Platooning

For vehicle platooning applications, vehicle longitudinal dynamics can be represented
by a second order linear time invariant system. The state of each vehicle
xT

i (t) = [vi(t), si(t)− si−1(t)], i = 2, · · · ,NN except the leader, where v is speed and s
is absolute position and a is acceleration, is considered as the control input.

The architecture of the vehicle platoon with the proposed event triggering algorithm is
shown in Figure 4. Communication between the vehicles is required to control the distance
between the vehicles. We assume that when an event is triggered in one vehicle, the data
will be sent to the rear vehicle that interacts with it and the front vehicle that gets interaction
from it. However, this information may not reach the recipient agents due to the possibility
of the packet drop, so we use this proposed event triggering algorithm to improve the
prediction of the information.

Figure 4. Schematic of vehicle platooning with the proposed event triggering algorithm.

The longitudinal vehicle dynamics of the ith-follower in vehicle platooning, subjected
to its interaction with the front vehicle can be obtained as follows:[

ai
vi − vi−1

]
=

[
0 0
1 0

][
vi

si − si−1

]
+

[
1
0

]
ai +

[
0 0
−1 0

][
vi−1

si−1 − si−2

]
, (55)

which is the continuous-time state space model, and can be converted into a discrete-time
model by using the Euler method with the sampling time Ts:

xi
k = Aixi

k−1 + Biui
k−1 + wi

k + Ni−1 x̌i−1
k−1, (56)

yi
k = Cixi

k + vi
k, (57)

where the system matrices in this model are:

Ai =

[
I 0

Ts I

]
, Bi =

[
Ts
0

]
, Ni−1 =

[
0 0
−Ts 0

]
. (58)

The model in (56) is an illustrative example of the general model (22), in which each
vehicle only interacts with a vehicle in front. The first car is the leader in this configuration
and does not have any interaction from the front.

6.3. Platoon Control Objectives

The platoon control objectives are to control the convergence of all followers’ dynamics
with the leader dynamics and maintain the vehicles’ desired distance. We designed an LQR
as a decentralized controller for each vehicle. The liner state-space model in this problem
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includes the vehicle speed and their relative distances xi
k

T =
[
vi

k, si
k − si−1

k

]
, i = 2, 3, and v1

k
is the leader’s speed, therefore, if a constant spacing is considered as a desired space
between vehicles and the leader speed is considered as a desired speed for the platoon
xi

re f ,k
T =

[
vi

re f ,k, di
re f ,k

]
, then the LQR controller causes the states of each vehicle to follow

the references.

6.4. Simulation Platform

The simulation application was developed in TrueTime, a Matlab/Simulink-based
simulator for network and embedded control systems. This simulator can co-simulate
controller task execution in real-time kernels, network transmission, and continuous plant
dynamics. First, the dynamic process of each vehicle is modeled in Simulink, and then they
make an internal communication between each other with the use of TrueTime’s kernel.

6.5. Cost Function about Resource Utilization

In order to analyze the network usage, a cost function Jnet is proposed as the resource
utilization index. Let us define the number of events triggered based on the algorithm A
between the vehicles as NOETA, which will be compared with the total number of events
that might be possible (TNEP) based on the sampling time in the communication network.
In this way, the resource utilization (cost function Jnet) can be expressed as

Jnet =
NOETA
TNEP

· 100%. (59)

This cost function will be used to evaluate the proposed event triggering algorithm in
this simulation. The study will compare both approaches based on this cost function: PET
Ei

1|k + Ei
2|k versus general event triggering, only Ei

1|k.

7. Simulation Results and Discussion

The simulation of vehicle platooning through the WNCS was developed in the True-
Time simulator with three vehicles over the simulation horizon of 200 samples, and 100
simulation runs. All simulations were performed on a modified network protocol accord-
ing to the simulation parameter for a wireless network provided in Table 2. A power
control technique was used in TrueTime to adjust the transmission power on each vehicle
by getting feedback from the receiver. Due to the mobility of vehicles in an urban area,
there exists a range for path loss exponent in such environments, however, we considered
a constant value in the upper range for this parameter. In addition, the bandwidth is
limited to 80 kps, due to the feature of event triggering on resource utilization and the retry
limit parameter is set to zero, which means that we simulated a wireless network protocol
without sending and receiving acknowledgment, such as the UDP protocol. Furthermore,
it is assumed that if the delay is more than the event sampling period, it is considered as a
message drop and if it is less than the event sampling period, it can be ignored.

Table 2. Simulation parameters for wireless network.

Parameters Values

Network type 802.11b (WLAN)
Data rate 80 kps
Minimum frame size 272 bits
Maximum transmit power 20 dbm
Receiver signal threshold −48 dbm
Path loss exponent 3.5
Retry limit 0
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The proposed event triggering algorithm was simulated, and each vehicle decided
to broadcast its states based on (54). The main goal of this part is to present the main
benefit of the PET algorithm that can combat the packet drop effects, compared to the
standard event triggering algorithm on a multi-agent system, without considering packet
drop (see [14,15]).

For this simulation, the desired inter-vehicle spacing was set to dre f ,k = 10 m. The ini-
tial states for each vehicle were chosen randomly at time t = 0, and the platoon drives for
20 s. The first vehicle starts to move as the leader to reach a constant speed of 40 km h−1.
The external disturbance is considered an additional load on the leader, which slows
down its speed, starting at t = 8, and the leader’s controller tries to compensate for this
disturbance. However, it influences the followers’ dynamics.

For both event triggering algorithms, a 58% packet drop is considered. The highest
probability value for the packet drop that the PET algorithm could converge this multi-
agent system is 65%. For the values above this percentage, even the PET algorithm cannot
converge the system. We first considered the PET results by using the event triggering
conditions (54) shown in Figure 5a with a constant δi

k = 0.45. This consists of the state
estimation of all vehicles in the platoon at the top subplot. At the middle and bottom,
subplots are binary variables that show the network usage between vehicles 1 → 2 and
2→ 3, respectively. Moreover, 0 means that the network is not being used, and 1 means that
the network is being used. Figure 5a shows that even with 58% packet drops, the proposed
event triggering algorithm can converge the followers to the leader motion and maintain
the desired inter-vehicular distance.

(a) Closing the feedback loop in the PET
algorithm, δi

k = 0.45, and packet loss
probability is 58%.

(b) Closing the feedback loop in general ET
algorithm (Ei

1|k), δi
k = 0.45, and packet loss

probability is 58%.

Figure 5. The graphs show, from top to bottom, the states of vehicles in platoon (speeds (km h−1),
relative distance (m)), the network usage between vehicles 1 → 2, and 2 → 3. The value of the
resource utilization is mentioned on the graphs as previously defined.

Figure 5b shows the results obtained by the general event triggering algorithm. As
shown in the top subplot, the collision occurred in the early moments of the simulation
between the vehicles, and the general event triggering algorithm (Ei

1|k) could not converge
the followers’ dynamics to the leader. In this algorithm, the cost function of using resource
utilization is decreased compared to the PET algorithm, but the system is not stable.
As a result, it could not converge to the platoon’s dynamics. Therefore, the proposed
event triggering algorithm can converge the platoon of vehicles even in a harsh industrial
environment with a 58% probability of packet drops by an increasing network resource
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utilization, compared to the general ET that can be seen in Table 3. In contrast, the general
ET cannot converge the system anyway. In PET, the middle and bottom subplots show the
increase in network usage compared to the general ET algorithm, but this is the cost paid
to maintain system convergence.

The state estimation and prediction of the second vehicle in the process of the first
vehicle and the state estimation and prediction of the third vehicle in the process of the sec-
ond vehicle are shown in Figure 6a,b, respectively. As mentioned in Figure 4, to implement
the PET algorithm, the state estimation and prediction of the second vehicle are required
in the first vehicle’s control process, in addition to the state estimation and prediction of
the third vehicle are required in the second vehicle’s control process. When a packet drop
has happened in the state broadcasting of the first vehicle, the discrepancy between the
state estimation and prediction of the second vehicle, which interacts with the first vehicle,
increases and causes a new event triggered. This process was done in the control routine of
the first vehicle.

Table 3. Jnet index for the simulation.

Index Vehicle 1 → 2 Vehicle 2 → 3

PET 34.75% 24%
ET 28.94% 15.78%

Time(s)

S
ta

te
s

States Estimation of vehicle 2 in vehicle 1

States Prediction of vehicle 2 in vehicle 1

(a) State estimation and prediction of
vehicle 2 in vehicle 1’s process.

Time(s)

S
ta

te
s

States Estimation of vehicle 3 in vehicle 2

States Prediction of vehicle 3 in vehicle 2

(b) State estimation and prediction of
vehicle 3 in vehicle 2’s process.

Figure 6. Distributed state estimation and prediction in PET.

Finally, Figure 7a,b depict the norm of error between the state estimation and predic-
tion of the second and third vehicle, respectively. As expected, when the remote estimation
error ei

k = ‖x̂j
k − x̌j

k‖ passes the threshold, a new event will be generated. The density of
events will be triggered when the remote estimation error exceeds the threshold, which is
obviously visible in these figures. Hence, the proposed PET algorithm can be used in the
multi-agent triggering system with a high probability of packet drop and guarantees the
dynamics convergence of all agents.
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(a) Norm of the remote estimation error of
vehicle 2 in vehicle 1’s triggering process.

(b) Norm of the remote estimation error of
vehicle 3 in vehicle 2’s triggering process.

Figure 7. Remote estimation error in PET.

8. Conclusions

This paper studied the distributed feedback control in a multi-agent system over a
WNCS framework. DEBSE was used to design the parallel event triggering algorithm
in WNCS to face high packet drop probability conditions such as those of an industrial
environment and maintain control performance on consensus problems in the multi-agent
system at the desired level. Integrating ET algorithm in WNCS enables a significant
reduction in network resource usage. The proposed PET algorithm slightly increases
the utilization of network resources compared to ET, but maintains satisfactory control
performance in multi-agent consensus problems under a harsh packet drop conditions.
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