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1. Introduction

Support vector machines (SVMs) are effective classifiers with a definite theoretical foundation and have been extensively
used in various applications in different fields, such as data mining [42], remote sensing [32], and geoscience [40]. SVMs
come with a minimal structural risk because they search for a separating hyperplane that represents the maximum margin
between classes. This feature makes SVMs more effective than other classifiers. However, training an SVM, in which support
vectors are obtained, requires solving a quadratic programming optimization problem, which poses a computational com-
plexity of O(n®), where n is the number of training samples. This computational cost inhibits the applicability of SVMs to
tasks involving large datasets, such as feature extraction from high-resolution aerial images.

Within such a context, researchers have developed different approaches to address the mentioned drawback of SVMs.
Among others, instance selection has shown high potential for circumventing the computational burden of the training
phase in handling big datasets [33]. The notion of instance selection rests on the fact that training data are not used to
describe classes, but to assist in accurate separation. Instance selection methods speed up training by selecting a small subset
of instances that is representative of the original set and can retain the original classification power of the SVM [46]. In other
words, the instances with great potential to contribute to the classification and construction of demarcation hyperplanes are
preserved. These patterns, called support vector candidates, lie close to the border of classes, and thus they have also been
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named border instances [26]. The remaining instances (i.e., interior instances) that do not significantly contribute to the clas-
sification can be discarded to accelerate the training phase of SVMs.

Many instance selection methods have been proposed owing to the increasing number of records in datasets. An ideal
instance selection method maintains the original classification accuracy while significantly eliminating superfluous
instances within the shortest possible execution time. However, designing an ideal instance selection method is difficult,
and most existing methods with high reduction rates and classification accuracies suffer from long execution times and
are consequently inapplicable to large datasets.

Contribution of this study. In the present study, a new instance selection method that is applicable to large datasets and
effectively balances reduction rate and classification accuracy is designed. Specifically, the concept of locality-sensitive hash-
ing (LSH) [15,13] is adopted to design a novel instance selection method. The proposed method, named border point extrac-
tion based on LSH (BPLSH), preserves border patterns and a few interior data points to accelerate the SVM training. In BPLSH,
the nearest patterns belonging to opposite classes of a given instance are regarded as border samples and are preserved,
whereas instances that are far from opposite classes are considered as interior ones and are removed. The closeness of
instances to a given sample is measured by the similarity index, which is defined based on partitioning the feature space.

Outline of this study. The remainder of this paper is structured as follows. Section 2 presents a brief review of some exist-
ing instance selection methods. The concepts of LSH are introduced in Section 3. Section 4 explains the proposed method
(BPLSH) in detail. The performance of BPLSH is analyzed and benchmarked on nine datasets in Section 5. Section 6 evaluates
the performance of BPLSH in automatic building extraction from high-resolution aerial images, where handling a large data-
set is necessary. Finally, in Section 7 we present our conclusions and propose directions for future work.

2. Related work

The main objective of instance selection methods for SVMs is to identify instances that are close to the decision bound-
aries. To do so, various strategies have been proposed, and a comprehensive survey of which can be found in [19,33]. In this
section, some of the most relevant methods are briefly explained. It has to be underlined that evolutionary methods are not
reviewed because of their high computational complexity, which makes them inapplicable to big datasets.

One of the most common strategies is clustering to partition the feature space, accompanied with some mechanisms to
identify border instances. In this context, Lyhyaoui et al. [30] proposed a standard yet effective procedure for instance selec-
tion that utilizes clustering. Their proposed procedure, which has since been widely used by other researchers, consists of
three main steps: 1- clustering instances, 2- identifying critical clusters that are likely to contain support vectors, and 3-
selecting a representative subset that encompasses border instances and a small number of internal samples. They used fre-
quency sensitive competitive learning [2] to cluster data and the closeness of instances to the opposite-class cluster cen-
troids as a heuristic to find effective instances.

Another clustering-based method, referred to as SVMKM, was proposed by Almeida et al. [3]. This method used the k-
means algorithm to partition instances. The heuristic used for finding border instances is the heterogeneity of each cluster,
which indicates whether the cluster is mixed-class. More specifically, all instances of heterogeneous clusters (i.e., clusters
formed by instances from different classes) are preserved as they represent border samples, whereas all homogeneous clus-
ters (i.e., clusters that include instances from one class) are discarded, and only one point from each of them (the centroid or
a point near the centroid) is retained. To improve the performance of SVMKM, Koggalage & Halgamuge [22] proposed an
algorithm in which homogeneous clusters are not automatically discarded; instead, exterior instances positioned near the
boundary of homogeneous clusters are preserved together with heterogeneous clusters. The concept of the safety region
was defined for extracting scattered instances. Birzhandi & Youn [7] developed the clustering-based convex hull (CBCH)
algorithm, which follows the same strategy but uses the convex hull algorithm to extract the exterior instances of homoge-
neous clusters. To increase the reduction rate of SVMKM, Olvera-Lépez et al. [34] proposed an algorithm called prototype
selection by clustering (PSC), in which only few instances that define the decision boundaries are preserved in heterogeneous
clusters instead of all instances. Simply put, a set of nearest instances to each instance of opposite classes is retained. In [39],
critical clusters are selected based on their closeness to approximate decision boundaries. Furthermore, the data distribution
in clusters is considered to find effective instances. In the method proposed by Chen et al. [11], instances of each class are
clustered separately, and the distance of patterns to opposite-class cluster centers is used to extract informative points.

Other clustering techniques, apart from k-means, have also been used to develop instance selection methods. Cervantes
et al. [8] developed a method by using a fuzzy clustering algorithm. In their method, the homogeneous clusters that directly
contribute to the construction of approximate hyperplanes along with all the heterogeneous clusters are preserved. Cervan-
tes et al. [9] introduced the concept of minimum enclosing ball for clustering and employed a strategy similar to SVMKM for
selecting instances from clusters. Wang & Shi [43] developed a method, named sample reduction by data structure analysis
(SR-DSA), by employing the Ward-linkage algorithm for clustering instances of different classes independently (i.e., each
class is processed separately). In SR-DSA, after clustering, the interior instances of each cluster along with those that are
far from opposite-class clusters are discarded as superfluous instances. The performance of clustering-based methods highly
depends on the clustering parameters (e.g., the number of clusters and stopping criteria).

To avoid the need to predefine the number of clusters and the high computational complexity of clustering, Lopez-Chau
et al. [28] suggested using a decision tree to make partitions and guided random sampling to select instances from each
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partition. Chang et al. [10] also proposed using a decision tree to decompose the original classification problem into several
smaller problems. In fact, the decision tree decomposes the original feature space into homogeneous and heterogeneous
areas, and thus, an independent SVM is trained on each heterogeneous region. In this manner, the computational complexity
of the SVMs reduces as they are trained on smaller datasets. However, it has been noted in [26] that performance may not be
satisfactory when dealing with non-convex data.

In some pattern selection techniques, called distance-based methods, border points are extracted by calculating the dis-
tance of each pattern to opposite-class instances. Euclidean, Mahalanobis, and Hausdorff are different metrics employed to
measure distances [1,27,44]. The main drawback of distance-based methods is their high computational and memory com-
plexity arising from the need to calculate distances between all samples.

Inspecting the neighborhood property of instances to identify support vector candidates is another strategy that has been
explored in different studies. Neighborhood-based methods rely on the idea that border points tend to have heterogeneous
neighbors, whereas interior ones do not. In accordance with this idea, Shin & Cho [41] proposed a neighborhood-based
method called NPPS for selecting correctly labeled border instances. NPPS consists of three steps. First, the k-nearest neigh-
bors (using the Euclidean distance) of the instances are identified. Second, the entropy value of each instance showing the
homogeneity of its neighbors is computed. A positive entropy value indicates that the instance has heterogeneous neighbors
and can thus be a support vector candidate. In the final step, noisy instances are excluded by considering the consistency of
border instances with their neighbors. In crude terms, if the class of a border instance differs from that of its neighbors, it is
likely to be noisy and is consequently removed. Li et al. [23] argued that only preserving border instances obtained by NPPS
may lead to overfitting, which is why it is necessary to preserve some interior patterns to describe the extent of each class.
They suggested preserving the cluster centroids selected by k-means as interior points in addition to the border instances
selected by NPPS. In [45], the concept of entropy was used to develop a new active learning method for sample selection
for SVMs. Along the same line of research, Li & Maguire [25] proposed a method called border-edge pattern selection (BEPS)
that preserves edge instances along with border patterns. Edge instances lie on the extremes of a class region and define its
extent. Edge and border patterns were extracted by using the concepts of approximated tangent hyperplanes and Bayes pos-
terior probability, respectively. The experimental results show that BEPS is effective for different classifiers. Malhat et al. [31]
proposed two algorithms that are generally similar to NPPS in terms of selecting border instances. However, they also pre-
serve a few inner instances located in dense areas. Rico-Juan et al. [36] developed some neighborhood-based heuristics that
allow sorting instances of a dataset according to their expected relevance in the classification task, which is then used to
decimate the dataset to a specific number of the most relevant samples. Zhu et al. [49] proposed a new neighborhood-
based heuristic named cited count for identifying border instances. The cited count is the number of times an instance is
selected as the nearest neighbor of other-class instances. A cited count close to zero indicates that the instance is far from
the instances of other classes. Thus, the instance is considered as an interior sample and is removed. The number of neigh-
bors is a critical parameter in neighborhood-based methods.

Most of the above-mentioned methods are computationally expensive and face many difficulties in processing large data-
sets. To address this issue, Arnaiz-Gonzalez et al. [4] used LSH to develop two methods that can handle large datasets. In
these methods, one instance of each class is selected in each of the buckets constructed by LSH. More specifically, instances
are hashed into buckets in such a way that closer samples have a higher probability of falling into the same bucket, and then
one instance from each class in each bucket is randomly preserved. In this manner, similar instances are removed, while pre-
serving the general structural properties of the original dataset. Aslani & Seipel [6] also proposed a new instance selection
method by adopting LSH. Their method rapidly finds similar instances with a specific degree of similarity and removes them.
Although the design of the methods in [4,6] is optimal and suitable for filtering instances in large datasets, they are not
aimed at preserving border instances, making them susceptible to missing support vector candidates.

In this study, the ideas of LSH are employed in an effective manner to design a new method, BPLSH, aimed at quickly iden-
tifying border instances. It eliminates unnecessary patterns that do not contribute to classification to accelerate the training
process of SVM without significantly degrading the original classification accuracy. In contrast to the methods in [4] that tar-
get similar instances, BPLSH removes interior instances and retains border ones to achieve high reduction rates. Moreover,
unlike clustering and distance-based methods that use distance or density measures, BPLSH does not need to compute the
distance between instances and is therefore suitable for handling large datasets.

The performance of BPLSH is benchmarked against those of NPPS, SVMKM, CBCH, and NolS (in NolS, all instances are used
in the classification process) on eight publicly available datasets and one synthetically generated dataset. In addition, the
instance selection methods are incorporated into the procedure of automatic building extraction to compare their perfor-
mance and effectiveness in handling a big dataset. It is worth noting that Pareto optimality [17] is used to ensure that
the comparisons are fair.

3. Locality-sensitive hashing: LSH
In this section, we briefly explain LSH, which we use in the study to develop our novel instance selection method. LSH is

an effective and fast approach for approximate similarity search in massive datasets. It accelerates finding similar instances
by hashing data into buckets to avoid comparing all pairs of instances.
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A family of hash functions g(x), which is the concatenation of multiple locality-preserving hash functions
(h1(x), ha(X), ..., hu(X)), is used to hash instances into buckets such that similar (close) instances fall into the same buckets
with a high probability. In other words, g partitions the input space into buckets, and the id of each bucket is the concate-

nation of multiple locality-preserving hash functions. In this study, the following hash function {h ‘R N}, where N is the
set of natural numbers to characterize the bucket ids, is used to hash each instance x [13]:

a-x+b
hap(x) = {TJ (1)
Eq. 1 maps a d-dimensional vector x onto an integer number. In this equation, a is a d-dimensional random vector with
elements independently drawn from a Gaussian distribution with mean 0 and standard deviation 1, b is a real number drawn
from [0, w], and w controls the width of the buckets. A small value of w leads to a large number of buckets with a small
width. For the sake of simplicity, all instances are normalized into [0, 1], and the parameter w is set to 1. To increase the col-
lision probability of neighbors and improve the hashing discriminative power, a set of hash function families G, rather than
one hash function family, is constructed. Therefore, similar instances can be identified by simply examining buckets created
by different hash function families (G) without needing to perform time-consuming pairwise distance calculations [15].

4. The proposed method

In this section, first, the steps of the proposed method and its pseudocode are elaborated. Then, the time complexity of the
proposed method is explained. Finally, to understand how the input parameters affect the performance of BPLSH, a detailed
analysis is performed using a synthetically generated dataset.

4.1. BPLSH

Let T = {(x,-, y)lxieRYy e {1,2,... ,p}}, i=1,2,...,tbe a training dataset, where x; is a d-dimensional input feature

vector, y; is the corresponding class, t is the number of instances, and p is the number of classes. It is also assumed that each
instance has only one class. BPLSH preserves border patterns as support vector candidates and a small number of interior
instances as representatives of the extent of classes. BPLSH searches for border instances in heterogeneous areas (areas that
contain instances from different classes). It relies on the idea that a border instance has heterogeneous neighbors and is the
nearest neighbor of a pattern from another class. Generally, BPLSH consists of two major phases: 1- identifying the buckets of
each sample, and 2- finding border samples and eliminating dispensable instances.

In the first phase, each instance is assigned to a set of buckets by using a group of hash function families
G=1{g,8,, ..., 8.}, where L is the number of hash function families. Each hash function family g(x) is the concatenation
of M hash functions h. Each family of hash functions can be perceived as a layer of random hyperplanes that divides the input
feature space into buckets. In other words, g projects instances from a d-dimensional real-valued feature space into an inte-
ger number that is a bucket id. Furthermore, the set of hash function families (G) can be perceived as a set of layers of hyper-
planes that map an instance to an array of bucket ids. The projection is performed such that close instances have a high
probability of being assigned into the same bucket.

Fig. 1a depicts an example of partitioning a 2-dimensional feature space by using three families of hash functions (three
layers). In this example, each hash function family (g;) contains 10 random hash functions (h). Instances a and b are assigned
into the same buckets in all the layers, as shown in the figure.

To describe the second phase explicitly, a few definitions are presented.

Definition 1. The similarity index between two instances (SimIndex) is defined as the number of common buckets between
them in all layers.

As depicted in Fig. 1c, the similarity index between instances a and b is three because they share the same buckets in all
three layers.

Definition 2. Neighbors of a given instance (x;) are the instances that share at least one bucket with x;. In other words, an
instance is a neighbor of x; if its similarity index with x; is greater than 0.

As shown in Fig. 1b, the neighbors of a are b, c, and d.

Definition 3. Two instances (x; and x;) are quite close if their similarity index is equal to L, where L is the number of layers.
In Fig. 1, instances a and b are quite close as their similarity index is equal to three.

Definition 4. The nearest neighbors of an instance (x;) are the neighbors that have the maximum similarity index with x;.
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Layer 1 (g) Layer 2 (g,) Layer 3 (g3)

(a)

Proximity region

(b) (c)

Fig. 1. (a) Partitioning a 2-dimensional feature space by using three hash function families (L = 3). Each hash function family consists of 10 hash functions
(M = 10). (b) Neighbors of instance a and its proximity region. (c) Similarity index of instances b, c, and d with a.

In Fig. 1, b is the nearest neighbor of a, as it has the highest similarity index in comparison to c and d.
The second phase is composed of six minor steps summarized as follows:

I Extract the neighbors of sample x;.
Il Calculate the similarity index of the neighbors.
[l If x; and its neighbors are homogeneous (they belong to the same class), save x;, remove the neighbors with SimIndex >=2
from the training dataset (T), and go to step VI
IV If x; and its neighbors are heterogeneous and the nearest neighbors of x; from opposite classes are quite close to it, save x;
and the nearest neighbors from each opposite class and go to step VI
V If x; and its neighbors are heterogeneous and the nearest neighbors of x; from opposite classes are not quite close to it,
save the nearest neighbors from each opposite class, remove the quite close neighbors to x; with class y; from the training
dataset (T), and go to step VI.
VI Repeat steps I to V until all instances in the training dataset (T) are either investigated or deleted.

In step III, BPLSH preserves only one representative instance from a homogeneous region because these regions are far
from the decision boundaries and do not provide useful information for the classification. Furthermore, retaining many
instances from these regions simply increases the size of the dataset without significantly improving the classification accu-
racy. In this step, neighbors of x; are also eliminated from the training dataset to prevent BPLSH from investigating them in
subsequent iterations and accordingly accelerate the acquisition of border instances. However, removing all the neighbors
with Simindex >= 1 might be problematic because some of the outer neighbors might be border instances (Fig. 2). Thus,
the neighbors with Simindex >= 2 are removed.

Fig. 2 illustrates how instance selection for x; is performed in step III (in only one iteration). This figure shows x; and its
surrounding instances along with their similarity index values. As the classes of x; and the neighbors are identical (class 1), this
is a homogeneous region. Therefore, x; is the only instance preserved, and the neighbors with SimIndex >= 2 are removed. The
neighbors with SimIndex = 1 are left and will be investigated in subsequent iterations in case they contain some border
instances.
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Algorithm 1: BPLSH, the proposed instance selection algorithm

Input: A training dataset T = {(xl—,yi)\x,- eRly e {1,2,...,p}}, i=1,2,...,¢t
A set of hash function families G = {g, £, ..., g, }, such that
g(x eT) = (h{(x), ha(x), ..., hy(x)) and h; is a hash function (h ‘R4 N)
Output: The set of selected instances (SICT)
1: SLbE, b, — &
2: for each (x,y) € T do
3: i+ index of (x,y)
4: for each function family g € G do
5: bid — bucket id assigned to x by g
6
7

Add bid to b}
Add (x,y) to b%,,
8: end for
9: end for

10: for each (x,y) € T do

11: i+ index of (x,y)

12: Neighbors «— &

13: for each function family g € G do

14: bid — b¥

15: I — all instances in b§,; except x
16: Add I to Neighbors

17: end for

18: UNeighbors «— unique elements of Neighbors

19: SimIndex — similarity index of UNeighbors to x
20: Cy « Classes of UNeighbors

21: Cp {y CN}

22: if C4 is homogeneous then

23: Remove UNeighbors with Simindex >=2 from T
24: Add (x,y) to SI

25: else if C,4 is heterogeneous then

26: MS 0

27: for each C € Cy except y do

28: Nc « UNeighbors whose class = C
29: SimIndexc « SimIndex of N¢

30: M «— max(Simindex.)

31: SN « N¢ with SimIndex: = M

32: Add SN to SI

33: MS — max(MS, M)

34: end for
35: if MS is equal to L then

36: Add (x,y) to SI

37: else

38: SR — UNeighbors whose class = y & SimIndex = L
39: Remove SR from T

40: end if

41: end if

42: end for

Steps IV and V aim to identify border instances that exist in heterogeneous proximity regions. In the case of heterogene-
ity, both steps IV and V save the nearest neighbors from each opposite class (y # ;) as border instances (Figs. 3 and 4). The
only difference between steps IV and V is the closeness of x; to the border instances. If x; is quite close to the border instances,
it is preserved as well (Step IV). Otherwise, quite close neighbors are regarded as interior-redundant instances and are
removed (Step V). Figs. 3 and 4 illustrate the difference between steps IV and V.

The pseudocode of BPLSH is presented in Algorithm 1. The inputs of the algorithm are a training dataset (T) and a set of
hash function families (G). The output of the algorithm is a subset of the selected instances. Lines 2-9 correspond to the first
phase previously mentioned, that is, the bucket id of each instance in each layer is independently determined and stored. The
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Fig. 2. Example of a homogeneous case for step III In this example, L is 10. (a) x;, its surrounding instances, and their similarity index values. x; and its
neighbors belong to the same class. (b) Because of the homogeneity of x; and its neighbors, x; is retained and the neighbors with SimIndex >= 2 are considered
as interior-redundant instances and removed from the dataset.
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Fig. 4. Example of a heterogeneous case for step V (L is 10). (a) Heterogeneous instances. (b) The nearest neighbors belonging to the opposite classes are
preserved. As x; is not quite close to the opposite class (its similarity index is less than L), almost identical instances to the current instance (instances that
belong to class y; and are quite close to x;) are considered as interior-redundant ones and are removed from the training dataset.

time complexity of the first phase is O(n x d x M x L), where n is the number of samples, d is the number of features of the
dataset, M is the number of hash functions (hyperplanes) in each layer, and L is the number of layers.

The second loop of the algorithm (lines 10-42) corresponds to the second phase. Unlike the first phase, all variables have
an integer data type. The time complexity of this step depends on the distribution of instances and their class diversity, in
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Fig. 5. Synthetic dataset and refined subsets for different values of M and L. BPLSH first hashes all the instances into buckets regardless of their labels and is
based on only their closeness. In the second phase, border instances are identified by considering both the similarity index and the labels of instances. The
number of buckets is a function of M and L.

addition to the number of instances. If all instances are identified as interior ones, BPLSH will not need to check all of them,
significantly reducing the time complexity. In contrast, if all instances are recognized as border instances and no instance is
removed, the time complexity will increase. The lower bound of the time complexity is O(n), when neighbors of all instances
are homogeneous, and the upper bound is O(n x N), when all instances lie on the boundaries of classes. N is the average
number of neighbors for each instance.

4.2. Parameter analyses of BPLSH

To provide a better understanding of the behavior of the proposed method, this section illustrates how its input param-
eters, namely the number of hash functions (M) and hash function families (L), affect the resulting subsets. To do so, a syn-
thetic two-dimensional dataset that contains 30,141 instances with three classes is produced (Fig. 5a), and BPLSH is run for
different values of M and L. The implementation was run in MATLAB 2019' on a computer with an Intel(R) CoreTM i7-8700
CPU @ 3.6 GHz and 32 GB RAM.

Figs. 5b-5e show the refined subsets for M € {60, 100} and L € {10, 30}. It is axiomatic that BPLSH has mainly eliminated
the interior-redundant instances and preserved the patterns located near the decision boundaries. The buffer of the border
instances narrows and the number of internal samples rises as M increases from 60 to 100. This is because bucket sizes and
proximity regions decrease as M grows. Furthermore, the number of internal instances decreases when L increases from 10
to 30 because homogeneous proximity regions that filter out interior instances become bigger and the similarity index of
instances in the homogeneous proximity regions increase as L grows. It is noteworthy that if M is set to a very large value,
the proximity region’s size and the average number of neighbors of instances significantly diminishes; thus, BPLSH will obtain
a microscopic view (very local view) over patterns, and its ability to distinguish border instances from internal ones substan-
tially reduces.

Tables 1 and 2 indicate how the input parameters (M and L) influence the preservation rate (i.e., the fraction of the select
instances to the whole dataset) and execution time. There is a visible trend toward a lower preservation rate for an increase
in M and L. Additionally, the execution time of BPLSH on the dataset decreases as M grows. This is because when M increases,
bucket sizes decrease, the number of instances with the homogeneous proximity region rises, and thus fewer instances need
to be evaluated to find border samples.

T The source code of BPLSH can be found in https://github.com/mohaslani/BPLSH.
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Table 1
Preservation rate (%).

Number of hash functions families (L) Number of hash functions

(M)
20 60 100
10 40.52 18.38 13.61
20 37.16 17.04 11.65
30 33.56 16.13 10.78
Table 2
Execution time (sec.).
Number of hash functions families (L) Number of hash
functions (M)
20 60 100
10 2.12 1.64 1.56
20 5.52 3.20 2.71
30 9.48 4.76 3.91

5. Experimental study 1: publicly available datasets

In this section, the effectiveness of BPLSH is verified by comparing it with other methods on different datasets. To this end,
the characteristics of the utilized datasets are first explained. Then, the performance of BPLSH for different values of M and L
is presented. Finally, BPLSH is benchmarked against three representative instance selection methods, namely NPPS [41],
SVMKM |[3], and CBCH [7], in terms of preservation rate, classification error, and execution time. It must be highlighted that
the performance of the SVM on the original training sets (NolS, no instance selection method is used) is also presented to
provide a better comparison.

As the number of selected instances is a dependent variable in BPLSH, NPPS, SVMKM, and CBCH, it must be assessed
together with classification accuracy at the same size. Therefore, the comparative analysis is performed using the Pareto
optimality concept [17] and the normalized Euclidean distance to the ideal point [29]. The experiments are conducted on
a computer with an Intel(R) CoreTM i7-8700 CPU @ 3.7 GHz and 32 GB RAM in MATLAB 2019.

5.1. Datasets

The experiments are performed on some benchmark datasets from the UCI? and KEEL® repositories, as well as on a sim-
ulated dataset. Table 3 lists the number of instances of the datasets along with the name of the resource that each has obtained.
All the datasets contain more than 1,000 instances; the last one (Skin Segmentation) is substantial as it has over 200,000 sam-
ples. We believe that these datasets are representative of a range of classification problems with regard to scale and provide a
comprehensive evaluation of the methods.

5.2. Results and discussion

For an unbiased and reliable evaluation of the instance selection methods, a repeated stratified g-fold cross-validation
scheme is used. In this scheme, a given dataset is partitioned into q exclusive folds, and each time, g-1 folds (training set)
are utilized to train the SVM after an instance selection method is applied to them. The remaining fold is used as a test
set to estimate the predictive performance of the SVM. Each fold is employed once as a test set, and the entire process is
repeated r times to reduce the influence of partitioning the datasets. The average over folds and repetitions is reported as
the final values of the aforementioned measures. Because of the r repetitions, this scheme yields lower variance than the
non-repeated version. In the experiments, g and r are set to 10 and 5, respectively.

Two measures for estimating the performance of the instance selection methods, the classification error on the test set
and preservation rate, are calculated according to Eqs. 2 and 3, respectively. In these equations, Ny is the number of
instances in the test set, N is the number of correctly classified instances of the test set by the SVM, Nz is the total number
of training instances, and Nsr is the number of training instances that are selected.

2 https://archive.ics.uci.edu/.
3 http://keel.es/.
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Table 3
Datasets.
Datasets # Instances Repository
CMC 1,473 ucl1
Banana 5,300 Keel
Indoor Movement Prediction 13,197 ucl
Synthetic Dataset 14,000 -
HTRU2 17,898 ucl
Magic Gamma Telescope 19,020 Keel
Credit Card 30,000 uct
Electricity Board 45,781 ucl
Skin Segmentation 245,057 ucl
Table 4
Optimized values of hyperparameters obtained by Bayesian optimization.
Datasets Kernel Function Kernel Scale Box Constraint
CMC Gaussian 1.6 24.1
Banana Gaussian 0.2 43
Indoor Movement Prediction Gaussian 0.2 1.1
Synthetic Dataset Gaussian 1.8 2924
HTRU2 Gaussian 0.3 213
Magic Gamma Telescope Gaussian 0.6 925.1
Credit Card Gaussian 1.0 10.6
Electricity Board Gaussian 0.05 8.3
Skin Segmentation Gaussian 0.04 15.2
. . N
Classification error = 100 — —= x 100 (2)
Nre
. N
Preservation rate = % x 100 3)
TR

To achieve the best performance of SVMs on the datasets, their hyperparameters, namely the kernel function (Gaussian,
polynomial, and linear), kernel parameter, and box constraint, are optimized via Bayesian optimization [38]. Table 4 lists the

2
il
-z
Y

optimized values of the hyperparameters. Gaussian k(x;, x;) = exp( ) is the best kernel function in all datasets, where

x; and x; are the i and j™ training samples and 7 is a kernel scale. It must be underlined that the same optimal hyperparam-
eters are used in all the instance selection methods to ensure that final results are not affected by the hyperparameter values.

As BPLSH performance is a function of both the input parameters (M and L) and the dataset, they have no unique best
values in all the datasets. Therefore, 18 different configurations for M and L, where M € {10,30,50,70,90,110} and
L € {10,20,30} are evaluated to present the sensitivity of BPLSH to the input parameters and to find their optimal values
in each dataset. These configurations are chosen by considering the limited available computational resources and to prevent
creating excessive buckets. The average preservation rate and classification error for the configurations are shown in Figs. 6
and 7, respectively. The original classification error of SVM without using any instance selection method (NolS) is presented
in Fig. 7.

The following points can be made based on Figs. 6 and 7. In terms of maintaining the original classification accuracy,
BPLSH can achieve data reduction without substantial loss of the discriminatory power of the SVMs. In most datasets
(CMC, Banana, Indoor Movement Prediction, HTRU2, Magic Gamma Telescope, Credit Card, and Electricity Board), the preser-
vation rate decreases as L increases. Moreover, the classification error arises from the increase in L for small values of M. This
is because the buffer of border instances narrows and the number of preserved internal instances significantly decreases
when L grows, which is visible when comparing Figs. 5b-5c or Figs. 5d-5e. Therefore, the chance of losing border instances
and damaging the extent of each class increases. This is particularly applicable for M = 10 in Skin Segmentation. Moreover, in
all the datasets except Banana, the classification error is almost constant over a wide range of M, i.e., setting the parameter M
is fairly easy.

We conduct a comparative analysis of BPLSH with NPPS, SVMKM, CBCH, and NolS. NPPS, which is based on k-nearest
neighbors (using Euclidean distance), has an input parameter of the number of neighbors (k). SVMKM and CBCH, which
select informative instances via k-means clustering, have the number of clusters (c in SVMKM and p in CBCH) as their input
parameters. The parameters k, ¢, and p significantly affect the performance of their corresponding methods, and there is no
unique optimal configuration for them in all the datasets. Therefore, to conduct a fair comparison and ensure that (near)
optimal performance of NPPS, SVMKM, and CBCH are achieved, they are run using different values of
k € {10,20, 50,100, 200,500, 1000}, c € {5,10, 15,20, 30, 50, 100, 200, 300, 500, 1000}, and p € {5,10,20,30,50,100}. Fur-
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Fig. 6. Comparison of preservation rate for different configurations of BPLSH over the datasets.

thermore, the comparison is made by simultaneously considering the classification error and preservation rate; this is done
because an ideal instance selection method should yield the lowest error while retaining the lowest number of instances. It
should be noted that k-means++ [5], as one of the most optimal variants of the k-means algorithm, is employed in SVMKM
and CBCH. Fig. 8 shows a comparison between BPLSH, NPPS, SVMKM, CBCH, and NolS for different values of the input param-
eters over the datasets.

The figure indicates that BPLSH obtains the lowest preservation rate in comparison with NPPS, SVMKM, and CBCH in most
of the datasets (CMC, Banana, Indoor Movement Prediction, HTRU2, Magic Gamma Telescope, Credit Card, and Electricity
Board). NPPS does not yield convincing classification errors in the Synthetic and Skin Segmentation datasets, although it
results in the lowest preservation rate on average. In addition, none of the methods induce a low preservation rate (less than
50%) in the CMC, Magic Gamma Telescope, and Electricity Board datasets. This is because many instances in these datasets
are located near the decision boundaries. Overall, the classification error is clearly less sensitive to the input parameters than
the preservation rate.

The main issue that arises in Fig. 8 is identifying which method (and with what configuration) obtains the best perfor-
mance in each dataset in terms of both the preservation rate and classification error. Selecting the most effective method
and configuration can be regarded as a multi-objective problem because there are two competing objectives (classification
error and preservation rate) that should be minimized simultaneously [17]. Multi-objective problems usually involve a set of
optimal solutions, rather than a single one, that reflect various trade-offs among competing objectives. Such a set (best-
performing methods and configurations), which is referred to as the Pareto-optimal set, is determined via dominance rela-
tions. h" is a nondominated solution if and only if there does not exist another solution h such that
objective;(h) < objective;(h”) for all i and objective;(h) < objective;(h*) for at least one i. In other words, nondominated
(Pareto-optimal) solutions cannot be improved in one objective without being worsened in another.
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Fig. 7. Comparison of classification errors for different configurations of BPLSH over the datasets.

The Pareto-optimal methods and configurations are shown in Fig. 9. From a comparison of Figs. 8 and 9, more than 50% of
the alternatives are filtered out as non-optimal ones by using the Pareto optimality concept. This simplifies the evaluation of
the methods and configurations. The following points can be observed in Fig. 9:

e BPLSH significantly contributes to the Pareto-optimal sets in all the datasets. This shows its ability to adequately balance
between the preservation rate and classification error.

e BPLSH has outstanding performance in HTRU2 as it completely dominates other methods.

e CBCH is dominated by other methods in most datasets (CMC, Banana, Indoor Movement Prediction, HTRU2, Magic
Gamma Telescope, Credit Card, and Electricity Board), showing its inferior performance in comparison to other methods.

e BPLSH dominates NolS in HTRU2, Synthetic, and Magic Gamma Telescope.

Although using the Pareto optimality concept has eliminated many non-optimal alternatives and simplified comparisons,
it cannot indicate the best single method and configuration. To perform a comprehensive comparison of the optimal alter-
natives and identify a final preferred selection for each dataset, the Euclidean distance between each solution of the Pareto-
optimal set and the ideal case is employed as a measure [29]. The ideal case has a preservation rate and classification error of
almost zero. The closer the point is to the ideal case, the more preferred it is. The performances of the three best points (near-
est to the ideal point) for each dataset are presented in Table 5. It is clear that BPLSH is the leader for all the datasets except
for Synthetic, obtaining the best trade-off between classification error and preservation rate. In Banana, Indoor Movement
Prediction, HTRU2, Credit Card, Electricity Board, and Skin Segmentation, the three best points are obtained by BPLSH, prov-
ing its remarkable performance.
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Fig. 8. Performances of SVMKM, CBCH, NPPS, BPLSH, and NolS in terms of the classification error and preservation rate.

Table 6 compares the total execution times of the methods for the best input values (near the ideal case). The total exe-
cution time is the sum of the time required for instance selection and training the SVM. For NolS, the total execution time
encompasses only the training runtime, as it does not contain any instance selection method and all the training instances
are contributed in the training phase. As is evident from the table, for most of the datasets, BPLSH demonstrates superiority

over the other methods. The results in Tables 5 and 6 support the claim that BPLSH is more effective than NPPS, SVMKM,
CBCH, and NolS on the datasets.

6. Experimental study 2: a dataset of building extraction from the fusion of high-resolution aerial images and point
clouds

This experiment aims to examine the performance of the proposed method in handling a large dataset. To do so, the pro-
posed method is incorporated into the procedure of automatic building extraction from high-resolution aerial images. Pre-
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Fig. 9. Pareto-optimal sets obtained by regarding both the preservation rate and classification error.
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viously, significant effort was devoted to building extraction by using different data resources in photogrammetry and com-
puter vision communities owing to the importance of building maps for a variety of geospatial applications [24,21].

The methods developed for building extraction can be categorized into three classes in terms of the data resources: 1-
optical imagery data, e.g., high-resolution aerial images [14]; 2- active imagery data, e.g., LiDAR [16]; and 3- fusion of optical
and active imagery data [20]. In this experiment, the fusion of high-resolution aerial images and LiDAR is used to compensate
for the weakness of each data source with the strength of the other [47]. Among data fusion-based methods, pixel-based
image classification by using supervised classifiers, particularly SVMs, is a common approach for building extraction [32].
The accuracy of pixel-based building extraction derived by SVMs is attributed to a multitude of factors, and instance selec-
tion is of particular importance. Indeed, the generalization ability and accuracy of SVMs for predicting unseen pixels in test
areas are attributable to the training instances used.
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Table 5
Comparing the performances of the three best points.
Datasets Rank Method and its Classification Preservation
configuration error (%) rate (%)
1th BPLSH (M = 10, L = 30) 46.111 81.762
CMC 2th BPLSH (M = 10, L = 20) 45.712 84.534
3th SVMKM (C = 500) 45.565 92.032
1th BPLSH (M = 10, L = 30) 11.917 21.326
Banana 2th BPLSH (M = 110, L = 20) 13.304 21.012
3th BPLSH (M = 110, L = 30) 16.285 19.613
Indoor 1th BPLSH (M = 10, L = 30) 33.695 47.667
Movement 2th BPLSH (M = 10, L = 20) 31.549 50.669
Prediction 3th BPLSH (M = 30, L = 30) 33.531 49.587
1th SVMKM (C = 100) 0.086 1.61
Synthetic Dataset 2th BPLSH (M = 70, L = 30) 0.061 1.694
3th BPLSH (M = 70, L = 20) 0.049 1.96
1th BPLSH (M = 10, L = 30) 5.164 6.292
HTRU2 2th BPLSH (M = 30, L = 30) 4.455 7.359
3th BPLSH (M = 10, L = 20) 4.157 7.679
Magic 1th BPLSH (M = 30, L = 30) 13.536 51.750
Gamma 2th BPLSH (M = 30, L = 20) 13.079 57.639
Telescope 3th NPPS (K = 10) 12.593 58.602
1th BPLSH (M = 10, L = 30) 19.232 42.568
Credit Card 2th BPLSH (M = 10, L = 20) 18.329 49.218
3th BPLSH (M = 30, L = 30) 18.004 54.597
1th BPLSH (M = 110, L = 10) 0.077 83.485
Electricity Board 2th BPLSH (M = 110, L = 20) 0.071 90.115
3th BPLSH (M =90, L = 10) 0.067 91.602
1th BPLSH (M =90, L = 30) 0.374 1.615
Skin Segmentation 2th BPLSH (M = 110, L = 30) 0.226 1.769
3th BPLSH (M = 110, L = 20) 0.163 2.089

Table 6
Total execution time (instance selection + training) in seconds.
Datasets NPPS SVMKM CBCH NolS BPLSH
CMC 0.33 0.66 0.26 0.25 0.39
Banana 0.35 0.34 0.36 0.32 0.58
Indoor Movement Prediction 4.29 413 414 4.25 4.07
Synthetic Dataset 0.74 0.85 0.40 0.69 0.38
HTRU2 6.66 6.18 6.30 6.38 3.17
Magic Gamma Telescope 240 258 261 263 172
Credit Card 41 98 98 99 30
Electricity Board 279 278 284 283 179
Skin Segmentation 64.0 14.07 8.18 86.32 28.57

In this context, including all the pixels in the training parts of aerial images can reduce the risk of misclassification and
more appropriately characterize the spectral responses of classes. However, this results in a huge number of unnecessary and
redundant training samples, which increases the computational complexity of the training phase of SVMs. This is particularly
true for high-resolution aerial images due to the large number of pixels and spectral correlations between neighboring
pixels.

Many studies on remote sensing have investigated the effect of instance selection on the performance of different clas-
sifiers. However, most of them have only considered the number of training instances and their spatial diversity in the image
space as the key factors for instance selection. For example, in [12], instances were selected by considering the area and/or
distribution of each class in the image space. In [35], a new filter was proposed to ensure the spatial diversity of instances.
The proposed filter eliminates pixels between classes as they may be incorrectly labeled and retains at least one pixel in each
group of neighboring pixels. Although the spatial diversity of instances in the image space can describe the variability of
spectral signatures of classes, the resultant samples may be ineffective for classification as the hyperplanes of demarcation
between classes will be formed in the feature space, rather than the image space, by using border instances [18]. Therefore,
in this experiment, BPLSH is used to identify the informative instances (pixels) in the feature space of a large training dataset
obtained from the fusion of high-resolution aerial images and point clouds.
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Fig. 10. (a) True-Orthophoto and boundary of the study area, (b) nDSM.

6.1. Dataset preparation

The data employed include the True-Orthophoto (in four bands: near-infrared, red, green, and blue), an image-derived
digital surface model (DSM) cloud, LiDAR data, and the footprint of buildings of a small part of downtown Gothenburg.
Fig. 10a shows the True-Orthophoto and the boundary of the study area. All the data are georeferenced in SWEREF99TM
and provided by the Swedish mapping, cadastral, and land registration authority*. The sampling density of the LiDAR data
is 1 point per square meter, and the spatial resolution of both the True-Orthophoto and image-derived DSM is 10 cm. The
image-derived DSM is enhanced by LiDAR data to ensure that it does not contain any gaps.

Several features have been proposed for training SVMs for building extraction. In this experiment, the five features used
are the normalized digital surface model (nDSM), gradient magnitude of the DSM, second spatial derivative (Laplacian) of the
DSM, terrain roughness, and normalized difference vegetation index (NDVI). The nDSM (Fig. 10b), which indicates the height
of each pixel from the ground, is obtained by subtracting the DSM from the digital terrain model (DTM). The DTM itself is
generated by utilizing a progressive morphological filter on the DSM [48]. The gradient magnitude of the DSM, which mea-
sures local height changes, is calculated using Eq. 4, where £ and % are gradients in the x and y directions, respectively. The

Sobel operator, as a discrete differential operator, is used to approximate the gradients in the x and y directions.

. ‘ OF\* (0F\*
Gradient Magnitude = (&) + (a—y) (4)

The second derivative of the elevation model, which enhances sharp changes of height values, is estimated by using a
Laplacian filter with a kernel size of 3 x 3 over the DSM. Terrain roughness, as a quantitative index that characterizes the
heterogeneity in the elevation model, is measured by the method proposed in [37]. In this method, the terrain roughness
index is calculated by averaging the change in elevation between a cell and its neighbors. The NDVI is a widely used remote
sensing index to estimate vegetation growth and biomass. It is calculated using Eq. 5, in which NIR and R denote the reflec-
tance of the near-infrared and red bands, respectively. A high positive value of the NDVI indicates a high amount of green
vegetation.

NIR — R

NDVI = NRR (5)

The normalized values of the aforementioned features of the pixels along with the pixel labels extracted from the refer-
ence data (footprint of the buildings) form the training dataset. The size of the produced training dataset is approximately
1,100,000 samples, with five input features and one output feature (building/non-building).

4 https://www.lantmateriet.se/.
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6.2. Results and discussion

Analogous to experimental study 1 in Section 5, all the results are achieved through the repeated stratified k-fold cross-
validation scheme in MATLAB 2019 on a computer with an Intel(R) CoreTM i7-8700 CPU @ 3.7 GHz and 32 GB RAM. Further-
more, the optimized hyperparameters of the SVM obtained by the Bayesian optimization method are used. The optimized
values for the kernel function, kernel scale, and box constraint, respectively, are Gaussian, 0.6, and 612. In this experiment,
BPLSH is run for M € {10, 30,50, 70,90,110, 130,150} and L € {10, 20, 30,40, 50}.

Fig. 11 shows the effects of M and L on the preservation rate and classification error. It is obvious that BPLSH can signif-
icantly reduce the data by over 85%. The minimum preservation rate is achieved for M = 90 or 110. The classification error is
almost constant over a wide range of M and L; setting input parameters is not difficult. Fig. 12a compares the performances
of BPLSH, SVMKM, CBCH, and NPPS for different values of input parameters by simultaneously considering the preservation
rate and classification error. Parameter k of NPPS is set to 10, 20, 50, 100, 200, 500, and 1000, parameter ¢ of SVMKM is set to
5,10, 15, 20, 30, 50, 100, 200, 300, 500, and 1000, and parameter p of CBCH is set to 5, 10, 20, 30, 50, and 100. As shown in the
figure, NPPS and SVMKM yield the highest classification error and preservation rate, respectively. In contrast, BPLSH appro-
priately balances the two measures. Fig. 12b shows the Pareto-optimal sets. It is seen that BPLSH can dominate SVMKM,
CBCH, and NolS, exhibiting its good performance and its ability to reduce the size of the dataset without affecting the original
classification accuracy (NolS). In addition, it reaches the minimum classification error for the selection ratio of 2.8%. Table 7
compares the performance of the Pareto-optimal points with one another and NolS. Obviously, BPLSH (M = 110, L = 50) can
maintain the original classification error while significantly reducing instances.

Preservation Rate (%)

Fig. 11. Performance of BPLSH in terms of (a) Preservation rate and (b) Classification error.
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Fig. 12. (a) Comparing SVMKM, CBCH, NPPS, BPLSH, and NolIS for different values of input parameters, (b) The Pareto-optimal sets.
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Table 7
Comparing the performances of the three best points with one another and NolS.
Method and its Classification Preservation
configuration error (%) rate (%)
BPLSH (M = 110, L = 60) 0.015 2.677
BPLSH (M = 110, L = 50) 0.014 2.834
NPPS (k = 10) 0.272 0.087
NolS 0.014 100

Table 8
Total execution time (instance selection + training) in seconds.
Method NPPS SVMKM CBCH NolS BPLSH
Total execution time 1174 2283 725 910 509
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) Ellipsoid: SWEREF99
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S
~
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Fig. 13. Building extraction result.

Another aspect to be considered is the total execution time. Table 8 compares the total execution times of different meth-
ods. BPLSH has a significant advantage over the other methods in terms of the speed of handling the large-scale dataset. By
considering the results presented in Fig. 12b and Tables 7 and 8, it is concluded that BPLSH is suitable for integration into the
building extraction procedure and is preferable to other instance selection methods for producing the final map of buildings
in this experiment.

The final building map is produced by applying the SVM, which is trained on the instances selected by BPLSH (M =110, L =
50), to all the pixels of the study area. Furthermore, a morphological opening filter with a circular shaped kernel as the struc-
turing element is applied to the output of the SVM to remove the salt and pepper effects of the pixel-based classification.
Fig. 13 depicts the extracted binary map of the buildings.

7. Conclusion and future work

In this paper, a novel instance selection method, named BPLSH, was designed by adopting some notions of LSH in a unique
and effective manner. BPLSH decimates a dataset by eliminating nonessential instances and preserving border patterns to
speed up the training process of SVMs. It is based on the idea that a border instance has heterogeneous neighbors and is
the closest neighbor to a sample from another class. More specifically, border instances are identified by analyzing the sim-
ilarity index and sample labels. The concept of similarity index was incorporated into BPLSH to measure the closeness of
instances. Using the property of approximate distance-preserving mapping makes BPLSH an effective method for big data
analysis.

The performance of BPLSH was compared with that of four approaches on ten classification problems. Pareto optimality
theory was used in the evaluation procedure to ensure fair comparison. The comprehensive experimental results indicated
that the proposed method has high computation efficiency and strong viability on different datasets. Furthermore, it was
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shown that BPLSH can retain the original classification accuracy while removing unnecessary instances. Considering the
results of the comparative experiments, it can be concluded that BPLSH allows users to obtain small subsets that best balance
between the size of the training set and the discriminatory power of SVMs.

Although BPLSH has shown remarkable performance, there is still room for improvement. The input parameters, M and L,
need to be empirically adjusted depending on the dataset at hand, which is a limitation. In this context, one further devel-
opment is to develop an optimization method for BPLSH that automatically tunes the input parameters. The ability to handle
noisy datasets is another potentially important area for improvement. Noisy instances disrupt the training dataset and neg-
atively impact the classifiers’ performance. BPLSH could be developed such that it improves the quality of the dataset while
also reducing its size. Indeed, some steps can be added to make it robust to the presence of noise in the dataset. Another
potential direction is to evaluate or develop BPLSH for other instance-based learning methods with high memory and com-
putational complexity, such as the k-nearest neighbors classifier.
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