
Selecta Mathematica           (2022) 28:22 
https://doi.org/10.1007/s00029-021-00741-3

SelectaMathematica
New Series

Sparse polynomial equations and other enumerative
problems whose Galois groups are wreath products

A. Esterov1 · L. Lang2

Accepted: 12 November 2021
© The Author(s) 2021

Abstract
We introduce a new technique to prove connectivity of subsets of covering spaces (so
called inductive connectivity), and apply it toGalois theory of problems of enumerative
geometry. As a model example, consider the problem of permuting the roots of a
complex polynomial f (x) = c0 + c1xd1 + · · · + ckxdk by varying its coefficients.
If the GCD of the exponents is d, then the polynomial admits the change of variable
y = xd , and its roots split into necklaces of length d. At best we can expect to permute
these necklaces, i.e. the Galois group of f equals the wreath product of the symmetric
group over dk/d elements and Z/dZ. We study the multidimensional generalization
of this equality: the Galois group of a general system of polynomial equations equals
the expected wreath product for a large class of systems, but in general this expected
equality fails, making the problem of describing such Galois groups unexpectedly
rich.
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1 Introduction andmain results

1.1 Sparse polynomial equations

Consider the set A of integer numbers

0 = a0 < a1 < · · · < ak = a

and the space C
A of all complex polynomials of the form

f (x) = c0 + c1x
a1 + · · · + ckx

ak . (1)

As f travels along a loop in C
A, avoiding the discriminant D = {polynomials wih

less than a roots}, its roots undergo a permutation. The group of all such permutations
GA is called the monodromy group, or the Galois group of the polynomial. It is
naturally a subgroup of the permutation group Sa over a elements.

Remark 1.1 The latter name comes from the fact that GA equals the Galois group
of the corresponding extension of the field C(c0, . . . , ck). In this way the definition
of the group GA extends from polynomials over complex numbers to an arbitrary
field. Over fields of positive characteristic, this group has been thoroughly studied
especially for trinomials (k = 2), but the complete answer is not known so far: [5,6,
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25,26,30]. Awell known related project, originating from [1] and culminating in [2], is
Abhyankar’s identification of many interesting groups as Galois groups of trinomials
whose coefficients are powers of the same parameter. In what follows, we restrict
ourselves to the complex setting.

The following fact is widely known, see e.g. [5,6] or [15] for the algebraic and the
topological proof respectively.

Observation 1.2 If a1, . . . , ak are mutually prime, then GA = Sa .

The assumption here cannot be relaxed: if d := GCD(a1, . . . , ak) is greater than 1,
then the group GA is strictly smaller thanSa . Indeed, the equation f (x) = 0 has the
form f̃ (xd) = 0. In particular, every root y of f̃ gives rise to the oriented necklace of d
roots of f of the form d

√
y. At best, we can expect to permute these a/d necklaces. The

group of permutations of a disjoint union of oriented necklaces is a simple example
of a wreath product.

Definition 1.3 Let S be a finite set, H and G be two groups and ϕ : G → S(S) an
action of G on S. The wreath product H �ϕ G is the semidirect product of HS and
G with respect to the action of G on Hd given by g · f = f ◦ ϕ(g) for any element
f : S → H of HS .

Remark 1.4 Wewillmostly consider the casewhenϕ is injective, that isG is a subgroup
of the group of permutationS(S) on S. In such case, we will simply denote the wreath
product by H �G. This group can be seen as the group of all permutations σ of the set
H × S, satisfying the following properties:

1) σ can be included into the commutative diagram

H × S H × S

S S

σ

where the vertical arrows are the standard projection, and the bottom arrow belongs
to G.

2) The restriction of σ to H × {i} → H × { j} for every i is the multiplication by
an element of H .
In particular, if H is cyclic of order d, then H � Sa is the group of permutations of a
oriented necklaces of length d.

Proposition 1.5 For d := GCD(a1, . . . , ak), we have GA = (Z/dZ) � Sa/d , i.e. the
monodromy groupGA includes all permutations of the roots of the Eq. (1) that preserve
the necklace structure.

It was proved in [9, Theorem 2.1], motivated by the study of linear recurrent
sequences over functional fields. We shall deduce it as a special case of a certain
new general fact about the monodromy of enumerative problems: it is a consequence
of Wreath product theorem 3.7 and Lemma 3.8, see Sect. 3.2.

Remark 1.6 Itwould be interesting to give this fact an algebraic proof and to understand
to what extent it survives the positive characteristic.
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1.2 Systems of sparse equations

Asweobserved, theGalois groupGA of a support set A ⊂ Z obeys a simple dichotomy
dictated by GCD(A). We now discuss the situation of a system of several equations
in several variables. The outcome will turn out to be quite different.

Identifying a point a := (a1, . . . , an) ∈ Z
n with the monomial xa := xa11 . . . xann ,

every finite set P ⊂ Z
n gives rise to the vector space C

P = {∑a∈P caxa} of Laurent
polynomials supported at P . Every such polynomial defines a function on the complex
torus T := (C�)n .

For a tuple of finite sets A := (A1, . . . , An), Ai ⊂ Z
n , a tuple f := ( f1, . . . , fn)

from the space C
A := C

A1 ⊕ · · · ⊕ C
An can be regarded as a system of polynomial

equations f = 0 in the torus T . According to the Kouchnirenko–Bernstein theorem
[4, Theorem A], the number d of solutions of this system equals the mixed volume of
the convex hulls of A1, . . . , An unless the tuple f belongs to a certain proper Zariski
closed subset D ⊂ C

A, called the bifurcation set. As in the previous section, the loops
in C

A\D based at a given tuple f induce a permutation on the set of solutions of the
system f = 0 and give rise to the monodromy/Galois group GA ⊂ Sd .

Theorem 1.7 [15, Theorem 1.5] The Galois group GA equals the symmetric group
Sd , if A is reduced and irreducible in the following sense.

Definition 1.8 A tuple of finite sets A := (A1, . . . , An), Ai ⊂ Z
n , (and the

corresponding system of equations with indeterminate coefficients) is said to be non-
reduced if all sets can be shifted to the same proper sublattice, and reducible if k of
them can be shifted to a rank k sublattice for some k < n.

Example 1.9 The equation with indeterminate coefficients c8x8 + c4x4 + c0 = 0
supported at {0, 4, 8} is non-reduced. A system of the form f (x) = g(x, y) = 0 is
reducible.

Remark 1.10 1) There is no loss of generality in assuming that 0 ∈ Ai for i = 1, . . . , n.
Indeed, we can divide every equation of a system by a certain monomial so that the
resulting system satisfies the above assumption. Since dividing by a monomial does
not affect the roots of the system in the complex torus, the resulting system has the
same monodromy group as the initial one. Therefore, we will always work under this
assumption throughout this paper.

2) Under this assumption, we can interpret non-reduced systems as systems that can
be simplified by amonomial change of variables, and reducible systems as systems that
have a proper square subsystem of equations upon an appropriate monomial change
of coordinates, as in the preceding example.

3) The most natural source of systems of sparse equations comes from the theory
of Newton polytopes, when A1 = · · · = An is the set of lattice points of a lattice
polytope P . Note that even in this case, starting from dimension 3, such systems may
be non-reduced, i.e. the lattice points of the polytope P may not generate the ambient
lattice. Such polytopes are called non-reduced or non-spanning, see e.g. [21] for the
classification up to volume 4 (which extends to the mixed case using [3]).

4) Mind the difference between non-reduced and reducible (i.e. non-irreducible).
The terms reflect the fact that discriminants and other geometric objects, related to
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the system of equations f = 0 for the general tuple f ∈ C
A, tend to be reduced

and irreducible in the sense of algebraic geometry if the tuple A = (A1, . . . , An) has
the property of the same name. See e.g. Remark 3.17 and Theorem 3.21 in [15] for
details. Note that some authors use the terms “lacunary” and “triangular” instead of
“non-reduced” and “reducible”.

1.3 Galois groups of non-reduced systems

The dichotomy between reduced and non-reduced systems is the multidimensional
generalisation of the dichotomygiven by theGCD for the one-dimensional support sets
considered in Sect. 1.1. According to Remark 1.10.2), the assumptions of Theorem 1.7
are optimal, that is the Galois group GA is not the full symmetric group if A is either
reducible or non-reduced. In the present paper, we focus on non-reduced systems and
assume irreducibility (because reducible systems deserve a separate study that would
make use of the results of the present paper).

Let Ñ 	 Z
n be a lattice and Ã := ( Ã1, . . . , Ãn), Ãi ⊂ Ñ , be a non-reduced

irreducible tuple. Then, there exist a lattice N 	 Z
n , a reduced irreducible tuple

A = (A1, . . . , An), Ai ⊂ N , and a proper linear embedding L : N → Ñ such that
Ãi = L(Ai ) for i = 1, . . . , n. We call the tuple A a reduction of Ã.

Remark 1.11 The reduction A of Ã is unique up to affine linear automorphism of N .

Given a reduction A of a non-reduced tuple Ã = L(A), denote by T :=
Hom(N , C

�), by T̃ := Hom(Ñ , C
�) and by φL : T̃ → T the map of tori induced by

L . In coordinates, this is a monomial change of variables that takes every f ∈ C
A

to f̃ (x) := f (φL(x)) ∈ C
Ã. The map assigning f̃ to f is an isomorphism of vector

spaces C
A → C

Ã. As a consequence, we have a natural injection

GÃ ↪→ ker φL � Sd , (2)

see Observation 2.5.
The main interest of this paper is to determine whether (2) is an isomorphism. In

contrast to the one-dimensional case, we will see that the answer depends upon the
support Ã. Already in dimension 2, there exist non-reduced supports Ã for which the
inclusion (2) is proper, see Example 1.13 below. This observation turns the determi-
nation of Galois groups of the form GÃ into an unexpectedly rich and challenging
problem that can be addressed in two steps:

(A) determine the irreducible non-reduced supports Ã for which (2) is an isomor-
phism,

(B) compute the G Ã whenever (2) is a proper inclusion.

Here, we will exclusively address (A) by providing criteria ensuring that (2) is an
isomorphism as well as criteria ensuring that (2) is proper. In particular, we show that
(2) is an isomorphism for a large class of systems of equations. For the sake of this
introduction, we state below a simplified version of our main result in dimension 2.
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For a finite subset B ∈ Z
n , denote the intersection of B with the boundary of its

convex hull by ∂B.

Proposition 1.12 Assume that n = 2, Ã1 = Ã2 =: B, and (with no loss of generality)
that 0 ∈ ∂B. Then, for Ã := ( Ã1, Ã2), the Galois group G Ã equals the expected
wreath product (2) provided that ∂B generates the same sublattice of Z

2 as B.

In Sect. 4, we prove a generalization of this fact (Theorem 4.5 and its stronger
version,Main theorem 4.14) for arbitrary dimension and tuples of non-equal support
sets. For all tuples of the form A1 = · · · = An ⊂ Z

n and more general tuples that we
refer to as analogous, we achieve step (A).

Example 1.13 Consider the non-reduced tuple (Q, Q)with reduction (P, P)where P
and Q are pictured below. Since ∂Q generates a strictly smaller sublattice than Q (if
the latter is shifted so that 0 ∈ ∂Q), Proposition 1.12 does not ensure that the Galois
group is the expected wreath product. Actually, we shall see that it is twice smaller
in this particular case, although we do not know how to compute such non-expected
Galois groups in general.

This can be seen as follows. The monodromy group consists of permutations of
the eight roots along loops in the set C

Q × C
Q\D, where C

Q × C
Q is the space

of systems of equations supported at Q ⊂ Z
2, and D is the bifurcation set (i.e. the

set of all systems with more or less than eight roots). Thus, the monodromy group is
generated by permutations, whose cyclic type is the same as for permutations along
small loops around the components Di of the bifurcation set D.

Applying the description of the irreducible components of the bifurcation set
(Proposition 1.11/4.10 in the arXiv/journal version of [12] respectively) to our case,
we see that D consists of 5 irreducible components: one component (the discrimi-
nant D0) consists of systems with a root of multiplicity 2 (and hence two roots of
multiplicity 2, because Q generates an index 2 sublattice in Z

2), and the other four
components consist of systems with a root at one of the 4 one-dimensional orbits of
the toric variety CP

1 × CP
1 ⊃ (C�)2. Thus, the permutation of roots along a small

loop around D0 consists of two disjoint transpositions.
The other components Di of D correspond to the edges Qi of the convex hull Q.

By the same result from [12], a generic system of equations from Di has several roots
of multiplicity 1 in the complex torus and several roots of multiplicity h at the Qi -orbit
of the Q-toric variety, where h is the lattice distance from the line containing Qi to
Q\Qi . In our case, h = 1 for each of the four edges, so the permutations along small
loops around the other four components of D are trivial.

Thus the monodromy group is contained in A8 ⊂ S8, while the wreath product
(Z/2Z) �S4 is not. Actually, one can manually check that the group GQ ⊂ S8 is the
intersection of (Z/2Z) � S4 with A8, i.e. the Coxeter group D4.
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1.4 Techniques and perspectives

1.4.1 From systems of equations to enumerative geometry: wreath enumerative
problems

The two main characters in the above story are the non-reduced system of polynomial
equations and its reduction. The interrelation between the two is a particular instance
of a general situationwhen an enumerative problem X is a covering of another enumer-
ative problem Y (in a sense that we make precise in the next section). In such general
framework, we call X a wreath enumerative problem, because the monodromy groups
GX and GY and the group of deck transformations D of the covering satisfy the
relation

GX ↪→ D � GY (3)

which encompasses the inclusion (2) for systems of equations.
We shall first study when the general inclusion (3) becomes an equality, and then

apply the resulting criterion (Wreath product theorem 3.7) to systems of equa-
tions as a special case.

1.4.2 From enumerative geometry to topology: inductive connectivity

Properties of the monodromy group of an enumerative problem can often be translated
to topological properties of appropriate varieties. For instance, it is a classical fact that
the k-transitivity of the monodromy group is equivalent to the connectivity of the
k-incidence variety of the problem, see Sect. 2.

In the same vein, belowwe argue that the inclusion (3) is an isomorphism if and only
if the appropriate incidence variety has the expected number of connected components,
see the proof ofWreath product theorem 3.7 in Sect. 3.6. It leads us to consider,
yet more generally, the following topological question:

Given a covering π : X → Y between topological path-connected space and a
subset V ⊂ Y , find general criteria for π−1(V ) to be path-connected.

To that aim, we introduce the notion of (strongly) inductive coverings and prove the
following fact in Sect. 3.5.

Inductive Connectivity Theorem 1.14 (light version) Assume that π : X → Y is a
strongly inductive covering of finite degree. The preimage of a path-connected subset

V
j

↪−→ Y is path-connected if and only if

j∗H1(V , Z) + π∗(H1(X , Z)) = H1(Y , Z).

1.4.3 Plan of the paper

In the context of enumerative problems, the above theorem translates to Wreath
product theorem 3.7, which reduces the surjectivity of the injection (3) to an
equality between certain lattices in integer homology groups.
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We then wish to apply this result to our target special case, when the enumerative
problem is the system of equations with a prescribed tuple of support sets Ã. For this,
we provide combinatorial criteria on the tuple Ã ensuring either the equality or the
non-equality of the aforementioned lattices. These criteria arise after a careful study of
the geometry of A-disriminants and A-resultants, see Sect. 4. The result of this study
is summarized inMain theorem 4.14, whose two-dimensional version is presented
above as Proposition 1.12.

1.4.4 Perspectives

From this point, one can distinguish three further key open questions in the study of
Galois groups of general systems of polynomial equations.

1) If the inclusion (2) is proper, how to compute the Galois groupGÃ? The question
is open even for a system of two trinomials equations of two variables.

2) It is a purely combinatorial, but open and highly non-trivial problem to decide
whether the results of this paper actually allow to achieve (A) for every irreducible
tuple. See Remark 4.36 for a precise combinatorial question.

3) We do not see a straightforward way to apply the technique from the present
paper to the study of the Galois group for reducible tuples (such that k of the sets can
be shifted to the same k-dimensional sublattice). The Galois group is unknown even
for a reducible system of two trinomial equations.

Remark 1.15 We expect that our general study of monodromy groups of wreath
enumerative problems will find applications beyond the special case of systems of
equations, by the following reason.

It is a widely known empirical phenomenon that Galois groups of interesting enu-
merative problems (including the ones mentioned in Example 2.1 below, see for
instance [24,27,29] and [15]) are either imprimitive or “trivial” (i.e. symmetric or
alternating). On the other hand, if the Galois group of an enumerative problem is
imprimitive, then, as a covering, this enumerative problem decomposes into a non-
trivial composition of covering maps, which is close to being a wreath enumerative
problem over a simpler one. Thus, it seems that the study of non-trivial Galois groups
of enumerative problems to a large extent reduces to the case of wreath problems.

2 Enumerative problems

2.1 Enumerative problems

The general enumerative problem consists of a pair of smooth algebraic varieties T
and C with C connected, together with an algebraic set U ⊂ T × C such that the
projection c : U → C is generically finite. The sets T and C are respectively referred
to as the ambient space and the space of conditions of the enumerative problem.

The set U is called the solution space, and the points of the fiber c−1( f ) (as well
as their images under the projection t : U → T ) are called the solutions of the
enumerative problem for the condition f ∈ C .
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For instance, the projection of a complex plane curve U to the horizontal axis C
along the vertical axis T is the simplest example of an enumerative problem:

Here are some other important enumerative problems.

Example 2.1 1) The setting of the Sect. 1.1 can be regarded as an enumerative problem
with T = C, C = C

A, and U defined as the set of all pairs (x, f ) satisfying the
equality f (x) = 0.

2) (Plücker). Let T be the projective plane,C be the space of degree d homogeneous
polynomials on T , andU be the set of pairs (x, f ) such that the plane algebraic curve
f = 0 has a flex at x .
3) (Schubert). Let T be the space of lines in CP

n , C be the space of collections
(V1, . . . , Vk), where Vi is a linear subspace of CP

n of codimension ai , and U be the
set of collections (l, V1, . . . , Vk) such that the line l intersects every Vi . This is an
enumerative problem for

∑
i (ai − 1) = 2n − 2.

4) (Kouchnirenko–Bernstein) Let T be the torus (C�)n ,C be the space of conditions
C

A where A := (A1, . . . , An), Ai ⊂ Z
n , with corresponding space of solutions

U = {(x, f ) | f (x) = 0} in T × C . This is the type of enumerative problem we will
mainly focus on and will refer to it as the A-enumerative problem.

The first step in the study of an enumerative problem is to compute the number
of solutions for a generic condition f ∈ C . This number is called the degree of the
enumerative problem. For the problems in the preceding example, this question was
addressed by the aforementioned authors.

The next natural step is to study the Galois group of the enumerative problem.More
specifically, the projection c : U → C is a covering over a sufficiently small Zariski
open set C◦ ⊂ C , i.e. c−1(C◦) → C◦ is a covering. Denote its total space c−1(C◦) by
U◦ ⊂ U .

Definition 2.2 The monodromy group of the covering U◦ → C◦ is called the mon-
odromy group or the Galois group of the enumerative problem U → C .

Convention The Galois group of the enumerative problem U → C does not depend
on the choice of C◦. Passing from the enumerative problem U → C to U◦ → C◦,
we can and will always assume throughout the paper that every enumerative problem
U → C is a covering.

Under this assumption, the varietyU is smooth. Therefore, the irreducible compo-
nents of U are exactly its connected components, so we shall refer to them simply as
components.

For the last two problems in Example 2.1, the study of theGalois groupwas initiated
in the foundational papers [19] and [31] respectively.
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2.2 Wreath enumerative problems

Consider an enumerative problem U ⊂ T × C and a covering φ : T̃ → T .

Definition 2.3 The preimage Ũ of the solution space U under the covering map
(φ, id) : T̃ ×C → T ×C defines the enumerative problem Ũ → C that we shall call
the φ-wreath over U .

Example 2.4 Let φ : (C�) → (C�) be given by φ(x) = xd , then the φ-wreath over the
enumerative problem of Example 2.1.1

T = (C�), C = C
A, U = {(x, f ) | f (x) = 0}

is the enumerative problem

T̃ = (C�), C = C
Ã, Ũ = {(x̃, f̃ ) | f̃ (x̃) = 0},

where Ã = d · A = {0, da1, . . . , dak}.

Observation 2.5 Consider an enumerative problemU ⊂ T×C of degreed withGalois
group G, and a Galois covering φ : T̃ → T with group of deck transformations D.
Then the Galois group G̃ of the φ-wreath enumerative problem Ũ is contained in
W := D � G.

This observation directly follows from the definitions of the wreath problem and the
wreath group, and is widely known in the algebraic Galois theory (the Galois group of
an iterated finite separable field extension is a subgroup of the corresponding wreath
product, see e.g. [8]). A less straightforward task is to find criteria for the equality
G̃ = W . We present a criterion based on the following notions.

2.3 Powers of enumerative problems

Consider an enumerative problem U ⊂ T × C and let U (k) be the space of tuples
(x1, . . . , xk, f ) ∈ T k × C such that x1, . . . , xk are pairwise distinct solutions in
c−1( f ). If the projectionU → C is a d-fold covering, thenU (k) is a smooth algebraic

set in T k × C , and the projection U (k) → C is a d!
(d−k)! -fold covering. We need the

following well known observation (the case k = 2 is especially important, see e.g.
[19] and [27]).

Observation 2.6 1) The monodromy group of U → C is k-transitive (i.e. capable of
sending any given k-tuple of solutions to any other given k-tuple) if and only if the
monodromy group of U (k) → C is transitive, i.e. U (k) is connected.

2) In particular, the monodromy group of U → C equals the symmetric groupSd

if and only if the monodromy group ofU (d) → C is transitive, i.e.U (d) is connected.



Sparse polynomial equations and other enumerative… Page 11 of 35    22 

3 Inductive connectivity

3.1 Inductive covers and solution lattices

In what follows, all singular homology groups are assumed to be with integer coeffi-
cients, so we omit the coefficient ring in the notation.

Definition 3.1 A covering of path-connected topological spaces π : X → Y is said to
be inductive, if the natural embedding π ′

1(X) → π ′
1(Y ) is an isomorphism (the prime

stands for the commutator subgroup).

Remark 3.2 1) For an inductive covering π : X → Y , the map π∗ : H1(X) → H1(Y )

is injective. Indeed, according to the diagram

π1(X) H1(X)

π1(Y ) H1(Y )

−→
↪→

π∗

−→
, (4)

a non-zero element in the kernel of π∗ would lift to an element in π1(X)\π ′
1(X)

mapping to the kernel of π1(Y ) → H1(Y ), that is π ′
1(Y ).

2) Note that the preceding implication is not an equivalence: if X → Y is the
universal covering of a bouquet of circles, then the map 0 = H1(X) → H1(Y ) is
injective, while 0 = π ′

1(X) → π ′
1(Y ) is not an isomorphism.

3) Every inductive covering is Galois with a commutative deck transformation
group. Indeed, every subgroup H of a group G containing the commutator is normal,
and the quotient G/H is commutative. Applying this fact to the image of π1(X) in
π1(Y ), the sought statements follow from Propositions 1.39 and 1.40 in [20].

4) Note that the preceding implication is not an equivalence: if X → Y is the
non-trivial two-fold covering of the bouquet of two circles, whose restriction to one
of the circles is trivial, then it is Galois with the group of deck transformations Z/2Z,
but not inductive (as the map H1(X) → H1(Y ) is not injective).

Definition 3.3 An inductive covering π : X → Y is said to be strongly inductive, if
the embedding HT

1 (X) → HT
1 (Y ) (see Remark 3.2.1) is an isomorphism (T stands

for the torsion subgroup).

The following sources of strongly inductive coverings will be especially important
for us.

Example 3.4 1) The map (C�) → (C�), x → xd , is strongly inductive.
2) If X → Y is strongly inductive, then so is X × Z → Y × Z .
3) The composition of (strongly) inductive coverings is (strongly) inductive.
4) Conversely, if a (strongly) inductive covering π : X → Y decomposes into

covering maps X → X̃ → Y , then both of them are (strongly) inductive. Indeed,
we have the factorization π ′

1(X) → π ′
1(X̃) → π ′

1(Y ). Since the composition of the
two arrows is an isomorphism by assumption, and each arrow is injective, it is an
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isomorphism as well. Similarly, each arrow in HT
1 (X) → HT

1 (X̃) → HT
1 (Y ) is an

isomorphism.
5) Every covering of a space with commutative fundamental group (in particular,

every connected algebraic group covering over C) is inductive. A particular instance
is given by surjective morphisms π : X → Y between complex tori X and Y of the
same dimension. Since H1(X) and H1(Y ) have no torsion, the covering π is strongly
inductive.

Given an enumerative problem defined by a degree d covering c : U → C , choose
a base point f in C , and denote the set c−1( f ) of its d solutions by S. Consider an
f -pointed loop γ in C whose induced permutation on S is the identity. Then, along
this loop, every solution s ∈ S travels a loop in T , and the homology class of this
loop will be denoted by γs ∈ H1(T ). Ordering the elements γs accordingly to a given
ranking δ : S → {1, 2, . . . , d}, we obtain a vector γδ in H1(T )d .

Definition 3.5 For a given ranking δ, the set of all vectors of the form γδ is called the
solution lattice Hδ ⊂ H1(T )d .

Remark 3.6 1) The solution lattice Hδ is a subgroup in H1(T )d since it is the image of
the homomorphism γ → γδ defined on the kernel of the monodromy map π1(C) →
S(S).

2) The lattices Hδ for various δ differ by the permutations of the multipliers in
H1(T )d .

Wreath Product Theorem 3.7 In the setting of Observation 2.5, assume additionally
that φ is strongly inductive. Then, the inclusion G̃ ⊂ W is an equality if and only if,
for some ranking δ (or, equivalently, for every ranking), we have

H1(T )d = Hδ + φ∗H1(T̃ )d . (5)

The proof is given in Sect. 3.6. The importance of this theorem is that the study of
(non-commutative) fundamental groups is replaced with the study of (commutative)
homology groups. As an illustration of this advantage, we now prove Proposition 1.5
by constructing the solution lattice of the underlying enumerative problem.

3.2 Application to sparse polynomial equations

Proposition 1.5 is a corollary ofWreath product theorem 3.7 and the following
lemma.

Lemma 3.8 In the setting of Example 2.1.1, if GCD(A) = 1, then the solution lattice
equals H1(C

�)a = Z
a.

Proof I. By Observation 1.2, the Galois group of the enumerative problem is full
symmetric, thus the solution lattice is symmetric under the natural action of Sa .

II. It follows from (I ) and Remark 3.6.1 that, once the solution lattice contains
vectors

(1, . . . , 1
︸ ︷︷ ︸

p

, 0, . . . , 0) and (1, . . . , 1
︸ ︷︷ ︸

q

, 0, . . . , 0) ∈ Z
a,
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it contains the vector (1, . . . , 1
︸ ︷︷ ︸

|p−q|
, 0, . . . , 0).

III. For every a j ∈ A, the solution lattice contains the vector

(1, . . . , 1
︸ ︷︷ ︸

a j

, 0, . . . , 0) ∈ Z
a . (6)

To prove this, consider the trinomial g(x) = ε+xa j +xa . It has a j small roots (tending
to 0 as ε → 0) and a−a j other roots. As ε runs a small loop around 0, the small roots
permute in a cycle around 0, and the other roots travel small loops not linked with 0:

Thus, if ε runs a j times around 0, then the roots of g permute trivially, generating
the element (6) in the solution lattice.

IV. Using (II), we can run the Euclidean algorithm on the vectors (6) for all j and
conclude that the solution lattice contains the vector

(1, . . . , 1
︸ ︷︷ ︸
GCD(A)

, 0, . . . , 0).

Since we are given GCD(A) = 1, we have proved that (1, 0, . . . , 0) ∈ Hδ and hence
by (I ) the other vectors of the standard basis are contained in the solution lattice. ��
Remark 3.9 The proof essentially consists of constructing loops in the space of
conditions, generating the sought solution lattice.One could try instead to provePropo-
sition 1.5 by directly constructing loops generating the sought monodromy group, and
observe that this task is drastically more complicated (cf. our subsequent paper [16]).

3.3 Lifting connectivity in covering spaces

Wreath product theorem 3.7, which we used above to prove Proposition 1.5, will
be deduced from the purely topological Inductive connectivity theorem 1.14
given in the introduction, or more precisely from its finer version, Inductive con-
nectivity theorem 3.25 to follow. This finer version is necessary, because its proof
is based on decomposing the covering π into a composition of cyclic covers and
proving the statement by induction on the length of this decomposition (hence the
name “inductive”). As is often the case, we have to strengthen the statement to be
able to prove it by induction. Before making our way towards this stronger version,
Theorem 3.25, let us shortly comment on the lighter version, Theorem 1.14.



   22 Page 14 of 35 A. Esterov, L. Lang

Remark 3.10 1) Since irreducible components of a complex algebraic set are in one
to one correspondence with the connected components of its smooth part, Inductive
connectivity theorem 1.14 may help to prove that the preimage of an irreducible
algebraic variety V ⊂ Y under an algebraic cover X → Y is irreducible, when applied
to the smooth part (or any sufficiently small Zariski open subset) of V .

2) Since in what follows we apply this theorem to algebraic covers, we are fine
with the assumption of finite degree. However, it would be interesting to understand
to what extent one can omit assumptions on the cardinality of a fiber.

Example 3.11 The assumption of strong inductivity cannot be relaxed to inductivity
in Inductive connectivity theorem 1.14. For instance, consider the lens space
Y defined as the quotient of X = (C2\0) by (e2π i/p, e2π iq/p). We have π1(X) =
H1(X) = 0 and π1(Y ) = H1(Y ) = Z/pZ. For every line V ⊂ C

2 through 0, its

image V
j

↪−→ Y generates the same subgroup j∗H1(V ) ⊂ H1(Y ) for all possible
choices of V , but the preimage of V may be reduced or not (and with different number
of components) depending on V .

We now begin our quest for general criteria ensuring that the preimage of a con-
nected subspace under a covering remains connected. Recall that a finite covering of
connected spaces π : X → Y induces the natural transfer map π∗ : H•(Y ) → H•(X)

(and recall that all homology groups are over Z so that we drop the coefficient group
from our notation). At the level of chains, this map sends every singular simplex to
the sum of its preimages. We refer to [20] for more details on covering maps.

Definition 3.12 An element of an Abelian group is primitive if it cannot be written as
the sum of k > 1 copies of another element modulo torsion.

Lemma 3.13 Let π : X → Y be a degree d covering, and V ⊂ Y be path-connected.
If V contains a singular 1-cycle c, such that d · c represents a primitive element in
π∗H1(X), then the preimage U = π−1(V ) is path-connected.

Remark 3.14 Since d · c = π∗π∗c, we have:
– the 1-cycle d · c always represents an element in π∗H1(X);
– its primitivity in π∗H1(X) is equivalent to the primitivity of π∗c in the group

H1(X)/ ker π∗ (and actually the latter restatementwill bemostly used inwhat follows).

Proof Since every singular 1-cycle in a path-connected space is homologous to a loop,
we can assume with no loss in generality that the cycle c in V is a loop, pointed at
some point y. Thus the lemma is reduced to the following special case. ��
Lemma 3.15 Letπ : X → Y be a degree d covering, let c be a loop in Y , and denote by
b the singular 1-cycle π∗c in X. If b represents a primitive element in H1(X)/ ker π∗,
then its support set |b| is path-connected.

Before proving this fact, we illustrate its statement with a simple example.

Example 3.16 Let X be a genus 3 surface as pictured in Fig. 1 and Y be its (genus
2) quotient by the rotation of 180◦ about the central vertical axis such that the two
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a1 a2 a3

a4

a5 a6 b1 b2 b3 b4

X Y

Fig. 1 Lifting connectivity in the double covering π : X → Y

orange cycles in X are mapped to the orange cycle in Y . Let us introduce the bases
ai in H1(X) and b j in H1(Y ) as shown on the figure. Then π∗ sends a1 to b1, a2 and
a6 to b2, a3 and a5 to b3, and a4 to 2b4. So its kernel is generated by a2 − a6 and
a3−a5, and the quotient H1(X)/ ker π∗ can be identified with the sublattice generated
by b1, b2, b3 and 2b4 in H1(Y ). The class of the disconnected π∗b2 = a2 + a6 in this
sublattice is represented by b2 + b2 = 2b2, which agrees with its imprimitivity (it
is a non-trivial multiple of the element b2 in the same sublattice). The class of the
connected π∗b4 = a4 in this sublattice is represented by 2b4, which agrees with its
primitivity in this sublattice (because b4 is not in this sublattice). Both phenomena
illustrate Lemmas 3.15 and 3.13.

Proof of Lemma 3.15 Assume towards the contradiction that b is the sum of non-zero
1-cycles b1 and b2 with disjoint support sets, covering the loop c with degrees k1
and k2 respectively. Denote GCD(k1, k2) by k, and ki/k by k′

i . Choose an integer
decomposition 1 = n1k′

1 + n2k′
2. Then, we have the identity

(k′
1 + k′

2) · (n1, n2) = (1 − n2k
′
2 + n1k

′
2, n2k

′
1 + 1 − k′

1n1)

= (1, 1) + (n2 − n1) · (−k′
2, k

′
1) = (1, 1) mod (−k′

2, k
′
1).

Taking the formal dot product of the vector (b1, b2) with the two sides of this identity,
we have

b = b1 + b2 = (k′
1 + k′

2) · (n1b1 + n2b2) mod g, (7)

where g = k′
2 · b1 − k′

1 · b2. Since the projection π∗(bi ) equals ki · c as a singular
1-cycle (and all the more so as a homology 1-cycle), we have k2 ·b1−k1 ·b2 ∈ ker π∗.
Dividing the latter element by k, we conclude that g is a torsion element of the group
H1(X)/ ker π∗. Thus (7) contradicts the primitivity of b in H1(X)/ ker π∗. ��

Under few mild additional assumptions, we can strengthen the statement of
Lemma 3.13 by replacing primitivity with a weaker property.

Definition 3.17 An element of an Abelian group is weakly primitive if it cannot be
written as the sum of k > 1 copies of another element.
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Lemma 3.18 Let π : X → Y be a degree d covering, and V ⊂ Y be path-connected.
Assume additionally one of the following:

- d is prime;
- the covering π is Galois.

If V contains a singular 1-cycle c such that d ·c represents a weakly primitive element
in π∗H1(X), then the preimage U = π−1(V ) is path-connected.

As well as Lemma 3.13, this one follows from the appropriate version of
Lemma 3.15 below.

Lemma 3.19 Let π : X → Y be a degree d covering, let c be a loop in Y and denote
by b the singular 1-cycle π∗c in X. Assume additionally one of the following:

- d is prime;
- the covering π is Galois.

If b represents a weakly primitive element in H1(X)/ ker π∗, then its support set |b| is
path-connected.

Proof If d is prime, then k = 1 and thus g ∈ ker π∗ in the proof of the original
Lemma 3.15.

If π is Galois, then its group of deck transformations acts transitively. In particular,
it acts transitively on the connected components s1, . . . , sk of |b| and on the summands
of the respective decomposition b = b1 + · · · + bk, |bi | = si . Thus the push-forward
π∗bi does not depend on i , and we have bi − b j ∈ ker π∗ for all i and j . This implies
b = k · b1 mod ker π∗. In particular, we have k = 1, because b is weakly primitive in
H1(X)/ ker π∗. ��

In the target case of algebraic groups, the observations of this section simplify as
follows.

Corollary 3.20 Let π : X → Y be a covering of connected Lie groups. Let V ⊂ Y be
path-connected. If V contains a singular 1-cycle c whose preimage π∗(c) represents a
weakly primitive element in H1(X), then the preimageU = π−1(V ) is path-connected.

Proof At the level of fundamental groups, the map π1(X) → π1(Y ) is injective for
any connected covering π : X → Y . Moreover, since the fundamental groups of
Lie groups are commutative, we have π1(Y ) = H1(Y ), and the diagram (4) ensures
that π∗ : H1(X) → H1(Y ) is injective as well. In this case ker π∗ is trivial, and the
statement follows from Lemma 3.18, because a covering of Lie groups is Galois. ��
Remark 3.21 In the present work, X and Y will be complex tori, so the absence of
torsion in their homology identifies primitivity with weak primitivity. However, for
general algebraic groups, the torsion (and thus the difference between the two notions
of primitivity) is non-trivial and important for their geometry.

3.4 Inductive connectivity

Our aim here is to create a context in which we could apply the results of the preceding
subsection to a chain of covering maps . . . → X2 → X1 → Y to prove by induction
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on k that the preimage of a certain path-connected V ⊂ Y in Xk is path-connected. In
this way we shall prove Inductive connectivity theorem 1.14.

Proposition 3.22 Let π : X → Y be an inductive covering, and let U ⊂ X be the
preimage of a subset V ⊂ Y . Then the image of H1(U ) in H1(X) is the intersection
of H1(X) ⊂ H1(Y ) with the image of H1(V ) in H1(Y ).

Proof Observe first that we can treat each path-connected component of V separately
and therefore assume that V is path-connected. In view of the commutative diagram

H1(U ) H1(X)

H1(V ) H1(Y )

−→−→ ↪→

−→

the image of H1(U ) in H1(X) is contained in the intersection of H1(X) ⊂ H1(Y )

with the image of H1(V ) in H1(Y ). Since V is path-connected by assumption, the
containment in the opposite direction is equivalent to showing that, for any loop c in
X pointed at x ∈ U such that the homology class [π∗(c)] belongs to the image of
H1(V ) in H1(Y ), the homology class [c] belongs to the image of H1(U ) in H1(X).

For c as above, the loop π∗(c) in Y is homotopic to the product of a loop b in V
(representing the same element in the image of H1(V )) and a loop h representing an
element of the commutator π ′

1(Y ). By the inductivity of the covering, h is the image
of a loop g representing an element of the commutator π ′

1(X). The homotopy between
the loops π∗(c)h−1 and b lifts to the homotopy between the loop cg−1 and a certain
loop γ inU covering b. Since g belongs to π ′

1(X), it follows that [c] = [
cg−1

] = [
γ
]

belongs to the image of H1(U ) in H1(X). ��

In particular, for every subgroup L ⊂ H1(X), this proposition implies the following.

Corollary 3.23 Let π : X → Y be an inductive covering, and let the subset U
i

↪−→ X

be the preimage of a subset V
j

↪−→ Y . If j∗H1(V ) + π∗L generates π∗H1(X), then
i∗H1(U ) + L generates H1(X).

Proof By assumption, any element x ∈ π∗H1(X) can be written as a sum x = v + �

with v ∈ j∗H1(V ) and � ∈ π∗L . In particular, we have that v = x − � is an element
of π∗H1(X). By Proposition 3.22, v is an element in π∗

(
i∗H1(U )

)
. It follows that any

element in H1(X) is the sum of an element in i∗H1(U ) with an element in L . ��

This motivates the following notion.

Definition 3.24 A path-connected V ⊂ Y is said to be L-inductively connected (or
just inductively connected for L = 0) for a subgroup L ⊂ H1(Y ), if the image of
H1(V ) together with L generates H1(Y ).
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3.5 Proof of Inductive connectivity theorem 1.14

We have reached the goal stated at the beginning of the preceding subsection.

Inductive Connectivity Theorem 3.25 1) Assume that π : X → Y is a strongly induc-

tive covering of finite degree, and that V
j

↪−→ Y is (π∗L)-inductively connected for

some subgroup L ⊂ H1(X). Then, the preimageU := π−1(V )
i

↪−→ X is L-inductively
connected.

2) In particular, if j∗H1(V ) + π∗(H1(X)) = H1(Y ), then U is path-connected.
3) Conversely, if j∗H1(V ) + π∗(H1(X)) �= H1(Y ), then U is path-disconnected.

Proof We first prove 1) for a covering of prime degree p > 1. Since π∗ : H1(X) →
H1(Y ) is injective and restricts to an isomorphism on the torsion part, the Smith normal
form for this injection provides us with two minimal sets of generators a1, . . . , ak and
b1, . . . , bk of H1(X) and H1(Y ) respectively such that a1 and b1 are not torsion
elements and such that π∗ is given by

π∗(a1) = p · b1 and π∗(a j ) = b j for j ≥ 2.

In particular, the following conditions are equivalent for a singular 1-cycle c in V :

– [p · c] is a primitive element in π∗H1(X);
– [c] is primitive in H1(Y ) and not contained in π∗H1(X).

To see this, write [c] = (λ1, . . . , λk) in the coordinates provided by b1, . . . , bk
and assume that b1, . . . , b� are the non-torsion elements among them (� ≤ k). On
the one hand, the class [c] is primitive and not in π∗H1(X) if and only if the vector
(λ1, . . . , λ�) is primitive and λ1 is not divisible by p. On the other hand, the class [p ·c]
is primitive in π∗H1(X) if and only if the vector (λ1, pλ2, . . . , pλ�) is primitive. The
two properties are therefore equivalent.

Since j∗H1(V ) + π∗(L) generates H1(Y ), and π∗(L) ⊂ π∗(H1(X)), there exists
at least one cycle c that satisfies one of the two equivalent conditions above. It follows
from Lemma 3.13 thatU is path-connected and from Corollary 3.23 that i∗H1(U )+L
generates H1(X). The subspace U ⊂ X is therefore L-inductively connected.

Now we can prove 1) for a covering of an arbitrary degree.
We first show that π can be written as a composition of strongly inductive cov-

erings whose respective degrees are prime numbers. Indeed, the inclusion of lattices
H1(X)/HT

1 (X) ⊂ H1(Y )/HT
1 (Y ) admits the Smith normal form and thus extends

to an increasing filtration of lattices Li , such that the index of every two consecutive
lattices Li and Li+1 is prime. Since path-connected coverings π̃ : X̃ → Y such that
π factorizes through π̃ are in correspondence with the subgroups G < π1(Y ) con-
taining π∗(π1(X)) (see [20, Theorem 1.38]), the filtration of lattices Li gives rise to
a decomposition of the covering π into a sequence of spaces Xi and covering spaces
between them. These are strongly inductive by Example 3.4.4. The degrees of these
coverings are prime, because the degree of a strongly inductive π̃ , which is given by
the index of π∗(π1(X)) in π1(Y ), equals the index of H1(X) in H1(Y ), and further
the index of H1(X)/HT

1 (X) in H1(Y )/HT
1 (Y ).
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Now, for every intermediate covering X
πi−→ Xi

π̃i−→ Y we can deduce by induction
on i that the set π̃−1

i (V ) ⊂ Xi is πi∗(L)-inductively connected. The step of the
induction is the statement 1) of the theorem for the prime degree covering Xi+1 → Xi ,
which we have already proved.

The statement 2) is a special case of 1) with L = H1(X). For the statement 3),
the subgroup j∗H1(V )+π∗(H1(X)) is contained in a strict subgroup of H1(Y ). In

particular, the subgroup generated by π1(V ) and π∗(π1(X)) in π1(Y ) is contained in
a strict subgroup G ⊂ π1(Y ). Therefore, the covering π factors through the strongly
inductive covering π̃ : X̃ → Y associated to G with the property that j∗H1(V ) +
π∗(H1(X)) ⊂ π̃∗(H1(X̃)).

Assuming to the contradiction that Ũ := π̃−1(V ) is path-connected,we can connect
two of the preimages of y ∈ V through Ũ with a path γ . We claim that the loop π̃(γ )

represents a cycle in H1(V ) outside π̃∗(H1(X̃)), leading to a contradiction. Thus, the
set π̃−1(V ) is not path-connected and so is π−1(V ), as π factors through π̃ .

It remains to prove the above claim. Assume to the contradiction that π̃(γ ) repre-
sents a cycle in π̃∗(H1(X̃)). Then, the loop π̃(γ ) is homotopic to the product a · b
of a loop a ∈ π̃(π1(X)) with a commutator b ∈ π ′

1(Y ), both based at y. Since
a ∈ π̃(π1(X)) and π̃ is inductive, we can lift a and b to loops c and d based at the
starting point x of γ . Therefore, the homotopy between a · b and π̃(γ ) lifts to an
homotopy between c · d and a loop based at x and covering π̃(γ ) once. Since there is
only one lift of π̃(γ ) starting at x , it follows that γ is a loop. This is a contradiction. ��

3.6 Proof ofWreath product theorem 3.7

The inclusion G̃ ⊂ D � G makes the sought equality G̃ = D � G equivalent to the
numerical one |G̃| = |D � G| and, furthermore to

∣
∣(D � Sd)/G̃

∣
∣ = |Sd/G|, (8)

since the right hand side equals
∣
∣(D � Sd)/(D � G)

∣
∣.

In order to prove (8), we will interpret the two sides of this equality as the numbers
of connected components of certain enumerative problems, derived from the initial
one. Namely, denote the projections ofU ⊂ T ×C to T andC by t and c respectively,
and consider the following objects:

– the smooth algebraic set V := U (d) ⊂ T d × C , that is the set of all tuples
(x1, . . . , xd , f ) such that x1, . . . , xd are the (arbitrarily ordered) points of the fiber
c−1( f ).

– the covering π : T̃ d × C → T d × C ;
– the preimage Ṽ = π−1(V ), that is the set of all tuples (y1, . . . , yd , f ) such

that y1, . . . , yd are d points of the fiber φ−1 ◦ c−1( f ) such that φ(y1), . . . , φ(yd) are
pairwise distinct.

Choosing a base point f ∈ C with fiber S := c−1( f ), a ranking of this fiber
δ : S → {1, 2, . . . , d} defines

– the base point fδ := (δ−1(1), . . . , δ−1(d), f ) in V ,
– the component of V containing fδ (we denote it by Vδ),
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– the natural action of the symmetric group Sd on S, its induced action on the
fiber of the covering V → C , and the induced embedding of the monodromy group
G ⊂ Sd .

The regular action of the group Sd on a fiber of the covering V → C restricts
to the natural action of the monodromy group G ⊂ Sd and the orbits of G are in
correspondence with the components of V . This is because, by the definition of the
action, two points of the fiber are in the same orbit if and only if they can be connected
with a path in V . In particular, V has |Sd/G| components.

Similarly, the regular action of D � Sd on a fiber of the covering Ṽ → C restricts
to the natural action of the monodromy group G̃ ⊂ D �Sd , and the orbits of the latter
are in correspondence with the components of Ṽ . In particular, Ṽ has

∣
∣(D � Sd)/G̃

∣
∣

components.
As a result, the equality (8) is equivalent to the fact that every component Vδ

of V is covered with a unique component of Ṽ . The latter is equivalent to (5) by
Inductive connectivity theorem 3.25, applied to the covering π and the set Vδ .
This application is justified by the following observations:

– The covering π is (strongly) inductive if and only if the covering φ is;
– Denoting the projections of V to T d and C by t and c respectively, c∗ surjectively

maps π1(Vδ, fδ) to the kernel of the monodromy map π1(C) → S(S). Thus the
map γ → γδ from the definition of the solution lattice decomposes into lifting the
loop γ to π1(Vδ, fδ) and then mapping the homology class of the lifted loop with
t∗ : H1(Vδ) → H1(T d). In particular, the solution lattice equals t∗H1(Vδ).

As a result, the equality (5) is equivalent to the equality

H1(T
d × C)d = H1(Vδ) + π∗H1(T̃

d × C)

that appears in Inductive connectivity theorem 3.25.

4 Galois groups of systems of sparse polynomial equations

In this section, we state and prove a generalization of Proposition 1.12 that in particular
– completely characterizes tuples A1 = · · · = An ⊂ Z

n such that the Galois
group GA of the corresponding system of sparse equations equals the expected wreath
product;

– extends this result to tuples of support sets that are not equal but similar in a sense
(see the notion of analogous sets below).

As in Sect. 1.2, the tuple of finite sets A := (A1, . . . , An) in the character lattice
Z
n of the complex torus T := (C�)n is assumed to be reduced and irreducible, see

Definition 1.8. The mixed volume of the convex hulls of A1, . . . , An is denoted by d.

4.1 Analogous systems of equations

For a linear function γ : Z
n → Z and a finite set P ⊂ Z

n , let Pγ ⊂ P be the set of
all points where γ attains its maximal value on P .
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Definition 4.1 We say that the sets A1, . . . , An are analogous if, for every γ ∈ (Zn)∗,
there exists a vector subspace Vγ ⊂ R

n such that for all i = 1, . . . , n, the minimal
affine subspace containing Aγ

i is a shifted copy of Vγ .

Equivalently, the sets A1, . . . , An are analogous if the convex hulls of A1, . . . , An

share the same dual fan, see [17, Section 1.5].

Example 4.2 If the convex hulls of A1, . . . , An are equal, or more generally homoth-
etic, then A1, . . . , An are analogous.

Remark 4.3 A tuple of analogous sets of full dimension is always irreducible. A tuple
is analogous if and only if its reduction is analogous, see Remark 1.11.

Let GA ⊂ (Zn)∗ be the (finite) set of all primitive γ such that Vγ is a hyperplane,
and let dγ be the index in Vγ of the minimal sublattice to which each of Aγ

1 , . . . , Aγ
n

can be shifted.

Definition 4.4 Let Ã be an analogous tuple in a lattice Ñ with reduction A (see
Sect. 1.3) given by a linear embedding L : N → Ñ and denote by L∗ the dual
embedding. We say that Ã is ample if the vectors dγ · γ ∈ N∗, γ ∈ GA, together with
the lattice im(L∗) generate N∗.

In particular, a reduced analogous tuple A is always ample, since im(L∗) = N∗.
Note that the property of being ample does not depend on the choice of the reduction.

Main Theorem 4.5 (light version) Let Ã := ( Ã1, . . . , Ãn) be a tuple of finite sets in
a lattice Ñ such that 0 ∈ Ai and denote by � ⊂ Ñ the sublattice generated by the
sets Ãi . Denote also by d̃ the mixed volume of the convex hulls of these sets and let
d := d̃/|Zn/�|.

1) Assume that Ã1, . . . , Ãn are analogous. Then, the monodromy group G Ã of the
system of equations with indeterminate coefficients supported at Ã is isomorphic to
(Ñ/�) � Sd if Ã is ample, and is strictly smaller otherwise.

2)Assume that Ã has a reduction A := (A1, . . . , An) such that every Ai is contained
in the positive quadrant Z

n≥0 of N 	 Z
n and contains the vertices of the standard

simplex (i.e. CAi consists of non-Laurent polynomials and contains the space of affine
linear functions). Then, the monodromy group G Ã is isomorphic to (Ñ/�) � Sd .

Proof (modulo the subsequent Theorem 4.14) essentially repeats Proposition 1.5: we
prove the multidimensional version of Lemma 3.8 (Theorem 4.14 below) claiming
that the solution lattice of the A-enumerative problem is sufficiently large, notice
that the assumptions of both parts of Main theorem 4.5 ensure applicability of
Theorem 4.14 (which is actually applicable to a much wider class of systems), and
then apply Wreath product theorem 3.7. ��

It remains to prove Theorem 4.14. However, the trinomial deformation of a given
polynomial equation from the proof of Lemma 3.8 becomes drastically more com-
plicated in this multidimensional setting, and its construction occupies most of this
section. It is based on geometry of A-resultants and A-discriminants.
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4.2 Resultants

The first homology group H := H1(T ) is the lattice dual to Z
n : the composition of a

loop S1 → (C�)n representing a cycle γ ∈ H and a monomial m : (C�)n → (C�)1 is
a map S1 → (C�)1, and its class r ∈ π1(C

�)1 = Z defines the natural non-degenerate
pairing H × Z

n → Z, (γ,m) → γ · m = r .
Every γ ∈ H , considered as a linear function on Z

n attains its maximum on
Ai at some subset that we denote by Aγ

i . For short, the tuples (A1, . . . , An) and
(Aγ

1 , . . . , Aγ
n ) will be denoted by A and Aγ respectively, and the spaces of systems

of equations C
A1 ⊕ · · · ⊕ C

An and C
Aγ
1 ⊕ · · · ⊕ C

Aγ
n supported at these tuples – by

C
A and C

Aγ
.

The reduced resultant Rred
Aγ is the closure of the set of all tuples g = (g1, . . . , gn) ∈

C
Aγ

such that the system g1(x) = · · · = gn(x) = 0 has a root x ∈ (C�)n . All Aγ

i
by definition can be shifted to the hyperplane ker γ (where γ is considered as a linear
function on Z

n), so the set of solutions of g j = 0 is invariant under the action of the
1-dimensional subtorus Tγ ⊂ (C�)n whose homology embeds in H as Z · γ .

Definition 4.6 A primitive vector γ ∈ H is said to be essential, if the tuple Aγ does
not contain k ≥ 2 sets that can be shifted to the same (k − 2)-dimensional plane. The
set of essential vectors will be denoted by G.
Remark 4.7 The set G is finite: in particular, it is contained in the set of all primitive
exterior normal vectors to the facets of the convex hull of A1 + · · · + An .

The resultant Rred
Aγ is an irreducible hypersurface (see [28]) if and only if γ is

proportional to an essential vector. Then the dimension count shows that, for a generic
tuple g ∈ Rred

Aγ , the zero locus {g = 0} is one-dimensional. Thus its quotient by the
torus Tγ is a finite set, whose cardinality will be denoted by dγ . This number should be
regarded as a natural multiplicity of the resultant Rred

Aγ , and will be explicitly computed
in Theorem 4.9 below.

Definition 4.8 [11] 1) If γ is essential, then the algebraic resultant RAγ is defined as
Fdγ , where F is the irreducible polynomial defining the hypersurface Rred

Aγ , and the
number dγ is the resultant multiplicity, defined above.

2) If γ is not proportional to an essential vector, then by definition the algebraic
resultant RAγ is 1, and its multiplicity dγ equals 0.

The computation of the resultant multiplicty dγ for an essential vector γ is based on
the following observation from [28]. The set I of subsets K ⊂ {1, . . . , n} such that all
Aγ

i , i ∈ K , can be shifted to the same (|K | − 1)-dimensional sublattice, has a unique
element which is minimal with respect to inclusion. Indeed, the set I is not empty since
it contains {1, . . . , n}, and the intersection of two elements of I necessarily belongs
to I , otherwise their union would certify that γ is not essential (see [28] for details).
The minimal element in I will be denoted by Kγ , and the minimal sublattice to which
all Aγ

i , i ∈ Kγ , can be shifted, will be denoted by Lγ ⊂ Z
n .

Let d ′
γ be the index of the lattice Lγ in its saturation L̄γ . The images of the sets

Aγ

i , i /∈ Kγ , under the projection Z
n → Z

n/L̄γ are n − |Kγ | + 1 sets in a lattice of
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dimension n − |Kγ | + 1. Thus, the lattice mixed volume of the convex hulls of these
images makes sense and is denoted by d ′′

γ .

Theorem 4.9 (Theorem 2.23 in [10]) 1) The resultant multiplicity dγ equals d ′
γ · d ′′

γ .

2) For a generic tuple g ∈ Rred
Aγ , among the differentials dg1, . . . , dgn at a point of

the zero locus {g = 0}, the only linearly dependent subtuple is dgi , i ∈ Kγ , and its
corank is 1 (i.e. they satisfy a unique non-trivial linear relation).

Definition 4.10 The tuple (E1, . . . , En) such that Ek := ∅ for k /∈ Kγ and Ek := Aγ

k
otherwise, is said to be the essential tuple defined by an essential vector γ .

We denote by Aγ
ess the essential tuple defined by γ ∈ G, denote the set of all

essential tuples by E , and denote by E0 ⊂ E the set of tuples (E1, . . . , En) ∈ E such
that the convex hull of every Ei has dimension (n − 1).

Note that different vectors γ ∈ G may give rise to the same essential tuple.

Example 4.11 For A1 and A2 as on the picture below, both (−1, 0) and (0,−1) belong
to G and give the same essential tuple (∅, the bottom-left point of A2).

Remark 4.12 1) A vector γ ∈ G satisfies Aγ
ess ∈ E0 if and only if there exists a facet

in every Ai whose primitive normal exterior vector is γ .
2) The map G → E, γ → Aγ

ess , is one to one over E0, i.e. every essential tuple
E ∈ E0 is defined by a unique γ ∈ G, which we denote by γE .

3) If A1, . . . , An are analogous (Definition 4.1), then E0 = E , and Aγ
ess = Aγ . As

a consequence, G and E are in one to one correspondence.

By a harmless abuse of notation, we denote the lift of the algebraic discriminant
RAγ under the natural forgetful projection C

A → C
Aγ

by the same symbol RAγ . Let
R be the set of all hypersurfaces of the form RAγ = 0 in C

A.

Remark 4.13 The terminology “essential tuple” is motivated by the fact that, by con-
struction, two equations RAγ = 0 and RAγ ′ = 0 define the same set inC

A if and only if
γ and γ ′ define the same essential tuple. Thus,R is in one to one correspondence with
the set of essential tuples E (and, by Remark 4.12, also with G when A is analogous).
For E ∈ E , denote the corresponding resultant set in C

A by Rred
E ∈ R.

4.3 Themain result

We consider a reduced irreducible tuple A := (A1, . . . , An) of finite sets in Z
n .

According to Theorem 1.7, the general system of equations supported at this tuple has
Galois groupSd (where d is the generic number of roots of the system, i.e. the lattice
mixed volume of the convex hulls of Ai ).
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However, if this system of equations undergoes a monomial change of coordinates
corresponding to a proper sublattice L ⊂ H , then the Galois group of the resulting
non-reduced system is not symmetric. In order to analyse this Galois group GL,A

usingWreath product theorem 3.7, we should check whether

H⊕d = L⊕d + Hδ, (9)

or, in other words, whether the solution space of the initial system of equations is
L⊕d -inductively connected.

Recall the definition of the solution lattice Hδ in this context. Pick a generic system
of equations f◦ in the space C

A, and order its roots: δ : {x | f◦(x) = 0} → {1, . . . , d}.
Every loop α inC

A pointed at f◦ defines a permutation of the roots. If this permutation
is trivial, then, as the system of equations travels along the loop, its i-th root (with
respect to the order δ) travels along a loop αi in the torus T , and the homology classes
α̃i of these loops define an element α̃δ ∈ H⊕d . The set of all such elements is the
solution lattice Hδ .

We shall prove the following criterion of whether the equality (9) holds for given
A and L . For an essential tuple B ∈ E , define GB to be the set of all vectors γ ∈ G
supporting this essential tuple: Aγ

ess = B.

Main Theorem 4.14 1) Assume that the vectors
∑

γ∈GB
dγ ·γ over all B ∈ E together

with L do not generate the lattice H. Then (9) is not satisfied, and the Galois group
GL,A is strictly smaller than the wreath product (H/L) � Sd .

2) Assume that the vectors dγB · γB over all B ∈ E0 together with L generate the
lattice H. Then (9) is satisfied, and the Galois group GL,A is isomorphic to the wreath
product (H/L) � Sd .

Remark 4.15 1) If the tuple A is analogous, then Remark 4.12 ensures that the set of
vectors fromMain theorem 4.14.1) coincides with that ofMain theorem 4.14.2),
i.e.

∑
γ∈GB

dγ · γ = dγB · γB . Thus, the theorem completely characterizes analogous
tuples satisfying the equality (9).

2) In general, we have the following three increasing classes of tuples, which coin-
cide for analogous tuples:

(a) Tuples A, such that the vectors dγB · γB over all B ∈ E0, generate the lattice;
(b) Tuples satisfying the equality (9);
(c) Tuples A, such that the vectors

∑
γ∈GB

dγ ·γ over all B ∈ E generate the lattice.
We expect that, for general reduced irreducible tuples, (b) is strictly larger than (a).

Regarding the comparison of (b) and (c), see the subsequent Remark 4.36.

4.4 Preliminaries from lattice geometry

In order to prove Main theorem 4.14.2, we aim at constructing enough loops α to
generate H⊕d/L⊕d with the respective elements α̃σ . For this purpose, the following
obvious combinatorial fact will be useful.
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Definition 4.16 For an element u = (u1, . . . , ud) ∈ H⊕d , the sum u1 +· · ·+ud ∈ H
is denoted by

∑
u. The element u is said to be homogeneous if all of its non-zero

entries are equal to each other.

Lemma 4.17 I. Let U ⊂ H⊕d be a subset of homogeneous elements such that the
vectors

∑
u over all u ∈ U do not generate H/L. Then, the set Sd · U (in the sense

of the natural action of the permutation groupSd on the d direct summands of H⊕d )
does not generate the space H⊕d/L⊕d .

II. Let U ⊂ H⊕d be a subset of homogeneous elements satisfying the following:
1) for any u := (u1, . . . , ud) ∈ U with a non-zero entry ui , there exists ũ :=

(ũ1, . . . , ũd) ∈ U
such that ũ j = ui and ũk = 0 for some indices j and k, and
2) the vectors

∑
u over all u ∈ U generate H/L.

Then, the set Sd ·U generates the space H⊕d/L⊕d .

Proof In the setting of part I, the map
∑

sendsSd ·U and L⊕d to the proper sublattice
of H generated by

∑
u, u ∈ U , and L , thus Sd · U and L⊕d also generate a proper

sublattice of H⊕d .
In the setting of Part II, the assumption 1) allows to obtain, starting from a homo-

geneous element u ∈ U with the nonzero entry δ, the element in Sd · U of the form
(δ, . . . , δ, 0, . . . , 0) with at least one zero, then the element (δ, . . . , δ, 0, δ, 0 . . . , 0)
with the same number of zeroes, then, by permuting the difference of the preced-
ing two vectors, the element (0, . . . , 0, δ, 0, . . . , 0,−δ, 0, . . . , 0) with δ and −δ at
arbitrary positions, and finally, adding such elements to the initial u, the vector
(0, . . . , 0,

∑
u, 0, . . . , 0) with

∑
u at an arbitrary position. By the assumption 2),

such vectors together with L⊕d generate H⊕d . ��
Note that Part II does not hold without the assumption 1. Eventually, for this reason,

we shall need the following elementary geometric fact.

Lemma 4.18 Under the assumptions ofMain Theorem 4.14.2, assume that for some
B ∈ E0 and the corresponding γ := γB, every j = 1, . . . , n, and every point a ∈
A j\Aγ

j , we have V (A) = ha · dγ where ha := |γ (a) − γ (Aγ

j )| is the lattice distance
from a to the hyperplane Aγ

j + ker γ . Then the lattice mixed volume of A1, . . . , An

equals 1. In particular, by [13], all Ai are equal to subsets of the set of vertices of the
same elementary lattice simplex up to a shift.

Proof Bymonotonicity of themixed volume, we have V (A) ≥ V
(
a∪Bj , {Bi }i �= j

) =
haVj , where Vj is the (n − 1)-dimensional lattice mixed volume of the convex hulls
of Bi = Aγ

i , i �= j . Since all of these convex hulls are (n − 1)-dimensional (by
definition of E0), the mixed volume Vj is a positive multiple of dγ . Thus, for every j
and a, we have Vj = dγ , and ha = h does not depend on a (and j). In particular, in the
minimal lattice L ′ containing every Bi up to a shift, there exists an elementary simplex
S containing every Bi up to a shift. Thus, up to a shift, every Ai consists of a subset of
the set of vertices of S together with some (possibly none) points at lattice distance h
from L ′ (on the same side from it). In this case, the equality V (A) = ha ·dγ = h ·Vol S
and the monotonicity of the mixed volume imply the existence of a point a0 such that
every Ai consists of a subset of the union of the set vertices of S with a0. This implies
that Vol S = h = 1, otherwise A would not not be reduced. ��
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4.5 Preliminaries from toric geometry

In order to prove Main theorem 4.14.2, we shall need to construct a certain defor-
mation of the system of equations f◦ = 0, which is (slightly) degenerate in the sense
of the theory of Newton polyhedra.

In order to prove the existence of a sought deformation, we briefly recall how to
construct toric compactifications of non-degenerate complete intersections, and how
they degenerate.

Definition 4.19 For a system of polynomial equations f1 = · · · = fk = 0, we denote
the set of its solutions by Z( f ), say that it is a complete intersection if its codimension
equals k, and say that it is regular if 0 is a regular value of the polynomial map
f = ( f1, . . . , fk).

Remark 4.20 1) Adopting a standard harmless abuse of terminology, we characterize
the aforementioned property of the tuple f (not of Z( f ) itself) by saying that Z( f )
is regular.

2) In what follows, fi are Laurent polynomials, and Z( f ) belongs to the complex
torus T .

We consider the character lattice Z
n of the complex torus T = (C�)n and its dual

lattice H = H1(T ). Given a finite set B ⊂ Z
n , a polynomial g ∈ C

B , and a vector
γ ∈ H , we define the γ -leading term of g = ∑

b∈B cbxb as g = ∑
b∈Bγ cbxb; for

generic g ∈ C
B , this is the highest non-zero homogeneous component of g with

respect to the degree deg xb := γ (b).
Similarly, given a tuple of finite sets A = (A1, . . . , Am) in Z

n and a tuple of
polynomials f = ( f1, . . . , fm) ∈ C

A, we define f γ := ( f γ
1 , . . . , f γ

m ). For a generic
tuple f ∈ C

A, the system of equations f γ = 0 defines the regular zero locus Z( f γ ).
Let us briefly recall how the sets Z( f γ ) (over all γ ) can be used to construct a

smooth compactification of Z( f ). We refer to [22] and [23] for terminology and facts
on toric compactifications.

If a collection of vectors V ⊂ H can be completed to a lattice basis, then the set
of all strictly positive integer combinations of these vectors is called the simple cone
generated by V , and its faces are defined as the cones generated by the subcollections
of V . A cone C ⊂ H is said to be compatible with a set A ⊂ Z

n , if the support set Aγ

does not depend on the choice of γ ∈ C . A simple fan � in H is a finite collection of
non-intersecting simple cones covering H and closed with respect to taking faces.

Remark 4.21 Note that, for the sake of brevity, by a simple cone we mean the set of
lattice points in a relatively open simple cone, and by a simple fan wemean a complete
simple fan.

Every simple fan � gives rise to a smooth n-dimensional toric variety X� with an
action of the torus T . Orbits of this action are in correspondence with cones of�. This
correspondence reverses the dimensions and adjacencies and sends the 0-dimensional
cone {0} ∈ � to the dense orbit identified with the torus T , so that T can be regarded
as a subset of X� .
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Theorem 4.22 [22] For every tuple of finite sets A = (A1, . . . , Am) in Z
n, there

exists a simple fan � compatible with each of them (i.e. such that every cone in �

is compatible with each of the sets Ai ). Moreover, given a simple cone C compatible
with every Ai , the fan � can be chosen to contain C.

If the simple fan � is compatible with A, then, for a generic tuple of polyno-
mials f = ( f1, . . . , fm) ∈ C

A, the closure of the algebraic set Z( f ) ⊂ T in the
toric compactification X� is a smooth compact algebraic variety Z( f ). This smooth
compactification splits into its intersections with the toric orbits, and each of these
intersections can be explicitly described by polynomial equations.

Namely, let O be the orbit of X� , corresponding to a cone C ∈ �. This orbit is
the quotient of the torus T by the subtorus TC , whose homology is the vector span of
C ⊂ H . Since the fan is compatible, the tuple f γ does not depend on the choice of
γ ∈ C , so we denote it by f C .

Theorem 4.23 [23] Let � be a simple fan compatible with a tuple A, f ∈ C
A be a

generic system of equations, and C be any cone in �. Then the zero locus Z( f C ) is
regular and the intersection of the closure Z( f ) ⊂ X� with the corresponding orbit
O ⊂ X� is transversal. In particular, Z( f ) is smooth and splits into smooth strata
Z( f C )/TC over all cones C ∈ �.

In what follows, we shall have to deal with generic systems of equations that do
not satisfy the assumption of this theorem. The set of all such systems of equations is
called the A-bifurcation set.

Remark 4.24 In other words, f is in the A-bifurcation set if Z( f γ ) is not regular for
some γ . In particular, the definition of the A-bifurcation set does not depend on the
choice of the fan � compatible with A.

For m = n, the A-bifurcation set is the union of the resultant sets Rred
B ⊂ C

A

over all essential tuples B ∈ E , as described in Sect. 4.2, and the A-discriminant (the
closure of all f ∈ C

A such that Z( f ) is not regular). We now formulate a similar
description for arbitrary m < n, given in [12] (in what follows, we shall particularly
need the case n = m + 1).

Definition 4.25 For a tuple A of finite sets A1, . . . , Am ∈ Z
n , itsCayley configuration

A ⊂ Z
n × Z

m is the set ∪m
i=1Ai × {ei }, where e1, . . . , em is the standard basis in Zm .

The spacesC
A andC

A can be identified by sending a tuple f = ( f1, . . . , fm) ∈ C
A

to the Laurent polynomial F = ∑m
i=1 λi fi (x) of the variables λ and x .

Definition 4.26 1) The Cayley discriminant DC
A ⊂ C

A 	 C
A is the A-discriminant,

i.e. the closure of all F ∈ C
A for which 0 is a critical value.

2) The tuple A is said to be Cayley-effective, if its Cayley discriminant has codi-
mension 1, and Cayley-defective otherwise.

Remark 4.27 1) The latter condition makes sense, because the A-discriminant is a
proper irreducible algebraic set in C

A (see [18]).
2) Assume that the dimension of the affine span of A1 + · · · + Am is smaller than

m, then the results of Section 1 in [28] can be rephrased as follows. The tuple A is
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Cayley-effective if and only if no k sets in the tuple A can be shifted to the same
(k − 1)-dimensional space for 0 < k < m. Under this assumption, the dimension of
the affine span of A1 + · · · + Am equals m − 1, and the Cayley discriminant DC

A is
the A-resultant Rred

A .

A tuple B is said to be a facing of a tuple A = (A1, . . . , Am) of finite sets in
Z
n , if there exists a vector γ such that Bi is either empty or equal to Aγ

i for every
i = 1, . . . ,m. For every facing B, the forgetful projection C

A → C
B is defined by

sending the tuple f of polynomials
∑

a∈Ai
ca,i xa to the tuple f |B of polynomials

∑
a∈Bi ca,i xa . The preimage of the Cayley discriminant DC

B under this projection will
be called and denoted in the same way.

Proposition 4.28 1) For all effective facings B of a tuple A, the irreducible hypersur-
faces DC

B ⊂ C
A are pairwise distinct.

2) Every codimension 1 irreducible component of the regular A-discriminant coin-
cides with the Cayley discriminant DC

B for some effective subtuple B.
3) Every codimension 1 irreducible component of the A-bifurcation set coincides

with the Cayley discriminant DC
B for some effective facing B.

Proof Part 1 follows from the fact (noticed in [11]) that the defining equation of the
hypersurface DC

B non-trivially depends on every coordinate in the space C
B . Part

2 follows from Theorem 2.31 in [11] (which moreover explicitly describes all such
subtuples). Part 3 follows from Proposition 1.11/4.10 in the arxiv/journal version of
[12] (which moreover explicitly describes all such facings). ��
Corollary 4.29 Let A := (A1, . . . , Am) be a tuple of finite sets in Z

n and Aγ be an
effective facing. Then, for a generic system of equations f in the Cayley discriminant
DC

Aγ ⊂ C
A and any other facing B, the zero locus Z( f |B) is regular. In particular, in

a toric compactifictaion X� ⊃ T whose fan� is compatible with A, the closure of the
zero locus Z( f ) is smooth outside the orbit whose cone contains γ , and the closure
of the zero locus Z( f̂ ) for any proper subtuple f̂ of the tuple f is smooth everywhere.

Proof The regularity of Z( f |B) follows from Proposition 4.28, the smoothness of the
closure follows from Theorem 4.23. ��

4.6 Proof of Main Theorem 4.14.2

From the start, we assume that A does not satisfy the assumption of Lemma 4.18,
otherwise d = 1 by this lemma and (9) is satisfied by assumption. The statement
follows then fromWreath product theorem 3.7.

According to Lemma 4.17, it is enough to construct loops α inC
A\{bifurcation set}

such that the corresponding elements α̃σ ∈ H⊕d are homogeneous, and the vectors∑
α̃σ generate H/L . In this section, we shall construct such loops explicitly, starting

from the primitive covector γ = γB , corresponding to an arbitrary essential tuple
B = Aγ ∈ E0, an arbitrary integer j ∈ {1, . . . , n} and an arbitrary point a ∈ A j\Bj .

With no loss of generality, we assume that 0 ∈ Bi for every i = 1, . . . , n (otherwise
we can shift Ai accordingly). We should now make some consecutive choices to
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construct the sought loop. For a given j ∈ {1, . . . , n}, a given a ∈ A j\Bj and given
g = (g1, . . . , gn) ∈ C

B and g̃ = (g̃1, . . . , g̃n) ∈ C
A, define the tuple

f j,t,g(x) := xa + g j (x) + t · g̃ j (x) and fi,t,g(x) := gi (x) + t · g̃i (x)

for any i ∈ {1, . . . , n}\{ j}. We will occasionally denote f j,t,g(x) =: Fj,g(x, t) =:
Fj (x, t) when the dependence in the parameters t and g is clear from the context.

From now on and until the end of this section, we choose generic tuples g =
(g1, . . . , gn) in Rred

B and g̃ = (g̃1, . . . , g̃n) in C
A (which means that subsequently we

shall use certain properties of g and g̃ that are satisfied for all pairs (g, g̃) ∈ Rred
B ×C

A

outside a certain proper Zariski closed subset), and call f1,t0,g = · · · = fn,t0,g = 0 for
small t0 �= 0 the central system of equations. The name is explained by the following
key lemma that, together with Lemma 4.17, proves Main theorem 4.14.2.

Lemma 4.30 Let G : (C, 0) → (CB, g) be a germ of an analytic curve transversal to
the resultant Rred

B at its smooth point g and choose sufficiently small |t0| � ε � 1.
As the argument of G travels −γ (a) times along the loop ε exp(2π is), s ∈ [0, 1], the
roots of the corresponding system of equations

f•, t0,G(ε exp(2π is)) = 0 (10)

permute trivially. Moreover, −dγ · γ (a) of the roots of this system travel a loop in T
whose homology class equals γ ∈ H and the other roots travel a contractible loop.

Remark 4.31 The roots of the family of systems of equations (10) split into “travelling”
roots and “still” ones. If t0 vanishes, the “still” roots hide at infinity, but “travelling”
roots of the resulting family f•, 0,G(ε exp(2π is)) = 0 keep traveling as described in the
lemma. So the only purpose of including monomials with t in the definition of f j,t,g
(and setting this t to be non-zero albeit small) is to drive the “still” roots back from
infinity, while not affecting the itinerary of the travelling roots.

The rest of this subsection is devoted to the proof of this lemma. This is actually the
multidimensional version of step (I I I ) in the proof of Lemma 3.8, but the statement
and the proof are significantly more technical.

I: describing the roots of the central systemof equations as t0 → 0. The polynomials
Fj := Fj,g are defined on the complex torus T ′ = (C�)n × (C�)1 with the standard
coordinates (x, t), and their respective Newton polytopes � j are contained in the
character lattice Z

n × Z
1 of T ′, see Fig. 2 for an example.

Note that every strictly positive linear combination δ of the covectors (0,−1) and
(γ, 0) ∈ (Zn × Z

1)∗ supports the same face �δ
i : this face is the convex hull of

Bi ×{0} ⊂ Z
n ×Z

1. Thus, by Theorem 4.22, the simple cone C generated by (0,−1)
and (γ, 0) can be extended to a simple fan � compatible with the polytopes �i .
Let X be the corresponding smooth toric compactification of T ′. Denote its orbit
corresponding to C by O , and the adjacent codimension 1 orbits corresponding to
the vectors (0,−1) and (γ, 0) by O(0,−1) and O(γ,0) respectively, see Fig. 2 for an
example.
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Fig. 2 An example of the toric compactification X in the case n = 2. On the left, we represent the convex
hull of A1 = A2 with the red edge B := B1 = B2 and the point a. The two figures in the middle represent
the polytopes �i and � j , j �= i , with the red edge B × {0}: the blue facet supports the covector (0, −1)
and the purple ones the covector (γ, 0). On the right, we picture the (real part of the) orbits O , O(0,−1) and
O(γ,0) in X corresponding to the faces of the polytopes � j of the respective colors, and the black curve
F1 = F2 = 0 near O

Denoting by Õ the union of O , T ′ and the two aforementioned codimension 1
orbits, we notice that the polynomials F1, . . . , Fn and t define regular functions on
the open set Õ , because 0 ∈ Bi . We denote these regular functions on Õ by the same
letters.

Lemma 4.32 Let Zi be the closure of the zero locus Z(Fi ) in the toric variety X. Then,
for generic choise of (g, g̃) ∈ Rred

B ×C
A, the following transversality conditions take

place.
1) The intersection of Z1, . . . , Zn and the orbit O consists of dγ points (see Sect. 4.1

for the resultant multiplicty dγ ). Near each of these points x0, the hypersurfaces
Z1, . . . , Zn are smooth and intersect each other transversally along a smooth curve.
This curve is transversal to the closure of O(γ,0) and tangent of order −γ (a) to the
closure of the orbit O(0,−1).

2) If a point x0 ∈ X belongs to the hypersurfaces Zi1 , . . . , Zik and the closures of
the codimension 1 orbits C1, . . . ,Cm, then these k+m hypersurfaces are smooth and
mutually transversal at x0, except for the setting of part (1), i.e. unless x0 ∈ O, the
closure of O(0,−1) is among C1, . . . ,Cm, and k = n.

Remark 4.33 As we shall see from the proof, part 1 is valid for a generic choice of
g ∈ Rred

B and g̃ j ′ ∈ C
Bj ′ for some j ′, even if g̃i are chosen to be 0 for i �= j ′.

Proof Part 2 is a special case of Corollary 4.29, because the resultant Rred
B coincides

with the Cayley discriminant DC
B by Remark 4.27.2.

Transverality of Z1, . . . , Zn and O(γ,0). By Theorem 4.9.2, the differentials of gi ,
i ∈ {1, . . . , n}, at x0 satisfy a unique linear relation, thus the differentials of gi + t g̃γ

i
are linearly independent for generic choice of g̃i . Since gi + t g̃γ

i is the restriction of Fi
to the orbit O(γ,0), this implies transverality of Z1, . . . , Zn and the closure of O(γ,0).

Order of tangency of the sought curve with O(0,−1). This order equals the order
of tangency of the hypersurface Z j = {Fj = 0} with the the intersection of the
hypersurfaces Zi , i �= j , and the closure of O(0,−1). Part 2 ensures that the latter
intersection is transversal and defines a smooth curve. By the definition of its defining
equations, this smooth curve is a shifted one-dimensional torus Tγ ⊂ O(0,−1) 	 T ,
and the restriction of Fj to it equals xa , thus the sought order of tangency equals
−γ (a). ��
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Recall that we are interested in the roots of the central system of equations. Identify-
ing the subtorus t = t0 in T ′ with T , the roots of the central system are the intersection
points of the curve F1 = · · · = Fn = 0 and the subtorus t = t0. Consider the closure
C of this curve in the toric variety X . Lemma 4.32 ensures that C is smooth.

The coordinate function t on the torus T ′ extends to a meromorphic function on X ,
and the equation t = 0 defines a normal crossing divisor supported at the closure of
certain codimension 1 orbitsOm ⊂ X , m = 1, . . . , M . ByLemma4.32, the restriction
of t to the smooth curve C has the following (and no other) roots:

– finitely many (possibly multiple) roots xm,k in the codimension 1 orbits Om ;
– dγ roots xk of multiplicity −γ (a) in the codimension 2 orbit O .
The roots of the central system of equations tend to xm,k and xk as t0 tends to 0,

so we need a convenient coordinate system around every xm,k and xk to analyze the
roots of the central system for small t0.

II: describing a good neighborhood of a root xm,k ∈ Om . By Lemma 4.32, every
root xm,k admits an open neighborhoodUm,k ⊂ X with an analytic coordinate system
(y1, . . . , yn, τ ) such that:

– the coordinate yi is given by Fi for any i ∈ {1, . . . , n};
– the coordinate t is given by τμ for some positive integer μ;
– Um,k does not intersect orbits of X outside T ′ ∪ Om ;
– the intersection of Um,k with the plane τ = τ0 for every sufficiently small τ0 is a

topological disc.
This implies the existence of neighbourhoods Vm,k ⊂ C

B of g and Wm,k ⊂ C of
0 such that, for every τ0, τ

μ
0 ∈ Wm,k , and every g′ ∈ Vm,k , the curve F1,g′ = · · · =

Fn,g′ = 0 transversely intersects the disc Um,k ∩ {τ = τ0} at one point.
Lemma 4.34 Assume that, in the setting of Lemma 4.30, ε is so small that the loop
G(ε exp(2π is)), s ∈ [0, 1], is contained in Vm,k , and t0 ∈ Wm,k . As the system
f•, t0,G(ε exp(2π is)) = 0 travels along this loop, its roots in {t = t0} ∩ Um,k permute
trivially, and each of them travels a contractible loop in the torus {t = t0} 	 T .

Proof By the choice of the neighborhoods Um,k , Vm,k , Wm,k , the intersection {t =
t0} ∩Um,k consists of μ disjoint discs in T , and exactly one of the roots varies in each
of these discs. Thus the roots do not permute and travel contractible loops. ��

III: describing a good neighborhood of a root xk ∈ O .
for every root xk and every choice of j ′ ∈ {1, . . . , n}, there exists an open neigh-

borhood Uk � xk with an analytic coordinate system such that:
– t and Fi , i �= j ′, are n of the n + 1 coordinate functions;
– if � is the coordinate line defined by them, and ϕ is the remaining coordinate

function, then the restriction of Fj ′ to � equals ϕ−γ (a);
– Uk does not intersect orbits of X outside Õ;
– the intersection of Uk with the plane t = t0 for every sufficiently small t0 is a

topological disc.
This implies the existence of neighbourhoods Vk ⊂ C

B of g andWk ⊂ C of 0 such
that, for every non-zero t0 ∈ Wk and g′ ∈ Vk , the curve F1,g′ = · · · = Fn,g′ = 0
transversally intersects the disc Uk ∩ {t = t0} at −γ (a) points.
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Lemma 4.35 Assume that, in the setting of Lemma 4.30, ε is so small that the
loop G(ε exp(2π is)), s ∈ [0, 1], is contained in Vk, and |t0| � ε. As the system
f•, t0,G(ε exp(2π is)) = 0 travels along this loop, all of its its−γ (a) roots inUk∩{t = t0}
permute cyclically, and their paths form a loop in {t = t0} 	 T , whose homology
class equals γ ∈ H.

Proof First, we assume with no loss of generality that t0 = 0, because the statement
is invariant under perturbations of t0. Second, we assume without loss of generality
that G is given by G j ′(ε) = g j ′ + ε g̃ j ′ for generic g j ′ ∈ C

Bj ′ and Gi (ε) = gi for
i �= j ′, because all small loops around the resultant Rreg

B near its smooth point g are
homotopy equivalent.

Under these additional assumptions, the sought statement turns into the following
question: given the curveC ′ ⊂ T ′ defined by the system of equations f•,0,G(t)(x) = 0,
and the point xk in its closure,what happens to the points of the intersectionC ′∩{t = t0}
near xk as t0 runs once around 0?

The answer is the expected one: the paths of the intersection points form a loop in
{t = t0} 	 T , whose homology class equals γ ∈ H . This is because, by Lemma 4.32.1
(which is applicable to the equations f•,0,G(t)(x) = 0 according to Remark 4.33), the
point xk is a smooth point of the closure of C ′, and the restriction of t to this closure
has a root of multiplicity −γ (a) at xk . ��
Proof For ε and |t0| small enough, all roots of the system of equations (∗) belong to
the neighborhoods Um.k ∩ {t = t0} and Uk ∩ {t = t0}, because all intersections of the
hyperplane t = t0 with the curve F1,g′ = · · · = Fn,g′ = 0 tend to the points xm,k and
xk as t0 → 0 and g′ → g. In these neighborhoods, for |t0| � ε, the roots permute as
desired according to Lemmas 4.34 and 4.35. ��
Proof of Main theorem 4.14.2.
Given a number j ∈ {1, . . . , d}, a vector γ := γB, B ∈ E0, and a point a ∈ A j\Bj ,
choose any path β from f◦ to the base point of the loop constructed in Lemma 4.30.
Conjugating the latter loop with β, we obtain a loop αβ,γ, j,a based at f◦.

Choosing an ordering δ : {roots of the base system f◦ = 0} → {1, . . . , d}, the
loop αβ,γ, j,a gives rise to the corresponding vector α̃δ,β,γ, j,a in the solution lattice
Hδ ⊂ H⊕d (recall that its i-th component equals the homology class of loop run by
the i-th root of f◦ = 0 as f◦ travels along αβ,γ, j,a).

According to Lemma 4.30, all non-zero components of this vector are equal to
γ ∈ H , and the number of them equals (γ (Bj ) − γ (a)) · dγ . Moreover, every vector
of this form equals α̃δ,β,γ, j,a for suitable β, since the monodromy group of the general
reduced irreducible system of equations equals Sd (by Theorem 1.7).

We conclude that, for every γ, j, a as above, every vector with (γ (Bj )−γ (a)) ·dγ

components equal to γ and other components equal to 0 is contained in the solution
lattice Hδ .

Note that, for a given γ , the numbers γ (Bj ) − γ (a) over all j and a are mutually
prime (otherwise, if GCD equals k > 1, then the sets of tuple A can be shifted to
the proper sublattice γ −1(kZ), so A is not reduced). Thus the Euclidean algorithm
ensures that every vector with dγ components equal to γ and other components equal
to 0 is contained in the solution lattice Hδ .
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By the assumption ofMain theorem 4.14, the sums of components of such vectors
generate H/L , thus by Lemma 4.17.II the vectors themselves generate H⊕d/L⊕d (the
condition (1) of this lemma satisfied by Lemma 4.18). ��
Remark 4.36 Actually, the construction from the preceding proof is applicable to B ∈
E even if B /∈ E0. Choose an arbitrary tuple C = (C1, . . . ,Cn), Ci ⊂ Ai , generic
f̃ = ( f̃1, . . . , f̃n) ∈ C

C and a small loop gs ∈ C
B, s ∈ S1, around the resultant

Rred
B . For every linear function γ ∈ GB , let hγ be maxi (max γ |Ai − max γ |Ci ). Set

fi,t,s(x) = gi,s(x) + f̃i (x) + t · g̃i (x) and let s ∈ S1 run a loop for a small t �= 0.
Then, as in the preceding proof, the roots of the system f•,t,s = 0 permute so that (cf.
Proposition 5.2 in [14]):

1) among the disjoint cycles of the permutation of the roots, we have dγ cycles of
length hγ for every γ ∈ GB ;

2) the paths of the roots fromone cycle constitute a loopwhose class in the homology
H equals γ .

As s ∈ S1 runs around the circle sufficiently many times (more specifically, M =
LCM{hγ | γ ∈ GB} times), we obtain a certain element γ̃B ∈ H⊕d in the homology
of the solution space. According to 1) and 2), this element γ̃B has dγ entries equal to
M
hγ

γ for every γ ∈ GB , and the other entries are equal to 0. As in the preceding proof,
we now have four increasing classes, extending Remark 4.15.2:

a) Tuples A, such that the vectors dγB · γB over all B ∈ E0 generate the lattice H ;
b) Tuples A, such that the vectors γ̃B over all B ∈ E generate the lattice H⊕d ;
c) Tuples with inductively connected solution spaces;
d) Tuples A, such that the vectors

∑
γ∈GB

dγ · γ over all B ∈ E generate the lattice
H .

It is now a purely combinatorial (although highly non-trivial) problem to under-
stand whether the classes (b) and (d) coincide for all reduced irreducible tuples A.
If the answer is “yes” (and this is what we expect at least for n = 2), then we have
(b)= (c)= (d), soMain theorem 4.14.1 actually provides a criterion of whether the
Galois group of a given tuple equals the expected wreath product. If the answer is
“no”, then a more subtle study of solution spaces is required to answer this question.

4.7 Proving inductive disconnectedness

In order to prove that a given tuple A is not inductively connected, we need the follow-
ing Poisson-type formula for the product of roots of a system of polynomial equations.
It is the special case of the Poisson–Pedersen–Sturmfels–D’Andrea–Sombra formula
[7, Theorem 1.1], when one of the n + 1 polynomials involved is a monomial xb.

Theorem 4.37 For a generic system of equations f = ( f1, . . . , fn) ∈ C
A, the product

of the values of the monomial xb over the roots of f1 = · · · = fn = 0 equals∏
γ∈G[RAγ ( f )]γ ·b.

Proof ofMain theorem 4.14. 1. Under the assumptions ofMain theorem 4.14.1,
we can choose b ∈ Z

n and p > 1 that divides dγ · (γ · b) and l · b for all γ ∈ G
and all l ∈ L . Recall that the polynomial RAγ is equal to Fdγ for some polynomial
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F on C
A. In this case, the preceding Poisson-type formula implies that the product

of the monomial xb over the roots of f equals Gp for some polynomial G on C
A.

Moreover, the polynomial G does not vanish at systems of equations f that have d
distinct roots in the torus since the irreducible factors of G describe systems f with
roots at infinity. Thus, for any loop α in the space of systems with d distinct roots, the
composition Gp ◦α is a loop in C

� whose homology class is divisible by p. The latter
homology class is given by (

∑
α̃σ )·b, sinceGp(α(s)) is the product of themonomials

xb over the roots of the system α(s). We deduce that (
∑

α̃σ ) · b is divisible by p. All
such elements together with the sublattice L⊕d generate a proper sublattice in H⊕d ,
because it is contained in the proper sublattice of all u ∈ H⊕d such that b · ∑

u is
divisible by p. Therefore L⊕d and the solution lattice Hδ do not generate H⊕d . ��
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