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Abstract
Least-squares collocation (LSC) is a widely usedmethod applied in physical geodesy to separate observations into a signal and
noise part but has received only little attention when interpolating velocity fields. The advantage of the LSC is the possibility
to filter and interpolate as well as extrapolate the observations. Here, we will present several extensions to the traditional LSC
technique, which allows the combined interpolation of both horizontal velocity components (horizontal velocity (HV)-LSC),
the separation of velocity observations on different tectonic plates, and the removal of stationarity by moving variance (the
latter as HV-LSC-ex(tended)2). Furthermore, the covariance analysis, which is required to find necessary input parameters
for the LSC, is extended by finding a suitable variance and correlation length using both horizontal velocity components at
the same time. The traditional LSC and all extensions are tested on a synthetic dataset to find the signal at known as well
as newly defined points, with stations separated on four different plates with distinct plate velocities. The methodologies are
evaluated by calculation of a misfit to the input data, and implementation of a leave-one-out cross-validation and a Jackknife
resampling. The largest improvement in terms of reduced misfit and stability of the interpolation can be obtained when plate
boundaries are considered. In addition, any small-scale changes can be filtered out using the moving-variance approach and
a smoother velocity field is obtained. In comparison with interpolation using the Kriging method, the fit is better using the
new HV-LSC-ex2 technique.

Keywords Least-squares collocation · Velocity field · Covariance analysis · Plate boundary · GNSS data · Correlation
analysis · Moving variance

1 Introduction

Collection of ground data in an area of interest is limited
by the accessibility of the area (e.g. due to rough topogra-
phy, harshweather conditions, political situation, and/or high
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costs). Thus, obtained datasets represent only point informa-
tion. However, formany applications it is desired to have data
values in areas where observations are not available and/or
cannot be obtained, for example when a continuous surface
of a variable is required. The data of this variable have to be
estimated at all wished (regular and/or irregular distributed)
points of the continuous surface, which is done with a spatial
interpolation. Additionally, if values are required outside the
cloud of point information, extrapolation is needed. Thus,
spatial interpolation and extrapolation allow estimation of
the value of a field variable at any point in space or at nodes
of a regular grid using scattered point measurements of this
variable.

Several interpolation techniques are available (e.g. bilin-
ear interpolation, nearest-neighbourhood, spline interpola-
tion, inverse-distance weighted, radial basis function, Krig-
ing) to estimate a continuous surface from a set of obser-
vations. Most of these techniques have in common that the
interpolated value is only directly based on the surround-
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ing values and/or the smoothness described by mathematical
formulas (named deterministic interpolation techniques). In
contrast, Kriging (e.g. Cressie 2007), for example, is a
stochastic interpolation method, where the statistical infor-
mation between the points is used in the interpolation (e.g.
Herzfeld 1992; Chilès and Desassis 2018). In physical
geodesy, least-squares collocation (LSC) has become a well-
known and widely used stochastic interpolation technique,
which is similar to Kriging (e.g. Dermanis 1984; Reguzzoni
et al. 2005; Fuhrmann 2016). LSC is usually applied for inter-
polation and combination of different gravity field and height
parameters, for example when estimating geoid undulations
(e.g. Moritz 1980; Forsberg and Tscherning 1981). Before-
hand, a covariance analysis of the entire dataset has to be done
and the results are used as input for the interpolation. Thus,
the LSC method considers the spatial dependency structure
of the data. In addition, the LSC technique applies a filter
in a first step to obtain a consistent dataset at observation
points and has the advantage of allowing several parameters
to be combined in the interpolation and filtering. Neverthe-
less, the usage of LSC is still limited in the area of GNSS
(Global Navigation Satellite System) velocity field interpo-
lations and only a few studies have used this technique (e.g.
Japan (Fujii and Xia 1993; El-Fiky et al. 1997), China (Chen
et al. 2016), northernEurope (Vestøl 2006;Vestøl et al. 2019),
southern Europe (Kahle et al. 1995, 2000; Straub et al. 1997;
Caporali et al. 2003), Switzerland (Egli et al. 2007)). In
contrast, Kriging has been used more widely (e.g. Kierulf
et al. 2013; Bogusz et al. 2014; Ching and Chen 2015;
Fuhrmann et al. 2015; Béjar-Pizarro et al. 2016; Robin et al.
2020) and comparison to other interpolation techniques has
shown its advantages (e.g. Bogusz et al. 2014). Other studies
have extended interpolation techniques to incorporate geo-
physical information (e.g. Shen et al. 2015; Sandwell and
Wessel 2016), but thesemethods rely on backgroundmodels,
which are also introducing uncertainties and/or errors. Fur-
thermore, when the horizontal velocity field was interpolated
using LSC or Kriging, correlation between the horizontal
velocity components was ignored in all previous studies.

The aim of this paper is the presentation of the new
LSC methodology modified for the special purpose to fil-
ter and interpolate horizontal velocities including correlation
between the velocity field components (horizontal veloc-
ity (HV)-LSC). This correlation has not been considered in
velocity field interpolations before. Our method is a pure
mathematical model that does not contain geophysical infor-
mation and is thus suitable to compare with geophysical
observations as well as models. In addition, we present a
new method for overcoming the problem of non-stationarity,
which arises due to the application of a homogeneous and
isotropic covariance function. Observations are usually not
evenly distributed and large variations in the observational
magnitude may lead to a covariance function, which does

not fit all data equally well. Thus, a method has to be defined
to account for this inequality. We also present our chosen
method to interpolate a velocity fieldwith stations distributed
over several tectonic plates that have different plate motion
velocities.

Section2 will present the standard LSC technique and
covariance analysis. This is followed by the description of
the HV-LSC for horizontal velocity data and correspond-
ing covariance analysis (Sect. 3). Section4 presents then the
method of including plate-boundary constraints and Sect. 5
the methodology of moving variance to overcome non-
stationarity of LSC. Finally, we apply the presented methods
on a synthetic dataset (Sect. 6). We also compare the inter-
polated velocity field to the result using Kriging and discuss
advantages and disadvantages of LSC. We finish with a con-
clusion.

2 Least-squares collocation

The method of the standard LSC is a stochastic interpolation
technique, and their general framework was presented by
Moritz (1980), which is used in the following to summarize
the technique. LSC is based on the principle that observations
l can be separated into a signal s and a noise n (bold symbols
refer to the vectorized variable):

l = s + n, (1)

where the observations, signal and noise are vectors. The
observations l = l (Pi ) are given at Nt(otal) points. In addi-
tion, an observational uncertainty m = m (Pi ) at the same
Nt locations is provided. It is assumed that l and s are centred
random variables; thus, their statistical expectations are zero
(E [l] = 0, E [s] = 0). One can define variance–covariance
matrices of the signal and the noise:

Css = E

[
s sT

]
and Cnn = E

[
n nT

]
,

respectively. The upper index T indicates matrix transposi-
tion. A cross-covariance matrix between the signal and the
noise does not exist as the signal and the noise are uncorre-
lated (Csn = E

[
s nT

] = 0). The signal can then be obtained
by solving the least-squares minimum condition:

sT C−1
ss s + nT C−1

nn n = minimum. (2)

The solution to Eq. (1) can be found with the constraint of
Eq. (2) using Lagrange multiplier:

s = Css (Css + Cnn)
−1 l. (3)
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The signal sp can also be calculated at unknown points using:

sp = Cps (Css + Cnn)
−1 l. (4)

These equations are nowdepending on the observational vec-
tor l as well as the covariance matrices Css and Cnn and the
cross-covariance matrixCps , which have to be defined in the
following.

The covariance matrix of the signal is:

Css =

⎡
⎢⎢⎢⎣

KP1,P1 KP1,P2 · · · KP1,PNt
KP2,P1 KP2,P2 · · · KP2,PNt

...
...

. . .
...

KPNt ,P1 KPNt ,P2 · · · KPNt ,PNt

⎤
⎥⎥⎥⎦ (5)

with KPi ,Pj as the covariance functions, and Pi and Pj being
the locations of the Nt observations. The covariance matrix
of the observational noise can be determined using:

Cnn =

⎡
⎢⎢⎢⎢⎣

m2
P1,P1

0 · · · 0
0 m2

P2,P2
· · · 0

...
...

. . .
...

0 0 · · · m2
PNt ,PNt

⎤
⎥⎥⎥⎥⎦

(6)

with the observational uncertainty m given at each observa-
tion point Pi . The off-diagonal parts of Cnn are zero as no
correlation between the observational uncertainty at differ-
ent locations is assumed. Similar to the variance–covariance
matrix of the signal Css at the observation points, the signal
cross-covariance matrix between the signal s at the observa-
tion points Pi and the signal sp at Mt new points Qi can be
written as:

Cps =

⎡
⎢⎢⎢⎣

KQ1,P1 KQ1,P2 · · · KQ1,PNt
KQ2,P1 KQ2,P2 · · · KQ2,PNt

...
...

. . .
...

KQMt ,P1 KQMt ,P2 · · · KQMt ,PNt

⎤
⎥⎥⎥⎦ , (7)

with KQi ,Pj as the covariance functions at Pj and Qi . Sim-
ilarly, the covariance matrix at the new points Cpp can be
written as:

Cpp =

⎡
⎢⎢⎢⎣

KQ1,Q1 KQ1,Q2 · · · KQ1,QMt

KQ2,Q1 KQ2,Q2 · · · KQ2,QMt
...

...
. . .

...

KQMt ,Q1 KQMt ,Q2 · · · KQMt ,QMt

⎤
⎥⎥⎥⎦ , (8)

with KQi ,Q j being the covariance functions at the locations
Qi and Q j of the Mt new points. All covariance matrices
and cross-covariance matrices have to be positive definite.

The advantage of the LSC techniques is the estimation of
a standard error, which is based on the covariance matrices

Css ,Cnn andCpp, and the cross-covariance matrixCps . The
error covariance matrices of the estimated signals s and sp
are:

Es = Css − Css (Css + Cnn)
−1 Css, (9)

Esp = Cpp − Cps (Css + Cnn)
−1 CT

ps, (10)

respectively. The standard error is then the square root of the
diagonal terms of the error covariance matrices. The estima-
tion of the signal and their associated standard errors depends
only on the covariance function K (d) and the observations l
and associated uncertainties m. In the next step, the covari-
ance function K (d) has to be defined, which is obtained from
a covariance analysis.

2.1 Covariance analysis

The covariance analysis is used to find parameters of the
covariance function, which is required to estimate the entries
of the covariance as well as cross-covariance matrices to find
the signal and their standard errors. In a first step, empirical
variance and covariances are estimated using observations l:

K (0) = 1

Nt

Nt∑
i=1

l2i , (11)

K (dp) = 1

Np − 1

Np∑
i �= j

li l j , (12)

with Nt as the total number of observations, Np as the
number of point pairs with mutual distance within speci-
fied distance intervals, and dp as the distance between two
points Pi and Pj . The observations must be reduced by the
mean value beforehand. While the first equation (Eq. (11))
is the variance of the observations only, the second equation
(Eq. (12)) requires the classification of observation points
within specific distance groups (e.g. Goudarzi et al. 2015).
Each distance group is defined by an interval of (2p−3)δ and
(2p−1)δ, where δ is a user-specified value, and the first inter-
val (p = 1) is defined as 0 ≤ dp ≤ δ (a smaller interval is
obtained). P intervals are created (p = 1, 2, . . . , P), and the
distance between each point pair is distributed to the specific
interval. Thus, the empirical covariance K (dp) is calculated
for each distance group based on observations of station pairs
that belong to the specified interval. δ depends on the size of
the study area and various values should be tested. The uncer-
tainty of the empirical covariances is obtained by calculating
a standard deviation for each distance group. The number of
station pairs Np per distance group is an important parameter
to obtain a statistically meaningful empirical covariance esti-
mate. An empirical covariance obtained from a small number
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of station pairs Np might stand out significantly from oth-
ers and needs to be neglected before a covariance function is
obtained. The obtained empirical covariances are then plotted
together with the variance from Eq. (11) over the distance.

Some stations have observational values that are much
larger or smaller than the other observations. Those are
defined as non-standard values, more precisely when the
value is greater than three times the value of the standard devi-
ation of the entire observational dataset (three-sigma rule;
e.g. Pukelsheim 1994):

|l j | > 3

√∑Nt
i=1 l2i
Nt

(13)

Non-standard values are values, which are affected by a
local change that is not correlated with the movement of
neighbouring values or isolated values located in a signifi-
cant deformation zone. In practice, only very few values can
be considered out of range and rejected for estimating the
covariance function.

The empirical covariances can now be used to find a
covariance function K (d) and their associated parameters. A
function is fitted to the empirical covariances, which needs
to fulfil the following conditions (Peter 2000) to obtain a
positive-definite matrix:

(i): K = K (d) ⇒ K is only a function of the distance d,

(ii): lim
d→∞ K (d) = 0, (14)

(iii):
∂ K

∂ d

∣∣∣∣
d=0

= finite.

Various covariance functions K (d) are used in the literature,
while the Hirvonen function (Hirvonen 1962):

K (d) = C0
d20

d20 + d2
, (15)

and the functions of the first- and second-order Gauss–
Markov process (e.g. Moritz 1978):

K (d) = C0 · e−d
d0 (16)

and

K (d) = C0 · e
−d2

d20 , (17)

respectively, are commonly applied, with d being the dis-
tance. The correlation length d0 and the varianceC0 at d = 0
are the unknown parameters, which have to be estimated
using the covariance analysis. The covariance function is then
only a function of the distance d between the points Pi and

Pj . The covariance function K (d) together with correlation
length d0 and variance C0 are then used to find entries for
covariance and cross-covariance matrices.

The covariance analysis to find a covariance function is
similar to the covariance modelling within Kriging to find a
semivariogram (e.g. Cressie 2007). Similarly, a correlation
length and a covariance value C0 (named sill) are identified
using various functions, which are called models within the
Kriging process. Typically, the functions of the first- and
second-order Gauss–Markov process are also used in the
covariance modelling (e.g. Bogusz et al. 2014; Fuhrmann
2016; Robin et al. 2020).

The described covariance analysis can be done for any
observational dataset; however, the covariance analysis can-
not be done jointly for two or more components (e.g.
horizontal velocity components). In this case, each compo-
nent has to be analysed separately. This excludes the possible
correlation between the components. Thus, a new iterative
scheme is presented in Sect. 3.2, which allows the estimation
of empirical covariances for both horizontal velocity compo-
nents measured by GNSS stations.

3 Least-squares collocation of velocity data

At a point Pi , the horizontal velocity field can be described
by a velocity and observational uncertainty in the east direc-
tion (VE (Pi ) and mE (Pi ), respectively) and by a velocity
and observational uncertainty in the north direction (VN (Pi )
and mN (Pi ), respectively). The observations can be divided
into a signal (WE (Pi ) and WN (Pi )) and a noise (ηE (Pi ) and
ηN (Pi )) following Eq. (1):

VE (Pi ) = WE (Pi ) + ηE (Pi )

VN (Pi ) = WN (Pi ) + ηN (Pi ).
(18)

As the observations and their uncertainties are obtained at
several observation points (i = 1, 2, . . . , g), we can also
write the observations, uncertainties, signal, and noise as vec-
tors:

V(P) = [VE (P1), VN (P1), . . . , VE (Pg), VN (Pg)]T
m(P) = [mE (P1),mN (P1), . . . ,mE (Pg),mN (Pg)]T
W(P) = [WE (P1),WN (P1), . . . ,WE (Pg),WN (Pg)]T
η(P) = [ηE (P1), ηN (P1), . . . , ηE (Pg), ηN (Pg)]T.

(19)

From this follows:

V(P) = W(P) + η(P). (20)
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Wecan estimate the signalW at known points Pi (see Eq. (3);
Legrand 2007):

W(P) = CW (P)W (P)

[
CW (P)W (P) + Cη(P) η(P)

]−1 V(P),

(21)

and unknown points Qi (see Eq. (4); Legrand 2007):

W(Q) = CW (Q)W (P)

[
CW (P)W (P) + Cη(P) η(P)

]−1 V(P),

(22)

using equations from standard LSC. The error covariance
matrices of the obtained signal follow from Eq. (9) (Legrand
2007):

EW (P) = CW (P)W (P) − CW (P)W (P)[
CW (P)W (P) + Cη(P) η(P)

]−1 CW (P)W (P), (23)

and from Eq. (10) (Legrand 2007):

EW (Q) = CW (Q)W (Q) − CW (Q)W (P)[
CW (P)W (P) + Cη(P) η(P)

]−1 CT
W (Q)W (P), (24)

for the known and unknown points, respectively. The equa-
tions above contain the covariance matrices CW (P)W (P),
CW (Q)W (Q) and Cη(P) η(P) as well as the cross-covariance
matrix CW (Q)W (P), which need to be defined in the follow-
ing.

The covariance matrix of the noise can be expressed as
expected value of the noise at known points P:

Cη(P) η(P) = E

[
η(P) η(P)T

]
. (25)

The covariance matrix of the noise is estimated using the
observational uncertaintiesm(P), and as these uncertainties
are provided for both horizontal velocity components sepa-
rately, Eq. (25) has to become:

Cη(Pi ) η(Pj ) = E

[
η(Pi ) η(Pj )

T
]

=
[
E

[
ηE (Pi ) ηE (Pj )

]
E

[
ηE (Pi ) ηN (Pj )

]

E
[
ηN (Pi ) ηE (Pj )

]
E

[
ηN (Pi ) ηN (Pj )

]
]

, (26)

with ηE (Pi, j ) and ηN (Pi, j ) as the noise of the east-west
and north-south component, respectively.A correlation of the
observational uncertainty between different velocity compo-
nents is assumed to be non-existent, which leaves diagonal
elements in the covariance matrix:

Cη(Pi ) η(Pj ) =
[
E

[
ηE (Pi ) ηE (Pj )

]
0

0 E
[
ηN (Pi ) ηN (Pj )

]
]

.

(27)

Similarly, the covariancematrix of the signal can be obtained
for the known points (Pi, j ):

CW (Pi )W (Pj ) = E

[
W (Pi )W (Pj )

T
]

=
[
E

[
WE (Pi )WE (Pj )

]
E

[
WE (Pi )WN (Pj )

]

E
[
WN (Pi )WE (Pj )

]
E

[
WN (Pi )WN (Pj )

]
]

,

(28)

the cross-covariancematrix of the signal for the known (Pi, j )
and unknown (Qi, j ) points:

CW (Qi )W (Pj ) = E
[
W (Qi )W (Pj )

T]

=
[
E

[
WE (Qi )WE (Pj )

]
E

[
WE (Qi )WN (Pj )

]

E
[
WN (Qi )WE (Pj )

]
E

[
WN (Qi )WN (Pj )

]
]

,

(29)

and the covariance matrix of the signal at the unknown
points (Qi, j ) only:

CW (Qi )W (Q j ) = E
[
W (Qi )W (Q j )

T]

=
[
E

[
WE (Qi )WE (Q j )

]
E

[
WE (Qi )WN (Q j )

]

E
[
WN (Qi )WE (Q j )

]
E

[
WN (Qi )WN (Q j )

]
]

.

(30)

However, the horizontal velocity components are depending
on each other and correlate due to the movement of the plates
on a sphere. Thus, the non-diagonal term cannot be excluded
here.
The expected value E can be described by covariance func-
tions Kkl (k, l = E, N with E being the east-west and N
north-south components), which depend on the spherical dis-
tance between the points considered as well as the variance
of the velocities:

E [Wk(I )Wl(J )] = Kkl(I , J )

= Kkl(di j ) (k, l=E, N ; I , J=Pi , Pj )

with di j as the spherical distance between the points Pi, j and
Qi, j . Thus, Eqs. (28–30) can also be expressed as:

CW (Pi )W (Pj ) =
[
KEE (Pi , Pj ) KEN (Pi , Pj )

KNE (Pi , Pj ) KNN (Pi , Pj )

]
, (31)

CW (Qi )W (Pj ) =
[
KEE (Qi , Pj ) KEN (Qi , Pj )

KNE (Qi , Pj ) KNN (Qi , Pj )

]
, (32)

CW (Qi )W (Q j ) =
[
KEE (Qi , Q j ) KEN (Qi , Q j )

KNE (Qi , Q j ) KNN (Qi , Q j )

]
. (33)
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It is therefore necessary to define four different covari-
ance functions: KEE , KEN , KNE , and KNN (Legrand 2007).
Suppose a rigid movement of the whole plate, the interpo-
lation of the resulting velocity field has to correspond to a
rigid movement as well. To achieve this, we need to consider
the geometry of the movement and express the covariance
matrices CW (I )W (J ) (with I and J as elements of P and Q)
as covariance matrices of the angular velocity field, which
contains the rigid movement of the plate. It is therefore nec-
essary to express the horizontal velocities as a function of the
angular velocities. Thus, the interpolation is applied over the
angular velocity field rather than over the horizontal velocity
field itself. This allows: (1) to preserve the characteristics of
the spherical motion of the velocity field, and (2) to define a
covariance function which is independent from the coordi-
nate system and thus remains valid over large areas, i.e. areas
larger than 10–15◦ for which the curvature of the Earth has
an effect (Haines and Holt 1993). In this case, the correla-
tion of the horizontal velocity field components is based on
the movement of the plates on the sphere. This is considered
when the interpolation is done on a sphere by using the angu-
lar velocity. The interpolation of the angular velocity field is
also used by Kreemer et al. (2000, 2003), where the angu-
lar velocity field is interpolated over a spherical Earth using
bi-cubic Bessel splines. This new method (in the following
named HV (horizontal velocity)-LSC), which considers the
spatial correlation between the velocities, is based on a LSC
method on the sphere. The vertical velocity component is
assumed to be uncorrelated with the horizontal velocity com-
ponents.

3.1 Covariancematrices of the horizontal velocity
field

A point Pi can be described by its Cartesian coordinates
xyzi = [xi , yi , zi ]T, its geographical coordinates (longitude
λi and latitude φi ), its velocities in the Cartesian coordi-
nate system Vxyzi = [Vxi , Vyi , Vzi ]T, its local horizontal
velocities VENi = [VEi , VNi ]T, and its angular velocity
ωxyzi = [ωxi , ωyi , ωzi ]T. The height of point Pi is assumed
to be the same for all observation points and is not consid-
ered further. The Cartesian coordinates on a unit sphere are
written as:

xyzi =
⎡
⎣
xi
yi
zi

⎤
⎦ =

⎡
⎣
cos λi cosφi

sin λi cosφi

sin φi

⎤
⎦ . (34)

The local horizontal velocity field can be obtained from the
velocity expressed in global coordinates by using a trans-
formation matrix Rxyzi→ENi for the horizontal components
only:

VENi = Rxyzi→ENi Vxyzi , (35)

which can be written as:

Rxyzi→ENi=
[ − sin λi cos λi 0
− sin φi cos λi − sin φi sin λi cosφi

]
.

(36)

The Cartesian velocity field Vxyzi can be additionally
expressed in terms of the angular velocity fieldV = ω × xyz:

Vxyzi =
⎡
⎣

ωxi
ωyi
ωzi

⎤
⎦ ×

⎡
⎣
xi
yi
zi

⎤
⎦

=
⎡
⎣

0 zi −yi
−zi 0 xi
yi −xi 0

⎤
⎦

⎡
⎣

ωxi
ωyi
ωzi

⎤
⎦

=
⎡
⎣

0 sin φi − sin λi cosφi

− sin φi 0 cos λi cosφi

sin λi cosφi − cos λi cosφi 0

⎤
⎦

⎡
⎣

ωxi
ωyi
ωzi

⎤
⎦ ,

(37)

which depends now on the angular velocity and the geo-
graphical location of the point Pi . This can be combined
with Eq. (35) to obtain the horizontal velocity field:

VENi = Rxyz→EN ωxyzi × xyzi

= APi ωi , (38)

with the matrix APi defined as:

APi =
[ − sin λi cos λi 0
− sin φi cos λi − sin φi sin λi cosφi

]

︸ ︷︷ ︸
from eq. (36)⎡

⎣
0 sin φi − sin λi cosφi

− sin φi 0 cos λi cosφi

sin λi cosφi − cos λi cosφi 0

⎤
⎦

︸ ︷︷ ︸
from eq. (37)

=
[− sin φi cos λi − sin φi sin λi cosφi

sin λi − cos λi 0

]
. (39)

The signal W (Pi ) can now be expressed at the observation
points Pi :

W (Pi ) = APi ω(Pi ). (40)

Similarly, the signal W (Qi ) is:

W (Qi ) = AQi ω(Qi ) (41)

at the new points Qi . These two equations can be used to find
covariance matrices for the HV-LSC. The covariance matrix
CW (P)W (P) can be written as follows:
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CW (Pi )W (Pj ) = E

[
W (Pi )W (Pj )

T
]

= E

[
APi ω(Pi )

(
APj ω(Pj )

)T]

= E

[
APi ω(Pi ) ω(Pj )

T AT
Pj

]

= APi E

[
ω(Pi ) ω(Pj )

T
]
AT
Pj

. (42)

The term in the middle (E
[
ω(Pi ) ω(Pj )

T
]
) is the covariance

matrix of the angular velocity field Cω(Pi ) ω(Pj ):

Cω(Pi ) ω(Pj )

=
⎡
⎢⎣
E

[
ωx (Pi ) ωx (Pj )

]
E

[
ωx (Pi ) ωy(Pj )

]
E

[
ωx (Pi ) ωz(Pj )

]

E
[
ωy(Pi ) ωx (Pj )

]
E

[
ωy(Pi ) ωy(Pj )

]
E

[
ωy(Pi ) ωz(Pj )

]

E
[
ωz(Pi ) ωx (Pj )

]
E

[
ωz(Pi ) ωy(Pj )

]
E

[
ωz(Pi ) ωz(Pj )

]

⎤
⎥⎦ .

(43)

In the following, we assume that there is no correlation
between the components ωx (Pi ), ωy(Pi ), and ωz(Pi ) of the
vector ω. This is a rather strong assumption that is needed
to obtain a solution for Eq. (42). However, as the neglect of
the correlation between the north-south and east-west com-
ponents in standard LSC is an even stronger assumption, our
HV-LSC approach still represents a step forward compared
to standard LSC. In addition, we assume that there is no
correlation between two different components of the vectors
ω(Pi ) and ω(Pj ) for i �= j , and due to revolution sym-
metry follows E

[
ωx (Pi ) ωx (Pj )

] = E
[
ωy(Pi ) ωy(Pj )

] =
E

[
ωz(Pi ) ωz(Pj )

]
. We can therefore write Cω(Pi ) ω(Pj ) for

i = j and i �= j with K (Pi , Pj ) = E
[
ωx (Pi ) ωx (Pj )

] =
E

[
ωy(Pi ) ωy(Pj )

] = E
[
ωz(Pi ) ωz(Pj )

]
as:

Cω(Pi ) ω(Pj ) =
⎡
⎣
K (Pi , Pj ) 0 0

0 K (Pi , Pj ) 0
0 0 K (Pi , Pj )

⎤
⎦

= K (Pi , Pj ) I3. (44)

Similarly follows for the covariance matrix Cω(Qi ) ω(Q j ) and
the cross-covariance matrix Cω(Qi ) ω(Pj ):

Cω(Qi ) ω(Pj ) = K (Qi , Pj ) I3

Cω(Qi ) ω(Q j ) = K (Qi , Q j ) I3.
(45)

The covariance matrices are now depending only on one
covariance function K (I , J ) with I , J = Pi , Q j . This can
be now substituted into Eq. (42):

CW (Pi )W (Pj ) = APi E

[
ω(Pi ) ω(Pj )

T
]
AT
Pj

= APi Cω(Qi ) ω(Pj ) A
T
Pj

= APi K (Pi , Pj ) I3 A
T
Pj

= APi A
T
Pj

K (Pi , Pj ), (46)

which becomes:

CW (Pi )W (Pj ) =
[− sin φPi cos λPi − sin φPi sin λPi cosφPi

sin λPi − cos λPi 0

] ⎡
⎣

− sin φPj cos λPj sin λPj

− sin φPj sin λPj − cos λPj

cosφPj 0

⎤
⎦ K (Pi , Pj )

=
[
sin φPi sin φPj cos

(
λPi − λPj

) + cosφPi cosφPj sin φPi sin
(
λPi − λPj

)
sin φPj sin

(
λPj − λPi

)
cos

(
λPi − λPj

)
]
K (Pi , Pj ). (47)

by applying Eq. (39). In addition, we know that the covari-
ance matrix CW (Pi )W (Pj ) is also a function of the four
covariance functions KEE , KNN , KEN , and KNE (see
Eq. (31)):

CW (Pi )W (Pj ) =
[
KEE (Pi , Pj ) KEN (Pi , Pj )

KNE (Pi , Pj ) KNN (Pi , Pj )

]
. (48)

Thus, we can define the functions fEE , fEN , fN E , and fN N

so that:

CW (Pi )W (Pj ) = E

[
W (Pi )W (Pj )

T
]

= fkl(Pi , Pj ) K (Pi , Pj ); k, l = E, N , (49)

with:

fEE (Pi , Pj ) = sin φPi sin φPj cos
(
λPi − λPj

)

+ cosφPi cosφPj (50)

fEN (Pi , Pj ) = sin φPi sin
(
λPi − λPj

)
(51)

fN E (Pi , Pj ) = sin φPj sin
(
λPj − λPi

)
(52)

fN N (Pi , Pj ) = cos
(
λPi − λPj

)
, (53)

obtained from the matrix components in Eq. (47). The
four different covariance functions are now replaced by one
covariance function and an additional term, which depends
on the geographical coordinates and varies for each compo-
nent combination. Similar equations can be obtained for the
cross-covariance and covariance matrices CW (Qi )W (Pj ) and
CW (Qi )W (Q j ), respectively:

CW (Qi )W (Pj ) = E

[
W (Qi )W (Pj )

T
]
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= fkl(Qi , Pj ) K (Qi , Pj ); k, l = E, N ,

(54)

CW (Qi )W (Q j ) = E

[
W (Qi )W (Q j )

T
]

= fkl(Qi , Q j ) K (Qi , Q j ); k, l = E, N .

(55)

We can now find the (cross-)covariance matrices in order
to estimate the signal at observational points as well as at
new points, and in both cases the signal is estimated for both
horizontal velocity field components at the same time and
the correlation between the components is even taken into
account. In a next step, the covariance function K (Pi , Pj )

has to be defined.

3.2 Covariance analysis of the horizontal velocity
field

Two points Pi and Pj are separated by a spherical distance
di j , and K̂ (di j ) is an estimator of the covariance function
K (Pi , Pj ) for this distance. The point Pi is characterized by
a velocity Vk(Pi ), which can be divided into a signalWk(Pi )
and noise ηk(Pi ):

Vk(Pi ) = Wk(Pi ) + ηk(Pi ); k = E(ast), N (orth). (56)

The expectation of the signal at the two points is then:

E
[
Wk(Pi )Wl(Pj )

] = fkl(Pi , Pj ) K (Pi , Pj );
k, l = E, N , (57)

with the functions fkl(Pi , Pj ) as in Eqs. (50–53).
For the sake of simplicity, we introduce the following nota-
tions: s for the component k at the point Pi and t for the
component l at the point Pj . Thus, we have the following
equations:

Vs = Vk(Pi ); Ws = Wk(Pi );
ηs = ηk(Pi ) ⇒ Vs = Ws + ηs

Vt = Vl(Pj ); Wt = Wl(Pj );
ηt = ηl(Pj ) ⇒ Vt = Wt + ηt .

(58)

Similarly, fkl(Pi , Pj ) is equivalent to fst . The expectation
of the observation can then be written as:

E [Vs Vt ] = E [(Ws + ηs) (Wt + ηt )]

= E [Ws Wt + ηt Ws + ηs Wt + ηs ηt ]

= E [Ws Wt ] + E [ηt Ws ] + E [ηs Wt ] + E [ηs ηt ] ,
(59)

which becomes:

E [Vs Vt ] = fst K (st) + Cst (60)

with E [Ws Wt ] = fst K (st) (based on the notations intro-
duced before) and Cst as the covariance between the noises
ηs and ηt (Cst = E [ηs ηt ]). The two terms in the middle
are zero (E [ηt Ws ] = 0 and E [ηs Wt ] = 0) as signal and
noise are independent of each other (e.g. Moritz 1980). We
can now obtain an expression for the covariance function:

K (st) = E [Vs Vt ] − Cst

fst
= E

[
Vs Vt − Cst

fst

]
, (61)

which can be used in the following to determine the estimator
of the covariance function.

The estimator of the covariance function K at a distance
dp is of the form:

K̂ (dp) =
∑

dst∈dp
αst

Vs Vt − Cst

fst
,

∑
dst∈dp

αst = 1 (62)

with αst as the weighting coefficient and summation over all
distance pairs dst within the distance group defined by the
distance range dp (see Sect. 2.1). The empirical covariances
K̂ (dp) have to be defined for each distance group with Np as
the number of points per groups (see Sect. 2.1). Equation (62)
can be simplified by setting:

βst = Vs Vt − Cst

fst
, (63)

and we obtain:

K̂ (dp) =
∑

dst∈dp
αst βst ,

∑
dst∈dp

αst = 1. (64)

The empirical covariances are now a function of the param-
eters αst , which need to be defined in the following, and
βst . βst can be determined by applying Eq. (63) and using
the observations, the covariances of the observational uncer-
tainties as well as the functions fst (Eqs. (50–53)). Thus,
the β value is calculated for each point pair (Pi , Pj ) four
times due to the horizontal velocity field components (βEE ,
βEN , βNE , and βNN ). All β values that belong to a group
of points with similar distance dst are combined in a vector
β = [βst ]dst∈dp = [

β11, . . . , βst , . . . , βNpNp

]T.
Similarly, we can define the vector α = [αst ]dst∈dp =[

α11, . . . , αst , . . . , αNpNp

]T as well as the matrix �β=
[Cov (βst , βuv)]

(dst∈dp, duv∈dp) as the covariance associated to the vector β,
with u and v defined in the same way as s and t in Eq. (58).
The vector α then becomes:

α = �β
−1 1

1T
(
�β

−1
)T

1
(65)
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which minimizes Var
(
K̂ (dp)

)
by imposing

∑
dst∈dp αst =

1 (see supplementary material, Eqs. (S3–S10)).1 is a vector
of ones.
The covariance of the vector β is by definition:

�β = [Cov (βst , βuv)](dst∈dp, duv∈dp) , (66)

with:

Cov (βst , βuv) = E [(βst − E [βst ]) (βuv − E [βuv])] . (67)

This can be simplified to (see supplementary material,
Eqs. (S11–S16)):

Cov (βst , βuv)

= 1

fst fuv

( fsu ftv K (su) K (tv) + fsv ftu K (sv) K (tu)

+ ftv K (tv)Csu + fsv K (sv)Ctu + ftu K (tu)Csv

+ fsu K (su)Ctv + Csu Ctv + Csv Ctu), (68)

with the functions fst and fuv defined as in Eqs. (50–53) and
the covariances of the observational uncertainties as defined
in Eq. (6). The function K is the covariance function and has
to be defined before. A-priori estimates of the covariance C0

and correlation length d0 have to be used. Thus, the result of
Cov (βst , βuv) will depend on the covariance function and
their parameters chosen in the beginning.

To summarize, we have a velocity field and their associ-
ated uncertainties. The spherical distances between stations
are estimated for all pairs of points that can be formed. The
pairs are then classified by distance and assigned to a distance
group. For each distance group, we compute the vector β:

β =
[
βkl(Pi , Pj ) = Vk(Pi ) Vl (Pj ) − Cηk (Pi ) ηl (Pj )

fkl(Pi , Pj )

]
dPi Pj

∈dp
k, l=E, N

,

(69)

and its covariance matrix �β (see Eq. (68)). The empirical
covariance at distance dp is:

K̂ (dp) = αT β, (70)

withα as inEq. (65). Thevariance of the empirical covariance
has the form:

S2
K̂ (dp)

= 1

1T
(
�β

−1
)T

1
. (71)

We can now compute the empirical covariance K̂ (dp) at dis-
tance dp and its associated standard deviation SK̂ (dp). The
values are then plotted over the distance, and we can obtain
the parameters (covariance C0 and correlation length d0) of
the covariance function as described in Sect. 2.1 and done for

a standard covariance analysis. Again, outliers are removed
based on the three-sigma rule (see Eq. (13)). As K̂ (dp) is a
function of the covariancematrix ofβ , which in turn is a func-
tion of the chosen covariance function and their parameters, it
is therefore necessary to calculate K̂ (dp) by iteration, which
is not needed for a standard covariance analysis. However,
the new method allows the usage of both horizontal veloc-
ity field components and their correlations, as well as the
estimation of a realistic standard deviation of the empirical
covariances.

4 Plate-boundary constraints

The Earth consists of several moving tectonic plates, which
lead to diverse GNSS velocities for nearby locations on dif-
ferent tectonic plates, especially if they move in opposing
directions. During an interpolation the velocities are usually
smoothed and the difference in the observations due to a plate
boundary is not visible in the interpolated velocity field. In
order to avoid a smoothing of the velocities, it is necessary to
define the plate boundaries and perform the interpolation sep-
arately. This can be done by increasing the distance between
the stations (Fig. 1). Thus the distance of, for example, two
stations that are only a few kilometres apart but on different
tectonic plates, will be increased to several hundred kilome-
tres so that this distance exceeds the correlation length of the
stations on these plates. After that, their velocities will not
interfere with each other anymore. To avoid a shift of stations
on the same tectonic plate, all stations on one tectonic plate
are moved together keeping their original distances to each
other (Fig. 1). The locations of the stations that are located on
the tectonic plate in the centre (so the one that is surrounded
by several other tectonic plates with GNSS stations) are not
moved. Stations on different tectonic plates are then moved
away from this central tectonic plate (Fig. 1) by a specified
distance. To avoid the mixing of stations that had originally
a large distance and being on different tectonic plates, the
station movement is done iteratively until all stations on dif-
ferent tectonic plates have a large distance to each other. This
allows the interpolation of all GNSS stations at the same
time, but station velocities on different tectonic plates do not
interfere with each other. Thus, the interpolated velocity field
can show a strong gradient along a plate boundary. Known
tectonic plate boundaries (e.g. Bird 2003) as well as other
pre-defined geological boundaries or fault zones can be used.
The increase in distance between the stations allows the pos-
sibility to include further developmentswhere boundaries are
identified by strong gradients (Egli et al. 2007) rather than
by pre-defining their locations as it is done now. It is thus
also suitable for local studies where a plate boundary or fault
is not known but might exist. However, this approach is not
valid for a global interpolation as all stations are located on
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Fig. 1 Sketch of the implementation of plate-boundary constraints. The
map has three plates with stations shown as crosses on the upper plate,
triangles on the lower plate and stars on the right plate. The grey symbols
show the original location of the stations, while the black symbols are
the new locations using plate-boundary constraints. The right plate is
kept as central plate and stations on the upper and left plate are moved.
The arrows indicate the movement direction of the stations. The plate
boundaries are shown as solid yellow lines

plates, which in turn are surrounded by other plates. Thus
the iterative scheme will not resolve. The chosen value that
is used to increase the distance between adjoining tectonic
plates must be larger than the correlation length d0. As the
covariance function decreases remarkably after the correla-
tion length, interpolated values will approach zero. Thus, the
interpolated velocities on one tectonic plate are really free
from velocities on different tectonic plates. Therefore, the
chosen distance should be determined after the covariance
analysis by finding a value where the covariance is approach-
ing zero.While the signal variance and the cross-covariances
can vary for different plates, an additional approach needs to
include these changes, which is described in the next section.

5 Moving variance

The estimation of the parameters of the covariance function
provides general information about the observed veloc-
ity field. However, when station density and the statistical
behaviour of the signal vary significantly in different areas,
then the general variance and correlation length are not
representative for the entire region. This means that the
assumption that the signal covariance function is homo-
geneous and isotropic is not fulfilled; thus, the estimated
covariance depends on the magnitude of the signal and areas
with small or opposite velocities are not well reflected in
the covariance analysis, if one area has larger velocities.
This is known as non-stationarity and several approaches
to overcome this problem have been published before (e.g.
Tscherning 1999; Darbeheshti and Featherstone 2010).

Fig. 2 Estimation of the sample variance based on a random set of
observations. The crosses show the location of the observations and the
dots the location of the new points. The light-red and red crosses are
used for the estimation of the sample variance σ 2

I at the observational
point I (marked by the red cross). The circle surrounding point I is
shown by the dark-red circle. The sample variance σ 2

J at the grid point
J (yellow dot) is obtained by the observations (yellow crosses) within
the yellow circle. The dark blue circle marks the example where no
sample variance can be obtained as no observations (crosses) are within
the dark-blue circle. Thus, the sample variance σ 2

K would be equal to
ρ0

Here, we introduce and refine the approach of moving
variance that was suggested by Vestøl et al. (2019). Within
this approach, the sample variance of an area surrounding
the station is estimated by including the station itself and all
stations that lie within a circle specified by a radius (Fig. 2):

σ 2 = 1

n − 1

n∑
i=1

l2i , (72)

with the observations li within the circle. The moving vari-
ance is used together with results from a correlation analysis
(see below) instead of a covariance analysis. The observation
vector l has to be reduced by its mean value beforehand as
described in Sect. 2.1.

The correlation at 0km (ρ0) is equal 1.0 as the correlation
with the observations itself is a perfect positive correlation.
Thus, the variance–covariance and covariance matrices have
a maximum value of 1.0. In order to obtain a similar maxi-
mum value after applying moving variance, the observations
and uncertainties have to be normed by the maximum value
of the absolute observations. Thus the observations have now
a maximum or minimum of exactly ± 1.0. The sample vari-
ance has to be calculated for each station by keeping the
same radius of the circle to define the region for the sample-
variance calculation. In addition, it is required to define a
minimum value (nmin) for the number of stations that have
to be located within the circle. If less than nmin observations
are within the circle, a fill value has to be defined, which
allows the sample-variance calculation despite not having
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enough observations (Fig. 2, yellow circle if nmin is larger
than three). A user-defined value can be used. Otherwise, the
fill value is estimated based on the mean value of the stations
that are located within the circle. The fill value is then equal
to the average ofmean value and variance of the entire dataset
(ρ0; see Eq. (75) below). The latter is the correlation factor at
0km and thus equal to 1.0. Thus, the fill value is larger than
the mean value based on the stations located within the circle
and thus the sample variance within this circle is increased
and approaches the variance of the entire dataset (ρ0 =1.0).
For the calculation of the sample variance at the unknown
points, the circle might not include any observation (Fig. 2,
blue circle). In this case, the variance of the entire dataset (ρ0)
is used as sample variance. Thus, for all observation and new
points a sample variance can be defined. The sample vari-
ance for each point is then used to find the sample standard
deviation (S = √

σ 2), which is included in the estimation
of the covariance matrix. A comparison to the observations
can be used to find a suitable radius and minimum number
of stations that have to be located within this circle (nmin).
Various values should be tested to find the best fit.

From before we know that the elements of the covariance
matrix C are obtained from the covariance function K (d)

(see Eq. (5)):

C =

⎡
⎢⎢⎢⎣

KP1,P1 KP1,P2 · · · KP1,PNt
KP2,P1 KP2,P2 · · · KP2,PNt

...
...

. . .
...

KPNt ,P1 KPNt ,P2 · · · KPNt ,PNt

⎤
⎥⎥⎥⎦ , (73)

with Pi , Pj as the locations of the observation or new points
(i, j = 1, . . . , Nt ). By applying the moving variance, the
covariance matrix becomes:

C =

⎡
⎢⎢⎢⎢⎣

SP1 SP1 · rP1,P1 SP1 SP2 · rP1,P2 · · · SP1 SPNt · rP1,PNt
SP2 SP1 · rP2,P1 SP2 SP2 · rP2,P2 · · · SP2 SPNt · rP2,PNt

.

.

.
.
.
.

. . .
.
.
.

SPNt SP1 · rPNt ,P1 SPNt SP2 · rPNt ,P2 · · · SPNt SPNt · rPNt ,PNt

⎤
⎥⎥⎥⎥⎦

,

(74)

with SPi ,Pj (i, j = 1, . . . , Nt ) as the sample standard devia-
tion for each point and r(d) as the correlation function at the
location of the observations or new points Pi , Pj (instead
of the covariance function K (d)). Thus, while the original
covariance matrix depends only on the distance between the
stations and the chosen covariance function and their param-
eters, the moving-variance covariance matrix depends on the
observations again and a correlation function. The correla-
tion function r(d) is more homogeneous and isotropic than
the original covariance function (Vestøl et al. 2019), and
the same function for the entire dataset is used. However,
parameters for the correlation function have to be defined,
which is explained below. The new correlation function

(r(d)) together with the sample standard deviations (SPi ,Pj )
is applied for all signal covariance and cross-covariance
matrices (Css , Cps and Cpp).

5.1 Correlation analysis

The application of a moving-variance covariance matrix also
involves the determination of a correlation function, which
can be obtained by dividing the covariances by the standard
deviation (Vestøl 2006):

r(0) = 1

Nt

Nt∑
i=1

l2i
S2li

= ρ0

r(dp) = 1

Np − 1

Np∑
i �= j

(
li − li

) (
l j − l j

)

Sli Sl j
,

(75)

with li, j and Sli ,l j being the mean and standard deviation
of the observations within the specific distance group. The
observations are reduced by the mean value before the corre-
lation analysis is carried out. The correlations are estimated
for each distance group as for the covariances and at the end
plotted in a correlation diagram.

The combined covariance analysis using the approach
described in Sect. 3.2 has to be adjusted as well to obtain
a correlation function instead. Here, Eq. (63) is modified by
removing the mean value of the observations within specific
distance groups (as in Eq. (75)). Thus, Eq. (63) becomes:

βr =
(
Vk (Pi ) − Vk (Pi )

) (
Vl (Pj ) − Vl (Pj )

)
− Cηk (Pi ) ηl (Pj )

fkl (Pi , Pj )

∣∣∣∣∣∣dPi Pj ∈dp
k, l=E, N

,

(76)

which is then used to find an estimator for the empirical
correlation r̂(dp) of the correlation function at distance dp.
Equation (70) is also modified by taking into account the
standard deviations of the observations within each distance
group:

r̂(dp) = αT βr

SVk (Pi ) SVl (Pj )

∣∣∣∣∣ dPi Pj
∈dp

k, l=E, N

. (77)

The determination of the standard deviation of the empir-
ical correlations is not affected in the correlation analysis
as the calculation of the variance of the estimator (S2

K̂ (dp)
;

Eq. (71)) is only dependent on�β (Eq. (66)). However,�β is
a function of the a-priori chosen correlation function and their
parameters, the latitude and longitude-dependent functions
fst and fuv defined as in Eqs. (50–53), and the covariances of
the observational uncertainties. Thus, the standard deviation
determined in the correlation analysis is determined in the
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same way as in the covariance analysis. The new parameters
are then used together with the correlation function to esti-
mate the moving-variance covariance and cross-covariance
matrices and carry out a (HV-)LSC to find the signal at the
observation points and new points.

6 Synthetic dataset

The presented methods above are partly new and need to be
verified. A simple synthetic dataset is created where 130 sta-
tions are distributed over four separate tectonic plates (Fig. 3).
Rotational background velocities in the east-west (EW) and
north-south (NS) direction are assigned for each plate (see
Fig. S1). We assume angular velocities for the four tectonic
plates and keep one plate fixed (plate 1) so that all veloci-
ties on the three remaining plates (plate 2, plate 3, and plate
4) are with respect to the fixed plate. We also add a ran-
dom noise to the assigned background velocities by using
the Python function numpy.random (Harris et al. 2020). The
random noise represents the variations in the amplitude of
the velocity that are usually observed for GNSS stations, e.g.
due to local effects and/or tectonics. In addition, an observa-
tional uncertainty is created at each point, which is randomly
distributed between predefined values using the Python func-
tion numpy.random as well. The application of a real dataset
(obtained from GNSS solutions) is the purpose of a forth-
coming paper.

The first plate has 76 stations and is fixed (background
velocity is 0mm/a, Fig. S1). However, velocities vary
between −1 and 1mm/a in both directions due to the added
noise. The observational uncertainties of the velocities are
assigned to be between 0.2 and 0.5mm/a for the EW and NS
component. The second plate (19 stations) moves with about
2mm/a to the north and 0.5mm/a to the west in the northern
part of the plate, while a eastward direction is obtained in
the southern part of plate 2 (Fig. S1). The velocities are with
respect to plate 1. The same noise range as for plate 1 is used
for stations on plate 2 (Fig. 3b), but the observational uncer-
tainty is chosen to be a bit larger on the second plate, reaching
values of up to 0.6mm/a for both horizontal velocity com-
ponents. The third plate, which is the smallest tectonic plate
and surrounded by the other three plates (Fig. 3), moves with
up to 4mm/a to the west and south with respect to plate 1.
The 13 stations on this plate have the same additional noise
as the other two plates. The observational uncertainty of both
simulated velocity components is between 0.2 and 0.8mm/a.
Velocities on the fourth plate (22 stations) are slightly smaller
and the plate moves with up to 3mm/a to the east and up to
1mm/a to the north with respect to plate 1 as well (Fig. 3b).
The north component becomes larger on the east side of plate
4 (Fig. S1). The observational uncertainty of the velocities is
between 0.2 and 0.5mm/a for both horizontal components.

Looking at the simulated velocity field (Fig. 3b, Fig. S1), the
plate boundaries are of different type. Boundaries between
plates 1 and 2, plate 3 and 4, and plate 4 and 2 are con-
vergent plate boundaries, while between plates 1 and 3, as
well as 2 and 3 divergent plate boundaries exist. Plate 4 and
1 are separated by a transform zone. The distance between
stations varies between 11km and almost 7000km, while
having ameandistance of around3100km.However, stations
are located in three areas only (Fig. 3a), where mean station
distance is much smaller (800–1100km) and also maximum
distance varies between 2000 and 3100km.

The synthetic velocity field is analysed to find the covari-
ance parameters (covariance and correlation length) using
a standard covariance analysis (see Sect. 2.1) and the com-
bined covariance analysis of the horizontal velocity field (see
Sect. 3.2). The parameters are then used to find the velocity
field at the observation points as well as grid points using
LSC. The grid has a resolution of 0.25◦ in the longitude and
latitude. The covariance analysis and the LSC are based on
the condition that the observations have an expectation of
0mm/a. Thus, the data have to be reduced by their mean
values, which are −0.025mm/a for the EW component and
−0.01mm/a for the NS component. The LSC is then used
in the remove-compute-restore principle (e.g. Vestøl et al.
2019) where the mean value is removed from the synthetic
dataset before the signal is obtained and added afterwards
to the obtained signal (restored). In a first step, a standard
LSC is done using the velocity components separately as
well as the results from the standard covariance analysis.
This is followed by using the HV-LSC technique where both
horizontal components are obtained at the same time. In
addition, the HV-LSC techniques are applied together with
plate-boundary constraints (see Sect. 4) as well as with the
moving-variance technique (HV-LSC-ex2, see Sect. 5). For
the latter, correlation parameters are estimated in a corre-
lation analysis. The final interpolated velocity field is also
compared to results using Kriging.

6.1 Covariance analysis

The empirical covariances are determined using Eqs. (11)
and (12). The covariance function is then obtained by deter-
mining the unknown parameters: C0 and d0. The fit between
function and empirical covariances is defined by the Pear-
son’s correlation coefficient (PCC; Freedman et al. 2007)
and the misfit φ, which is obtained using:

φ =
√

1
Nδ

�
(
Kcurve(dp) − Kemp(dp)

)2
C0

, (78)

with Nδ being the number of distance groups, Kcurve(dp)
the value of the covariance function at dp, and Kemp(dp) the
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Fig. 3 Synthetic dataset created for a scenario with four tectonic plates.
The stations (green dots) and the plate numbers are shown in (a). The
horizontal velocity field is shown as a vector field in (b). The green

ellipses around the vectors represent the generated uncertainties. The
scale for the vectors and uncertainty ellipses is shown in the top-right
corner of (b). The plate boundaries are shown as solid yellow lines

empirical covariance at dp. The division by the variance C0

allows the comparison of the differentφ values for the various
velocity components. The misfit is also estimated for the first
three points (denoted as φ3) only to be able to differentiate
between similar fits. The fit to the first three points is themost
important as the covariance and correlation are the largest for
points in the close surrounding of an observation point. The
correlation length is depending on the correlation between
signals that are in close distance rather than by stations that
are furthest away, and thus, the covariances closest to the
y-axis are mainly used for computing the correlation length.
The best-fitting parameters are then chosen based on all three
values: PCC (should be close to 1), φ (should be close to 0),
φ3 (should be close to 0).

The variances C0 of the synthetic data are 2.025mm2/a2

and 1.913mm2/a2 for the EW and NS velocity components,
respectively. Using a δ of 1.5◦ (Fig. 4), correlation lengths d0
of 268± 102km (for the EW component) and 500± 130km
(for the NS component) are obtained from fitting a first-
order Gauss–Markov function (see Eq. (16)). The PCCs are
0.87 and 0.92 for the EW and NS components, respectively
(Table1).Adifferent δ of 0.75◦ (Fig. S2) results in a changeof
the correlation lengths to 250±45km (EW) and 250±81km
(NS). The fit for the EW component is better using a smaller
δ value (PCC increased to 0.90 andφ decreased to 0.108), but
the fit for theNScomponent isworse. In total, several δ values
as well as five different type of functions have been tested,
whose results are shown in Fig. 5 as well as in the supple-
mentarymaterial (Fig. S2). The δ parameter is chosen to vary
between 0.5◦ and 5.0◦ based on the size of the study area. A

smaller δ valuewould result in too small distance groupswith
not enough points per group to obtain a realistic estimate of
the empirical covariance. In contrast, a larger δ of more than
5.0◦ would lead to too fewempirical covariance estimates and
the fitting of a covariance function is not possible. Distance
group with not enough points are not plotted and not con-
sidered in the covariance analysis. The obtained parameters
and their misfits φ, φ3 and PCCs are summarized in Fig. 5,
Table1, and the supplementary Excel spreadsheet. The usage
of a δ of 1.5◦ and a first-order Gauss–Markov function are
providing the best fit based on PCC, φ, and φ3 considering
both horizontal components (Fig. 4a, b; Table1). In addition,
a δ of 1.5◦ provides several values within the first 1000km
to be able to define the covariance function. The obtained
correlation lengths are smaller than the calculated mean dis-
tances (800–1100km), but larger than minimum distances
(11–82km).Based on the correlation lengths, covariances are
not 0mm2/a2 at the mean distances for the three areas. Thus,
the correlation lengths cover the various distances between
the stations well.

The results obtained from the standard covariance analy-
sis of the horizontal components (function of the first-order
Gauss–Markov process) can now be used for the first itera-
tion of the new covariance analysis where both components
and their correlation are taken into account. Various δ values
are tested again. The combined covariance analysis gives
a correlation length of 330 ± 67km and a covariance of
2.120mm2/a2 using a δ of 1.25◦ (Fig. 4c) after one itera-
tion (PCC = 0.93, φ = 0.107, and φ3 = 0.127). These two
values are now used in the following for the HV-LSC. The
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Fig. 4 Covariance analysis of the synthetic dataset. The empirical
covariance is shown as black crosswith the grey bar as the standard devi-
ation. The solid and dashed lines show the fitted covariance functions
with the parameters written in the top-right corner. (a) and (b) are the
covariance functions of the EW and NS velocity components, respec-
tively. (c) shows the covariance function obtained from the combined
covariance analysis using both horizontal components at the same time
as well as the correlations between them. A first-order Gauss–Markov

function is used in (c). The solid and dashed purple lines are the func-
tions of the first- and second-orderGauss–Markov process, respectively,
the Hirvonen function is shown as solid orange line, and the functions
of the first- and second-order Markov model are visualized as solid and
dashed light-blue lines for covariance functions in (a) and (b). Dis-
tance groups with less than 130 station pairs are not considered in the
covariance analysis (and therefore not plotted here)

Fig. 5 Results of the covariance analysis for various δ values and covari-
ance functions (GM1 - first-order Gauss-Markov, GM2 - second-order
Gauss-Markov, Markov1 - first-order Markov, Markov2 - second-order
Markov2). The colourscale of the circles and squares represents the
value of φ3 (dark red colours stand for a better fit). The size of the
circles and squares is related to φ, with larger circles/squares for better
fits of empirical covariances to the covariance function. The PCC value

is visualized by circles and squares: when the PCC between empirical
covariances and covariance function is above the average of all PCC
values obtained in the covariance analysis a circle is used. In contrast,
a square is used when the PCC is below the average. The best fit of
empirical covariances to covariance function is found, when a large,
dark-red circle is obtained
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Table 1 Results of the covariance analysis using a δ of 1.5◦ for the horizontal velocity field as well as the first- and second-order Gauss–Markov
function (Eqs. (16) and (17)), Hirvonen function (Eq. (15)), and the functions of first- and second-order Markov model

Covariance function EW NS

d0 [km] PCC φ φ3 d0 [km] PCC φ φ3

First-order Gauss–Markov 268 ± 102 0.87 0.158 0.057 500 ± 130 0.92 0.152 0.130

Second-order Gauss–Markov 281 ± 67 0.86 0.162 0.095 500 ± 111 0.85 0.182 0.221

Hirvonen 186 ± 78 0.87 0.160 0.055 322 ± 86 0.89 0.163 0.147

First-order Markov 132 ± 40 0.86 0.160 0.079 259 ± 57 0.89 0.165 0.188

Second-order Markov 97 ± 27 0.86 0.160 0.085 188 ± 41 0.88 0.171 0.202

d0 is the correlation length given in km, PCC is the Pearson correlation coefficient, and φ and φ3 are the misfit values (see Eq. (78)). The final
values for the horizontal velocity field are marked in bold. The equations for the functions of the first- and second-order Markov model are given
in the supplementary material (Eqs. (S1) and (S2))

same values are obtained within one or two iterations, if the
starting correlation length is varied. A slightly different cor-
relation length can be obtained when the Hirvonen function
is used and/or a different δ (see Fig. S3).

6.2 Correlation analysis

We also have to find parameters for the correlation func-
tion when using the moving-variance approach. We test the
same δ values and functions as in the covariance analysis,
but instead calculate the empirical correlation (Eq. (75)). The
correlation at d=0km (ρ0) and the correlation length d0,r
are determined by finding the best fit of a correlation function
to the empirical correlations by calculating the PCC, φ, and
φ3 values. The best fits are again obtained using a function of
the first-order Gauss–Markov process for various δs (Fig. S4,
supplementary Excel spreadsheet). This information is used
to obtain the combined correlation length, which is found to
be 369 ± 139km using a δ of 0.75◦ (Fig. 6). The correlation
ρ0 is 1.0. Empirical correlations decrease to zero for small
distances, but are not zero for larger distances. Thus, the cor-
relation function does not represent the behaviour of the data
well, when stations are more than 3000km away from each
other. However, at this distance it is expected that velocities
on Earth vary due to existence of moving plates.

6.3 Least-squares collocation at known points

LSC of the horizontal velocity field is done for the four
methods presented here: standard LSC (Fig. 7a–c), HV-LSC
(Fig. 7d–f), HV-LSCwith plate-boundary constraints applied
(Fig. 7g–i), andHV-LSCwith plate-boundary constraints and
moving variance applied (termed HV-LSC-ex2; Fig. 7j–l). In
all cases a filtering is only applied where the observations
(l, in this case the synthetic data) are split up into a signal
part and a noise part (using Eqs. (3) and (21)). Additionally,
a standard error of the obtained signal is estimated (using
Eqs. (4) and (23)).

Differences of collocated to synthetic dataset are then
computed to analyse the performance of each method. As a
synthetic dataset is used, which is based on a background
velocity and an additional random noise, the differences
between the estimated signal (collocated data) to the back-
ground velocity (Fig. S1(A)) can be obtained (Fig. 7). The
analysis allows us to identify the best method that is able
to find the background velocity. This comparison is only
possible for a synthetic dataset and is not working for real
observations as the “true” signal is not known. Thus, we also
compare the collocated velocity field with the synthetic data
including noise. In addition, we apply a leave-one-out cross-
validation (LOOCV) to check the stability of the collocated
velocity field. Within LOOCV a station is removed and the
velocity at this station is interpolated using the remaining
station velocities by applying the specific LSC technique.
The obtained velocities from LOOCV are then used to find
the difference to the collocated velocity where all data points
were used (Fig. 7c, f, i, l), which allows us to analyse the
effect of the applied LSC technique. However, the LOOCV
is not able to judge the method, which needs to be defined
by analysing the fit to the synthetic data (with and without
noise).

The synthetic horizontal velocity field has minimum and
maximumvelocities of−4.392mm/a (EW)and−4.101mm/a
(NS) as well as 3.363mm/a (EW) and 2.880mm/a (NS)
including noise (Table2), respectively. A LSC of the veloci-
ties with correlation lengths of 268km (EW component) and
500km (NS component) and without taking the correlation
between the velocities into account provides values, which
are similar to the synthetic velocity field (Fig. 7a, Table2).
Differences are larger than 1mm/a for both components
comparing the collocated velocity field with the background
velocity field without noise (Fig. 7b, Table3). The LOOCV
shows differences of up to ±3mm/a for the standard LSC
(Fig. 7c, Table3). These large differences are found for sta-
tions close to plate boundaries where the station velocity
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Fig. 6 Combined correlation
analysis using the first-order
Gauss–Markov covariance
function for a δ of 0.75◦.
Distance groups with less than
130 station pairs are not
considered in the covariance
analysis (and therefore not
plotted here)

itself cannot be interpolated well enough, if one station is
removed.

In the next step, the velocity field is obtained by apply-
ing the HV-LSC technique and using a correlation length of
330km (Fig. 7d–f). The differences to the background veloc-
ity field are smaller than for the standard LSC (Fig. 7e, f,
Table3), thus showing the improvement when using the HV-
LSCmethod. LOOCV forHV-LSC shows amixed behaviour
with both improvement and deterioration in both components
(see Table3) compared to applying standard LSC. However,
LOOCV is only applied to see, if the chosen LSC is able to
replicate their resultswhen using only a subset of the stations,
and it cannot be used to decide on the best method.

The additional application of plate boundary constraints
provides a better fitting collocated velocity field along plate
boundaries (Fig. 7g–i, Table3). The stations on plate 3 are
fixed and stations on plate 1, 2, and 4 are virtually moved to
the north, east, and south, respectively, to simulate the inde-
pendency of velocities on various plates. The differences in
the velocities for stations on plate 1 and 2 are greatly reduced.
Results from the LOOCV show that the collocation is more
stable and the differences to the collocated velocity field are
reduced by 1mm/a (Fig. 7i, Table3). However, the veloci-
ties are still noisy with large variations in the surrounding of
a station (see plate 1, Fig. 7h). Thus, we apply the moving-
variance approach on top of theHV-LSCwith plate-boundary
constraints: HV-LSC-ex2.

Based on the results of the correlation analysis, a cor-
relation length of 369km is used when the moving-variance
approach is applied. In addition, various radii (250–1050km)
and number ofminimum stations (2, 3, 5, 7 and 10) have been
tested. The fit of the velocity field to the background velocity
at known points is used to decide on the best-fit radius and
the number of minimum stations that have to lie within the
circle. The overall best fit is obtained for a radius of 850km
using at least 7 stations in the circle (see supplementary Excel
spreadsheet). The covariance ρ0 is only 10% at a radius of

850km. Thus, such a boundary condition could be used in
future studies, where the “true” signal is not known.

The new filtered horizontal velocity field using HV-
LSC together with plate-boundary constraints and moving-
variance approach (HV-LSC-ex2) shows consistent velocities
on all plates, pointing into similar directions (Fig. 7j). The
fit to the synthetic dataset is improved and LOOCV indi-
cates that the collocated values are stable. The advantage
of the moving-variance approach becomes especially visible
for plate 1 (Fig. 7k) where the differences to the background
velocity are much smaller than those for the other LSC tech-
niques. Differences of the collocated velocity field to the
results of a LOOCV are small for plate 1 (Fig. 7l). The min-
imum standard errors of the collocated velocity field are
also a bit smaller than the standard errors obtained from the
other LSCs, but their maxima are larger and more similar
to the uncertainties of the synthetic dataset. The result using
HV-LSC-ex2 produced a smoother result by filtering out the
noise.

Smoothing in any LSC largely depends to a rather large
extent on the signal to noise ratio. However, smoothing from
the LSC is not always wished and Kotsakis (2007) provided
a methodology to reduce the smoothing. But, in some cases,
the more general behaviour of the observations is tried to
be resolved. The moving-variance approach will smooth the
data more in some areas, but less in other areas, depending
on how large the moving variance is at specific locations.
Velocity field solutions can also include local signals due
to unstable stations (e.g. due to the installation on the roof
of a building) and those have to be smoothed to obtain a
velocity model that fits the overall movement of the area.
This is especially important considering that velocity field
solutions and/or models are used to estimate the strain rates.
These would be increased due to small-scale changes, which
are not due to a true change in strain rate. Thus, a smoothed
velocity field can be an advantage.
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Fig. 7 Results of LSC for the horizontal velocity field at known points.
Left column (a, d, g, j) shows the obtained velocity field using various
LSC techniques,middle column (b, e,h,k) their differences to the back-
ground velocities (Fig. S1(A)), and right column (c, f, i, l) the differences
of collocated to LOOCVs velocities using various LSC techniques.
(a–c) Standard LSC separately for each horizontal velocity field com-
ponent, (d–f) HV-LSC, (g–i) HV-LSC together with plate-boundary

constraints, (j–l) HV-LSC together with plate-boundary constraints and
moving variance (HV-LSC-ex2). The length of the velocity arrow is dif-
ferent for each column: 2.5 mm/a for the LSC results, 0.5mm/a for the
differences to the background velocities, and 2.0mm/a for the differ-
ences between the results of the LSCs to the LOOCVs. The solid yellow
lines mark the plate boundaries
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Table 2 Statistics of the synthetic dataset and LSC of the horizontal velocity field at the known points

EW NS

Min Max Mean StdDev Min Max Mean StdDev

Data

Synthetic data − 4.392 3.363 − 0.025 1.473 − 4.101 2.880 − 0.010 1.438

Synthetic data w/o noise − 3.805 2.380 − 0.042 1.439 − 3.566 2.134 0.027 1.330

LSC − 3.760 3.233 − 0.005 1.371 − 3.840 2.710 − 0.001 1.365

HV-LSC − 3.774 3.244 − 0.005 1.373 − 3.822 2.741 − 0.001 1.369

HV-LSC with plate boundaries − 3.926 3.244 − 0.010 1.395 − 3.824 2.745 − 0.001 1.375

HV-LSC-ex2 − 4.301 3.320 − 0.015 1.396 − 4.029 2.812 − 0.010 1.379

Standard error

Synthetic data 0.201 0.777 0.366 0.111 0.202 0.649 0.382 0.096

LSC 0.195 0.681 0.338 0.092 0.193 0.575 0.336 0.076

HV-LSC 0.194 0.684 0.335 0.091 0.198 0.589 0.349 0.081

HV-LSC with plate boundaries 0.194 0.684 0.335 0.091 0.198 0.590 0.350 0.081

HV-LSC-ex2 0.173 0.716 0.296 0.100 0.165 0.635 0.299 0.097

All values are given in mm/a

Table 3 Statistics of the difference between the background velocities (synthetic dataset w/o noise) and the results of LSCs at known points as well
as the differences between the results of the LSCs to the LOOCVs

Synthetic dataset w/o noise − LSC LSC − LOOCV

Min Max Mean StdDev Min Max Mean StdDev

EW

LSC − 1.098 0.885 − 0.037 0.552 − 2.670 2.823 − 0.002 0.875

HV-LSC − 1.072 0.880 − 0.037 0.545 − 2.545 2.829 − 0.003 0.837

HV-LSC with plate boundaries − 1.037 0.880 − 0.033 0.541 − 2.126 2.287 − 0.014 0.736

HV-LSC-ex2 − 0.940 0.868 − 0.027 0.440 − 2.493 2.233 − 0.017 0.636

NS

LSC − 0.874 1.053 0.028 0.454 − 2.480 1.437 − 0.018 0.600

HV-LSC − 0.905 0.985 0.028 0.475 − 3.127 1.327 − 0.028 0.687

HV-LSC with plate boundaries − 0.903 0.934 0.027 0.472 − 3.127 1.300 − 0.034 0.640

HV-LSC-ex2 − 0.770 0.878 0.037 0.380 − 3.497 1.300 − 0.028 0.565

All values are given in mm/a

6.4 Least-squares collocation at grid points

The main purpose of LSC is the interpolation and extrapola-
tion of existing data to arbitrary chosen points (e.g. a grid).
Here, we create a grid spanning a longitude range of −10◦
to 80◦ and a latitude range of −25◦ to 41◦ with a resolu-
tion of 0.25◦ (Fig. 8, however, shows only every eighth grid
point to increase visibility). The differences of HV-LSCs to
standard LSC are calculated (Fig. 8d, g, j). In addition, we
run a Jackknife resampling (e.g. Tukey 1958) for a grid with
a resolution of 2.0◦. Here, for every grid point the specific
LSC is done by leaving one synthetic data point out. Thus,
for every grid point a LOOCV is done based on the entire
synthetic dataset. The final result is then obtained by calcu-
lating a mean for each grid point, which is compared to the

LSC result. Furthermore, theminimum andmaximumvalues
from the Jackknife resampling can be compared to the mini-
mum and maximum values of the synthetic data (Table S1).
These values together can be used to verify the interpolation
method. We use a grid resolution of 2.0◦ only for Jackknife
resampling as a resampling for a grid with a resolution of
0.25◦ involves applying LSC for almost 15Million points.
Such a calculation would run for∼ 134 days using 32 CPUs.
Thus, we decrease the grid resolution to allow a faster run-
ning time of the Jackknife resampling (less than 5 h).

The interpolated horizontal velocity field using a standard
LSC (Table 4) shows large velocities over areas where no
stations are located (Fig. 8a). In particular velocities in the
southern part of plate 1 are largely affected by the velocities
on plate 3. The same can also be observed for interpolated
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Fig. 8 Results of LSC at newly defined grid points for the horizon-
tal velocity field. Left column (a, c, f, i) shows the obtained velocity
field, middle column (d, g, j) presents the difference of the interpolated
velocity field to the velocity field using a standard LSC (a), and right
column (b, e, h, k) shows differences to the mean of Jackknife resam-
pling. The arrows are plotted at every eighth grid point for the left and
middle columns, and every grid point for the right column (a grid of
2.0◦ is obtained). Red arrows in (a), (c), (f) and (i) are the synthetic
data. (a–b) standard LSC separately for each horizontal velocity field
component. (c–e) shows HV-LSC, where (d) is (a) minus (c), but (e)

is the difference between (c) and the mean velocity field from Jack-
knife resampling using HV-LSC. (f–h) shows HV-LSC together with
plate-boundary constraints, where (g) is (a) minus (f), but (h) shows the
difference of the mean velocity field from Jackknife resampling using
HV-LSC with plate-boundary constraints to (f). (i–k) shows HV-LSC-
ex2 (moving-variance radius of 850km), where (j) is (a) minus (i), and
(k) is again the difference between the mean velocity field from Jack-
knife resampling using HV-LSC-ex2 to (i). The length of the velocity
arrow varies throughout the entire figure (see upper left in each sub-
figure). The solid yellow lines mark the plate boundaries
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Table 4 Statistics of LSC of the horizontal velocity field at grid points

EW NS

Min Max Mean StdDev Min Max Mean StdDev

Data

Synthetic data (grid points w/o noise) − 3.861 2.667 0.397 1.633 − 3.748 2.300 0.291 1.517

LSC − 3.683 3.152 − 0.028 0.594 − 3.825 2.690 − 0.066 0.820

HV-LSC − 3.714 3.179 − 0.030 0.665 − 3.773 2.707 − 0.042 0.686

HV-LSC with plate boundaries − 3.856 3.178 − 0.014 0.700 − 3.771 2.712 − 0.023 0.694

HV-LSC-ex2 − 4.231 3.267 0.007 0.783 − 4.273 2.781 0.016 0.789

Standard error

Synthetic data 0.201 0.777 0.366 0.111 0.202 0.649 0.382 0.096

LSC 0.285 1.423 1.334 0.166 0.263 1.383 1.216 0.228

HV-LSC 0.274 1.456 1.340 0.195 0.289 1.456 1.340 0.194

HV-LSC with plate boundaries 0.274 1.456 1.343 0.193 0.289 1.456 1.344 0.192

HV-LSC-ex2 0.064 1.456 0.932 0.528 0.060 1.456 0.923 0.534

All values are given in mm/a

Table 5 Statistics of the difference between LSC techniques at grid points as well as to the mean values of Jackknife resampling

Difference to standard LSC LSC − Jackknife resampling

Min Max Mean StdDev Min Max Mean StdDev

EW

LSC − − − − − 0.144 0.091 0.000 0.022

HV-LSC − 0.295 0.455 0.003 0.093 − 0.149 0.090 0.000 0.025

HV-LSC with plate boundaries − 3.326 4.524 − 0.014 0.213 − 0.161 0.090 0.002 0.027

HV-LSC-ex2 − 3.340 4.897 − 0.034 0.306 − 0.197 0.167 0.005 0.037

NS

LSC − − − − − 0.305 0.093 − 0.004 0.035

HV-LSC − 0.880 0.485 − 0.025 0.186 − 0.221 0.044 − 0.004 0.027

HV-LSC with plate boundaries − 2.585 1.662 − 0.044 0.275 − 0.229 0.068 − 0.001 0.029

HV-LSC-ex2 − 2.543 1.848 − 0.082 0.262 − 0.263 0.137 0.005 0.038

All values are given in mm/a

velocities using HV-LSC where the correlation between the
horizontal velocity components is considered (Fig. 8c). The
differences of this interpolated velocity field to standard LSC
interpolation are up to 1.0mm/a (Fig. 8d, Table5). The largest
differences can be found for the area with high velocities
around the equator. The advantage of interpolating over a
sphere becomes visible. Thus, HV-LSC has to be preferred
when interpolating horizontal velocities as the correlation of
both components is taken into account and the sphericity of
the Earth is considered. Differences to Jackknife resampling
ofHV-LSC are similar as for standard LSC (Table5) showing
the stability of the interpolated values.

When plate-boundary constraints are considered, differ-
ences to the interpolated velocity field using standard LSC
are increased to more than 4mm/a (Table5). Velocities on
different plates do not interfere with each other and strong
velocity gradients along the boundaries are obtained due to

the different assumed plate velocities and the application of
plate-boundary constraints (Fig. 8f). Thus, plate velocities
of different plates do not interfere with each other anymore,
showing the improvement of this implementation. For exam-
ple, large velocities in the southern part of plate 1 from
standard LSC and HV-LSC are largely decreased when plate
boundaries are considered. The velocity field on plate 1
shows a similar south-west direction for the entire plate, with
small variations in areaswhere synthetic data are located. The
differences of the interpolated velocity field using HV-LSC
together with plate boundaries to the background velocities
are decreased by this application. While values between −5
and 4mm/a have been obtained for the previous LSCs, dif-
ferences are now between−4 and 3.5mm/a (Table5 and S9).
The largest improvement can be seen for plates 1, 2, and 4,
as velocities on these plates had been affected by the large
velocities on plate 3. The Jackknife resampling also shows
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Fig. 9 Comparison of Kriging to the interpolation using HV-LSC-ex2

(with plate-boundary constraints and moving variance) for the horizon-
tal velocity field. (a) Kriging using PyKrige, (b) final LSCmodel minus

(a). Only every eighth grid point is plotted (a grid of 2.0◦ is obtained).
The solid yellow lines mark the plate boundaries

largest differences along the plate boundaries (Fig. 8h) as
the missing of one station had a larger effect. The absolute
differences between the velocity magnitudes are also smaller
than for the previously applied LSCs. The simple differences
between the LSC velocity field and mean velocity field from
Jackknife resampling are similar to the previously applied
LSCmethods. But, it is visible that the velocity model at grid
points is largely improved when plate-boundary constraints
are applied, although small-scale changes in the horizontal
field direction remain, especially on plate 1. Obtained stan-
dard errors are larger than uncertainties of the synthetic data
(Table 4). While the maximum standard error is determined
by the covariance and thus must be larger than the input
uncertainty, the minimum standard error depends on the per-
formance of LSC.

The velocity model and its standard error can be improved
using the moving-variance method. The velocity model
(Fig. 8i) has smaller velocities on plate 1 compared to the
previous interpolations, which is consistent with the assump-
tion of 0mm/a background velocity in both directions (plate
velocities were corrected with respect to plate 1 during the
creation of the synthetic dataset). Differences in the south-
ern part of plate 4 are obtained, which can be attributed to
the moving-variance radius. The results become more sim-
ilar to the background velocities as interpolated velocities
decrease over a larger area to 0mm/a compared to using
(HV-)LSC with and without plate boundaries. In general, the
velocity field is improved when applying moving variance as
well after using HV-LSC together with plate-boundary con-

straints. The velocity field shows similar velocities for most
areas of the plates and reduces variations due to local effects.

6.5 Comparison to other interpolation techniques

In addition to LSC other interpolation techniques can be
applied, e.g. Kriging, which will be tested and compared
in the following. The difference (Fig. 9, Table S2) is then
obtained to the final grid using HV-LSCwith plate-boundary
constraints and moving variance (HV-LSC-ex2, Fig. 8i). We
use the PyKrige package from Python (Murphy et al. 2021)
and the changed station coordinates from the introduction of
plate-boundary constraints. Thus differences between HV-
LSC-ex2 and Kriging are only due to the application of
both horizontal velocity components at the same time, the
application of moving variance as well as the choice of the
covariogram model used in Kriging (an exponential covari-
ogram model is used here; detailed parameters are provided
in the supplement).

The largest difference between Kriging and HV-LSC-ex2

is obtained for plate 3. Both interpolations use the moved
station coordinates to take into account the plate boundaries.
The velocities from the Kriging interpolation on plate 3 are
larger in areas where no station is located. This fits better
to the background velocity grid (Fig. S1(B)). Velocities on
plate 1 from Kriging are larger than the velocities obtained
using HV-LSC-ex2. As all plate velocities have been cor-
rectedwith respect to plate 1, the background velocity for this
plate is 0mm/a in both directions. A better approximation to
this is obtained using HV-LSC-ex2. The interpolation using
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Kriging also requires the definition of specific parameters
(values obtained within a variogram analysis beforehand).
A more in-depth analysis could thus lead to slightly differ-
ent results and a better fit to the final LSC model. However,
based on our knowledge, Kriging does not allow the usage
of both horizontal velocity field components together. There-
fore, the correlation between the components is ignored. The
newly presented HV-LSC technique has thus an advantage
over Kriging when modelling the horizontal velocity field.

7 Conclusion

LSC is a well-known technique to interpolate and combine
different components of a dataset. It has been used previously
to interpolate velocity fields; however, the advantage of using
several components at the same time has, to our knowledge,
not been utilized. Here, we presented an extension of the
standard LSC technique by allowing the combined interpo-
lation of the horizontal velocity field where the correlation
between the components is considered. It also requires the
estimation of input parameters for the HV-LSC where both
components have been used together in a covariance analy-
sis. Thus, a new approach for finding a combined correlation
length is presented. In addition, we apply plate-boundary
constraints, where the distance of stations on different tec-
tonic plates can be increased. Thus, the velocities of these
stations donot interferewith eachother anymore in a velocity
field interpolation and a strong velocity gradient at the plate
boundary can be obtained. Furthermore, the problem of non-
stationarity due to a varying density of station networks and
velocity magnitudes, is considered by applying moving vari-
ance. This new method also requires new input parameters,
which have to be found in a correlation analysis. The correla-
tion analysis is also extended to allow the combined usage of
both horizontal velocity components. Additionally, a radius
has to be defined in which the moving variance is estimated.
This radius is defined by finding the fit of the interpolated
velocity field to the input data, and a remaining correlation of
10%was shown to perform best. In general, the HV-LSC-ex2

method has its advantage of obtaining an interpolated veloc-
ity field by using only the location of the stations as well
as knowledge about existing plate boundaries together with
the observed velocities at the GNSS stations. It is thus not
depending on geophysical background information, which
can induce further errors/uncertainties, and can be applied
to interpret the changes in the velocity with respect to geo-
physical models (e.g. seismic tomography models, density
models).

We apply the new techniques to a synthetic dataset that has
stations distributed on four plates. Station velocities for both
horizontal components are created. The interpolated velocity
field shows the best fit to the synthetic data, if HV-LSC-

ex2, i. e. HV-LSC together with plate-boundary constraints
and moving variance, is used. The largest increase in fit
can be obtained for the horizontal velocity field when plate-
boundary constraints are applied. Usage of both horizontal
velocity field components and integration of the correla-
tion between the components has been shown to perform
better than standard LSC, where such a correlation is not
considered. The comparison to Kriging also shows that HV-
LSC-ex2 performs better for interpolation and extrapolation
and should be preferred when using velocity data. However,
the presentedmethod to introduce plate-boundary constraints
requires knowledge about the location of the plate bound-
aries. Thus, only existing geological boundaries can be used
and fault zones with strong velocity gradients can be missed.
In those cases, it would be necessary to use the adaptive LSC
by Egli et al. (2007), which can be easily applied in the pre-
sentedmethod as all stations are interpolated together and the
distance between them is only increased. In addition, a suit-
able radius has to be chosen carefully for themoving variance
and several values should be tested to find a velocity field that
is free of unrealistic velocities. Especially correlation length
and moving-variance radius have a large effect on the final
velocity model. Thus, suitable values have to be determined
advisedly before.

The run time of the HV-LSC implemented in Python2.7 is
around 25% longer compared to standard LSC implemented
in Python2.7 aswell. The usage ofmoving variance increases
the run time by additional 20% using the same implemen-
tation with Python2.7 as before. Speed can be increased,
if parallelization is used, which is suitable to estimate the
signal at the newly defined points. The covariance analysis
of both horizontal components also requires large computa-
tional power as the matrices can reach dimensions of more
than 1 million entries in both directions, if an input dataset
with many stations is used. Thus, the new covariance anal-
ysis is not always applicable. It would be required to split
the dataset and make a covariance analysis of several sub-
regions.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00190-022-01601-
4.
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