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Abstract  

The sudden downtime and unplanned maintenance not only drastically 

increase the maintenance cost but also decreases the production capacity for 

the manufacturer industries. This is because the machines on these industries 

fail suddenly and totally stop the production as the machine should be fixed by 

maintenance before it can run again. To deal with it, several maintenance 

techniques have been adopted. But as soon as an automated maintenance 

technique comes in named predictive maintenance, the future machine failure 

can be predicted. To perform this prediction, a synthetic dataset is used that is 

taken from 100 industrial machines. From this dataset, the simulated sensor 

data, error, and failure history have used to calculate the probability of error 

and failure during the time period of an anomaly. This probability is calculated 

by the basic probability equation. In addition, the sum of the calculated 

probability of error and failure, give the intuition about the most relevant 

sensor data for a machine. This relevant sensor data is then used as response 

for the prediction with gaussian process regression algorithm. This prediction 

of response is shown for machine number 85 which is the most important 

from all 100 machines as this machine is very sensitive to any of the 4 sensor 

anomalies. Then, the sum of probability can be coherent with the anomaly on 

the predicted response which is the most relevant sensor data. This defines 

that the machine is in high risk of experiencing machine failure and thus the 

machine should be fixed by adopting maintenance. In contrast, the opposite is 

also true for low probability of error and failure for an anomaly on the 

predicted response. To evaluate the performance of the algorithm, four 

statistical metrics are used among which three matric is to estimate the errors 

and the other one is the correlation coefficient between the actual and 

predicted data.   



 

 
iv 

List of figures 

Figure 2.1. Machine learning techniques. ............................................................. 7 

Figure 3.1. No. of errors by year, month, and day. ............................................... 12 

Figure 3.2. No. of errors by hour, minute and second. ........................................... 13 

Figure 3.3. No. of failures by year, month, and day. .............................................. 14 

.............................................................................................................. 15 

Figure 3.4. No of failures by hour, minute and second. .......................................... 15 

Figure 3.5. Distribution of the sensor data. ......................................................... 16 

Figure 3.6. Raw dataset for machine no 19. ........................................................ 17 

Figure 3.7: Filtered and smoothed sensor data for machine no19. .............................. 18 

Figure 3.8: Detected voltage, rotation, pressure, and vibration anomaly peaks for machine 

no 19. ...................................................................................................... 19 

Figure 3.9: Scaled sensor data for machine number 19. .......................................... 20 

Figure 3.10: Time period of anomaly of a failure for machine number 19. .................... 21 

Figure 3.11: Probability of error & failure together for machine number 85. ................ 22 

Figure 3.12: Prediction of response with machine learning model. ............................. 23 

Figure 3.13: Training data of predictors for machine number 85. .............................. 25 

Figure 3.14: Training data of response for machine number 85. ................................ 25 

Figure 4.1: Error probabilities during the anomalies time period. .............................. 27 

Figure 4.2: Failure probabilities during the anomalies time period. ............................ 29 

Figure 4.3: Predicted rotation data for machine number 85. .................................... 31 

 

  



 

 
v 

List of tables 

Table 3.1: Mean of the sensor values. ................................................................ 18 

Table 3.2: Error & failure datetime, predictors and response for machine number 19 ...... 24 

Table 4.1: Machines with high probability of errors during anomalies time period. ......... 28 

Table 4.2: Machines with high probability of failure during the anomalies time period. .... 30 

Table 4.3: RMSE, MAE, RAE, and R2values between the actual and predicted data. ....... 31 

  



 

 
vi 

Table of contents  

 
1 Introduction ....................................................................................................1 

1.1 Background...............................................................................................1 

1.2 Thesis scope ..............................................................................................2 

1.3 Motivation, goal, and scientific tasks ................................................................3 

1.4 Thesis structure .........................................................................................4 

2 Theory ..........................................................................................................5 

2.1 Moving average filter ...................................................................................5 

2.2 Standard scale ............................................................................................5 

2.3 Probability equation ....................................................................................6 

2.4 Machine learning ........................................................................................7 

2.4.1 Gaussian process regression.....................................................................8 

2.5 Statistical metrics .......................................................................................9 

2.5.1 Root mean square error (RMSE) ..............................................................9 

2.5.2 Mean absolute error (MAE) .................................................................. 10 

2.5.3 Relative absolute error (RAE) ................................................................ 10 

2.5.4 Correlation coefficient (R2) ................................................................... 10 

3 Methods ....................................................................................................... 11 

3.1 Dataset .................................................................................................. 11 

3.1.1 PdM_errors.csv ................................................................................. 12 

3.1.2 PdM_failures.csv ............................................................................... 14 

3.1.3 PdM_telemetry.csv ............................................................................ 16 

3.2 Data preprocessing.................................................................................... 18 

3.3 Probability calculation ............................................................................... 20 

3.4 Prediction of the most relevant sensor data as response ....................................... 23 

4 Results ........................................................................................................ 27 

4.1 Anomalies to error probability ..................................................................... 27 

4.2 Anomalies to failure probability .................................................................... 29 

4.3 Prediction of rotation data as response ............................................................ 31 

5 Discussion .................................................................................................... 32 

6 Conclusion ................................................................................................... 34 

References .......................................................................................................... 35 

Appendix A ........................................................................................................ A1 

Appendix B ......................................................................................................... B1 

Appendix C ........................................................................................................ C1 

Appendix D ........................................................................................................ D1 

 

 

 



 

 
1 

1 Introduction 

1.1 Background 

In recent years, the use of machines increased rapidly by the industries. These 

machines depreciate in respect to time and at a time the machine completely stop by 

experiencing failure. For this reason, the industries expense a lot of money to fix the 

failure by doing maintenance of the machine [1].  

According to a recent survey in United State of America (USA) in 2020, the 

industries production capacity reduces 20% for the poor maintenance technique. 

For this poor maintenance technique, $616.1 billion spent by the global 

maintenance market. This will increase 2.19% every year till 2026 which is $701.3 

billion. Specifically, in the automotive industries, the cost for unplanned 

maintenance is $22,000 per minute. This means that the cost increases 3 to 10 times 

for the sudden downtime and unplanned maintenance [2].  

To fix the machines, several maintenance techniques adopted by the industries. But 

as soon as the fourth industrial revolution has been experienced by the world, 

artificial intelligence comes in and make this maintenance technique automated. This 

maintenance technique predicts the future failure by analyzing the historical data of 

the machine and do maintenance when requires. This technique is known as 

predictive maintenance [3].  

There are several advantages of using predictive maintenance. They are provided as 
follows [4]:  

• The quality of the service will be increased as the remote diagnosis and fixing 
failure decrease the performance of the appliances.  

• Safety precaution comes in as it will avoid sudden failure.  

• There will be a certain threshold of the components efficiency that it will not 
go beyond this efficiency threshold.  

• The lifetime of the component will be increased, and the repairing cost will 
be decreased.  

• The customers loyalty will be increased for the company.  

• The electric components can be recycled and reused ensuring the 
identification of any components warranty violations.  

• The sensor has reduced the number of humans dealing with the maintenance 
and thus the testing expenses has also been reduced.  

• As the components will run only the healthy status, it ensures the increased 
lifetime of the components.  
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Similarly, a survey reflects that, the maintenance cost reduces & increases 
production capacity by 25 – 35% and eliminates downtime by 70 – 75% with the 
adoption of predictive maintenance by the industries. This prediction of failure and 
maintenance is possible only after the data is available. This data is mainly of two 
types. One is the real data from real machine from a real industry and the other one 
is the synthetic data which is usually generated virtually. By using both of this data 
there are several kinds of applications predictive maintenance deals. These are the 
diagnosis of fault, prediction of fault, detection of anomalies on the sensor data, 
prediction of time to failure and remaining useful life predictions. During all this 
prediction, the major challenge comes about the data quality. The reason behind is 
that for a new machine, it is nearly impossible to generate failure data which is very 
important for the machine learning algorithm to predict failure. Thus, synthetic data 
is a good approach to overcome this challenge [5].  

1.2 Thesis scope 

To predict failure and adopt maintenance, this thesis work removes noise by 

filtering and distinguishes anomalies by using synthetic data [6]. As the anomalies 

play major role for failure prediction and all the anomalies did not lead to machine 

error and failure, the probability of machine error and failure is calculated for each 

anomaly on the sensor data. This calculated probability together will then be used to 

figure out the most relevant sensor data which is the response of a machine. Finally, 

with the use of machine learning, the response is predicted and coherent with the 

calculated probability. This probability will then define for an anomaly on the 

predicted response either the machine is high or low risk of experiencing machine 

error and failure or not.  

In addition, to be responsive of the challenge, the error and failure historical data 

plays vital role. By checking these two datasets, it is seen that for a machine there 

might be one or several months that no error and failure occurred rather there are 

multiple error and failure on another months. For this reason, the monthly data is 

used to ensure the data quality both with error & failure data and train the machine 

learning algorithm accordingly.  
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1.3 Motivation, goal, and scientific tasks 

Increased sudden downtime and maintenance cost has become one of the major 

challenges for sudden machine failure to the industries all over the world. For this 

reason, it is becoming more and more important to avoid this sudden machine 

failure. There were several maintenance techniques adopted by the industries but 

none of them could meet the demand of the industries. Therefore, the prediction of 

the machine failure would be great in order to reduce suddden downtime and 

maintenance cost. For this prediction, machine learning provides several suitable 

techniques. Thus, the prediction of machine failure can be used to schedule the 

maintenance time which refers as predictive maintenance and that motivates me a 

lot.  

To deal with the similar manner, microsoft azure had provided a syntethic dataset 

which is not taken from any real industries or machines. The dataset provides 

information about the machine error, failure, maintenance, age, and sensor data. As 

soon as any machine experiences machine error and failure, there is an anomaly seen 

on the sensor data. Hence, anomalies play vital role for the error and failure 

prediction.  

Thus, the main goal of this thesis work is to predict machine failure by checking the 

probability of error and failure for an anomaly (which distingusihes healthy and 

faulty behavior of a machine) on the most relevant sensor data  and do maintenance 

of the machine. To meet this main goal, there are three process performed as 

followed: 

• Find the probability of error during the time period of an anomaly. 

• Find the probability of failure during the time period of an anomaly. 

• Predict anomalies on the most relevant sensor data and relate to the sum of 

the calculated probability of error and failure of a machine. 

Here, anomalies means the anomalies on the voltgae, rotation, pressure and 

vibration sensor data. Thus, the scientific task of this thesis work is to calculate these 

three process.  

Finally, this prediction can be helpful for the industries that deal with predictive 

maintenance to reduce sudden downtime and maintenance cost.  
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1.4 Thesis structure 

This thesis work consists of five chapters. 

Chapter 1-Introduction: The Background, thesis scope, goal, motivation & scientific 

tasks. 

Chapter 2-Theory: Moving average filter, probability equation, standard scale, 

gaussian process regression, and statistical metric.  

Chapter 3-Process: Briefly explains about the dataset, data preprocessing, 

probability of errors and failure calculation and prediction of response.  

Chapter 4-Results: Presents the result of the probability of errors and failures during 

the time period of an anomaly and the predicted response data. 

Chapter 5-Discussion: Provides discussion about the process and results performed. 

Chapter 6-Conclusion: Provides the summary of this thesis work and recommend 

about the future work. 
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2 Theory 

2.1 Moving average filter 

Filtering is an essential tool to eradicate noise. Thus, to eradicate noise, the analysis 

needs to be done on the entire dataset. The analysis is to take the average of the 

neighboring elements. The neighboring number of elements along which the 

averaging is done, depends upon the application on where it is using. Thus, it is 

called the rolling mean or moving average filter. It is also said that if the number of 

neighboring elements is odd, then it will be centered around the current position. 

furthermore, the even element will lead the dataset to be centered around the 

current and previous element [7], [8].  

Additionally, it will take M samples of input data at the same time and takes the 

average of those M sampled of input data and a unique output is calculated. In this 

way, the noise is reduced. Moving average filtering is a kind of convolution type and 

mathematically it can be written as for that M samples as,  

 

                                                                                     (1)     

Thus, the noise reduction is done by filtering as well as the signal is also smoothed 

[9], [10]. 

2.2 Standard scale 

To analyze the condition of a machine, there are several sensors fitted on the 

machine. This sensor data provides the sensor values on different units. That means 

they are not in the same scale. For this reason, it is required to extract all the 

different scale sensor values into the same scale so that a machine learning algorithm 

can be trained faster and convergence with better results [11].  

There are several scaling techniques of the sensor data. Among them, the standard 

scaling, scale the sensor data with a mean value of zero and standard deviation of 

one. This can be done by using the following equation: 

 

                                                                                                                                 (2)  

Here,  is the mean of the input data and  is the standard deviation of the input 

data [12]. 
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2.3 Probability equation 

In statistics, probability is defined as the possible outcome that might occur based on 

the past historical information. That means probability is calculated based on the 

experiment or past historical data. In addition, the event that occurs from the 

historical information plays vital role. Thus, by this definition, the impossible 

outcome has probability of 0 and the possible outcome has probability of 1. To be 

deterministic to a probability of any event, the range of that probability must be 

between 0 and 1. Thus, the applied probability must satisfy the following condition: 

 

                   (3)  

From equation (2), it is seen that if the probability of an event is less than 0 or 

greater than then the condition is not followed and hence the probability is not 

accurate. To satisfy this condition, the basic probability equation can be applied and 

calculate the possibility of occurrence of an event. Thus, the basic probability 

equation is as follows: 

                                                                                                                                  (4)  

Here,  

S is the number of events occurred. 

N is the number of total events. 

P(Event) is the probability of any events. 

From equation (3), it is seen that the modulus is used. This is because to make sure 

about the positive outcome of an event, as an event of occurrence cannot be 

negative [13]. 
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2.4 Machine learning 

Machine learning is a sub field of artificial intelligence. It is a computer algorithm 

that gets knowledge and learns from the historical information automatically. It is 

used in vast of applications that includes self-driving cars, voice & face recognition, 

industrial machinery failure prediction, medical diagnosis and so on.  

Machine learning can be divided into two types. One is the supervised learning and 

the other one is the unsupervised learning that indicates in the figure below: 

 

Figure 2.1. Machine learning techniques. 

From fig. 2.1. it is seen that unsupervised learning is used when there is not input-

output information in the data and thus it will cluster the output in different groups 

upon the application where it is using. In contrast, supervised learning is used when 

there is both input-output information on the data. With this, the prediction can be 

performed. Based on this, supervised learning can be classified further on 2 types. 

One is the classification techniques which will be used if the output is discrete, and 

the regression is used if the output is continuous [14].  

From the regression supervised machine learning algorithm, gaussian process 

regression is one of them which is massively used in different application. For the 

normally distributed data, this algorithm provides a better response [15].  
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2.4.1 Gaussian process regression 

Gaussian process is a stochastic process. This usually can be specified by the mean 

function m(x) and the covariance function k(xi,xj). The equation of a gaussian 

process is given by: 

                                                                                                                                  (5) 

But the generalized gaussian process regression can be defined as follows: 

                                                                                                                                  (6)                                                                                                                                                                                                                                        

Here,  is the noise. On the gaussian process regression, this noise must consider 

with the mean function and covariance function. If this noise follows an independent 

deviation, then the gaussian process with the noise can be written as follow: 

                                                                                                                                  (7) 

Here,  is the variance and  is the Kronecker delta. 

During the modeling, gaussian process uses the Bayesian principle with some 

training data and target output. Gaussian process usually has the joint gaussian 

distribution. With that there is output both from the training and test set denoted by 

y and y*. Thus, it is given by: 

                                                                                                                                  (8) 

 

Initially, the prediction can be done with gaussian process regression with the 

following equation: 

                                                                                                                                (9) 

Here, 

                                                                                                                                (10) 

                                                                                                                                (11) 

On the above equation, . Thus, the mean function and 

covariance function can define the target value y* and the test input X*. 
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The covariance function on gaussian process regresion is equivalent to the kernel 

function. The kernel function of the exponential equation can be given by the 

following equation: 

                                                                                                                                (12) 

 

Here,  is the length scale of the kernel function. 

                                                                                                                                (13) 

This value of r can be calculated with the euclidian distance between the 2 data point 

[16],[17].  

2.5 Statistical metrics 

There are several statistical metrics that can evaluate the performance of a regression 

algorithm. Specifically, for the gaussian process regression, the prediction is done 

based on the covariance function that means the kernel function and the training 

sets. This model will then give the uncertainty of the predicted value which is the 

covariance function. This is the foremost benefit of using a gaussian process 

regression. The model is thus providing the desired predicted response with a stable 

model performance and gets the accuracy of the predicted values. For doing this, the 

possible statistical metric is the RMSE, MAE, RAE, and R2 [16],[17]. 

2.5.1 Root mean square error (RMSE) 

Root mean square error is one of the popular techniques for evaluating the model 

performance of a regression algorithm. It is well known if the RMSE value is less 

than 0.20, then it can be said that the model gives a better response. This model will 

represent the square’s average difference between the predicted response and the 

actual response. This can be done by using the following equation: 

 

                                                                                                                                (14) 

Here, n is the number of observation set[18]. 
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2.5.2 Mean absolute error (MAE) 

The mean absolute error usually calculates the average magnitude difference of the 

errors between the actual data and predicted data. The lower the value of MAE the 

better the model is, as there is less error between the actual data and predicted data. 

This can be done by using the following equation: 

                                                                                                                                (15) 

Here, n is the number of observation set [19].   

2.5.3 Relative absolute error (RAE) 

The relative absolute error usually calculates the ratio of the mean error (residual) 

to the mean absolute error. If the ratio is close to zero, then the model provides 

better results. In contrast, the ratio greater than results a poor model. This can be 

done by the following equation: 

 

                                                                                                                                (16) 

 

Here, n is the number of observation set [20].      

2.5.4 Correlation coefficient (R2) 

The correlation coefficient (R2) will give the intuition about how much the 

predicted and actual observation set are related. With this, the higher the R2 value 

is, the higher the predicted and actual data are related. That means the model is 

predicting well. This can be done by using the following equation: 

                                                                                                                                 

                                                                                                                                (17) 

 

Here, n is the number of observation set [20].  
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3 Methods 

This thesis works aims at predictive maintenance. For doing this, the probability of 

failure for any of the anomalies is calculated, predict the response of the future 

sensor data by using gaussian process regression algorithm, and relate both to 

predict the future failure. The algorithm and the calculation are implemented in 

MATLAB and the code is provided in the appendix section.  

3.1 Dataset 

Microsoft azure had provided synthetic data for predictive maintenance. This 

synthetic data contains 5 individual historical information as explained below: 

• PdM_maint.csv contains the information of maintenance of all the 100 

machines for 1 year. 

• PdM_errors.csv contains the information of errors of all the 100 machines 

for 1 year. 

• PdM_failures.csv contains the information of failures of all the 100 machines 

for 1 year. 

• PdM_machines.csv contains the information of age and model number of all 

the 100 machines. 

• PdM_maint.csv contains the information of maintenance of 100 machines 

for 1 year. 

• PdM_telemetry.csv contains the voltage, rotation, pressure, and vibration 

sensor values for all the 100 machines for 1 year.  

For the failure prediction by the algorithm, the PdM_errors.csv, PdM_failures.csv, 

and PdM_telemetry.csv dataset are used. 
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3.1.1 PdM_errors.csv 

This dataset has the information of the errors for 100 machines and there are 5 

errors faced by the machines. The information is provided based on the year, 

month, day, hour, minutes, and seconds. The information is for the year of 2015 

started from 1st January at 06:00:00 and ends on 1st January of 2016 at 06:00:00. 

This information is provided for each month and day. There is also hour 

information, but minutes and seconds remains the same. The below figure shows 

the plot of 100 machine errors based on the year, month, and day.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. No. of errors by year, month, and day. 

From fig. 3.1, it is observed that there are 3917 errors encountered in the year 2015 

and only 2 errors encountered in the year 2016. These two errors observed in the 

machine number 8 and 30 and the error 3 and then error 2 occurred in these two 

machines.  

Most of the errors occurred during the month October, then august and January 

follows this criterion. In contrast, the least number of errors occurred during the 

month of February followed by July and November. 

On the 16th day, most of the errors occurred. On the other hand, a smaller number 

of errors occurred on the 31st day followed by 10th and 8th day of each month.  

Now the visualization for the errors of the 100 machines are observed for each hour 

of a day, minute and second. 
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Figure 3.2. No. of errors by hour, minute and second. 

From fig. 3.2. the observation is that most of the errors occurred on 6 pm. Another 

observing thing is that during the whole 24 hours of a day there occurred errors. 

From the minute and second information it can be said that all the errors occurred 

on the exact hour time.  

Thus, for the prediction based on the machine error history, month, day, and hour 

is a good predictor. This is because the number of errors changes with the change of 

month, day, and hour. In contrast, year, minutes, and second do not have any 

impact on errors.  
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3.1.2 PdM_failures.csv 

This dataset has the information of the failures of 100 machines and there are 4 

failures faced by the machines. The information is provided based on the year, 

month, day, hour, minutes, and seconds. The information is for the year of 2015. 

This information is provided for each month and day. There is also hour 

information, but minutes and seconds remains the same. The below figure shows 

the plot of 100 machine failures based on the year, month, and day. 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. No. of failures by year, month, and day. 

From fig. 3.3. all the failures occurred during the year 2015. Additionally, most of 

the failures occurred during the month of January and least number of failures 

occurred in February. Furthermore, march, September, October, and December 

showed the greatest number of failures. During each month, the greatest number of 

failures occur on the 2nd day and least number of failures occurred on 11th and 26th 

day of each month. 
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Figure 3.4. No of failures by hour, minute and second. 

From the hour information of this failure dataset, most of the failures occurred at 

06:00:00 pm. From the minute and second information all those failures occurred at 

exact 06:00:00. Additionally, there are some other failures that occurred at 

03:00:00 pm at the same time, same date, same month, and same year. 

Thus, for the prediction based on the machine failure history, month, day, and hour 

is a good predictor. This is because the number of failures changes with the change 

of month, day, and hour. In contrast, year, minutes, and second do not have any 

impact on failures.  
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3.1.3 PdM_telemetry.csv 

This dataset consists of the information for the voltage, rotation, pressure, and 

vibration data for every hour of the 100 machines. This data is the sensor values 

taken from the starting time of 06:00:00 of 1st January 2015 and the ending time is 

also 06:00:00 of 1st January 2016. Now, the data distribution is checked based on 

density. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Distribution of the sensor data. 

Fig. 3.5. shows that the voltage, rotation, pressure, and vibration data are normally 

distributed. The meaning is that most of the dataset is located near to the average 

values of the dataset. This is important to figure out either the data is normally 

distributed or not, as the gaussian process regression algorithm is used which works 

better on the normally distributed data. 

In addition, this dataset contains 8760 rows and 6 columns. The rows are the hourly 

information, and the columns are the date time, machineID, voltage, rotation, 

pressure, and vibration data for 1 year. This information of the raw data is shown 

below for a randomly selected machine number 19. 
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Figure 3.6. Raw dataset for machine no 19. 

Fig. 3.6. reflects the raw data of machine number 19. There are data from January 

2015 to January 2016. By observing carefully, it is seen that the data deviates very 

fast and no necessary information can be seen. Another observation is that the 4-

sensor data are not on the same scale. Hence, before feeding to the machine learning 

algorithm, the data requires some preprocessing.  
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3.2 Data preprocessing 

To remove the noise, the data is filtered with the moving average filter taking 12 

nearest neighbors by using equation (1). Then, smoothing technique have been used 

to make the edges of the signal smoother. After this, the dataset looks like below: 

 

Figure 3.7: Filtered and smoothed sensor data for machine no19. 

In fig. 3.7, it is seen that the filtering and smoothing technique on the sensor data, 

distinguished the anomalies successfully. In addition, the anomalies are the abnormal 

behavior of the machines which indicates the degradation of the machine condition. 

On the other hand, the healthy behavior of the machines lies near the mean of the 

sensor data.  

The mean of the sensor data is given below:  

Voltage Mean. Rotation Mean. Pressure Mean. Vibration Mean. 

170.8320 446.3353 100.6719 40.5858 

Table 3.1: Mean of the sensor values. 

Thus, from fig. 3.7. and table 3.1, it is seen that if the machines are in healthy 

operation the sensor readings lie near to the mean value. On the other hand, if the 

sensor readings go beyond the mean values (anomalies), then the machines are in 

faulty operation.  
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To detect the anomalies, peak accurately, the rotation data is inverted. Then, the 

finding peak technique is used to detect those anomalies peak. This is done by 

sorting all the sensor data from higher to lower values. Then the peaks of these 

higher values are extracted which is marked red star as shown in the figure below:  

 

Figure 3.8: Detected voltage, rotation, pressure, and vibration anomaly peaks for machine no 19. 

The red star shows the detected peaks for all the 4-sensor data. This calculation is 

further done for all the 100 machines and saved their time on 4 different csv file 

named voltage.csv, rotate.csv, pressure.csv and vibration.csv.  

Finally, to predict the future data, machine learning is being used. Before inserting 

the data into a machine learning algorithm, the data must be transformed into a 

form that the algorithm can understand. So, the data is scaled, as all the sensor data 

are not on the same scale which can be seen from fig. 3.8. To make them on the 

same scale, equation (2) is being used. The mean and standard deviation is 

calculated. Then the mean value is subtracted from all the current sensor value and 

divided by the standard deviation. This scenario can be seen from the figure below: 
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Figure 3.9: Scaled sensor data for machine number 19. 

From fig. 3.9, it is seen that the data is scaled now as the data is centered around 0 

mean and the standard deviation is 1. This is done to make all the sensor values in a 

same scale.  

3.3 Probability calculation 

During the investigation, it is also seen that all the anomalies on each sensor data do 

not lead to a machine error and failure. In addition, the number of error and failure 

changes for an anomaly on different sensor and different machines. Thus, the 

probability must be calculated to figure out which sensor anomalies have high 

relevancy to indicate machine failure.   

Thus, it is very important to figure out the time period of an anomaly. This can be 

done from the detected anomaly from the sensor data. The detected peak of 

anomaly is then related with the error and failure history to find out the time period 

of an anomaly. Specifically, this can be derived from one such failure occurred for 

machine number 19 in 2015.02.27 06:00:00.  
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Figure 3.10: Time period of anomaly of a failure for machine number 19. 

It is seen from fig. 3.10. that, the time period of an anomaly is approximately 96 

hours from the start to end time of that anomaly. Machine number 19 experience all 

the errors and failures during this anomalies time period which is also true for all 

100 machines. 

To calculate the probability of failure during the time period of an anomaly for 

machine number 19, the datetime is sorted to remove closest and duplicate 

datetime. By doing this, the number of voltage, rotation, pressure, and vibration 

anomalies are 6, 5, 5 and 9 respectively. The number of failures occurred during the 

time period of these anomalies are 2,0,0 and 5 respectively. By using equation (4), 

the calculated probability of failure during the time period of an anomaly for 

voltage, rotation, pressure, and vibration anomalies are 0.3333, 0.0, 0.0, and 

0.5556 respectively. In this similar way, the probability of error and failure for all 

the 100 machines are calculated.  

After the probability is calculated it is seen that machine number 85 is the most 

important among the 100 machines. Thus, the probability of error and failure 

together can be seen from the figure below: 
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Figure 3.11: Probability of error & failure together for machine number 85. 

From fig. 3.11. it is seen that the probability of error and failure together is high if 

there is an anomaly on the rotation data. The probability of error and failure 

together is approximately close to 1.60. Thus, rotation sensor data is the most 

relevant sensor data for machine number 85. As rotation sensor data shows most 

relevancy among the other sensor data for machine number 85, hence it can be said 

that for this machine the response is the rotation sensor data for failure prediction. 

Though rotation anomalies have shown high relevancy, it is also observable that for 

vibration anomalies the probability of error and failure together is close to 1.40 and 

for pressure anomalies the probability of error and failure together is more than 

1.20. For voltage anomalies both error and failure probability are also seen. But for 

other machines, either the probability of error and failure is less or even close to 

zero. For this reason, machine number 85 is the most important and also chosen for 

failure prediction. 
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3.4 Prediction of the most relevant sensor data as 

response 

To predict the response, a machine learning model must be trained with the training 

data and then the trained model will be validated with the testing data. In this way, 

the process of building a machine learning model is shown on the figure below: 

 

Figure 3.12: Prediction of response with machine learning model. 

By using fig. 3.12. the prediction of response for machine number 85 is performed. 

But before that the most relevant sensor data must be extracted which is the 

response. The calculated error and failure probability together which is the most 

among 4 sensors, reflects the most relevant sensor data for a machine. As explained 

in section 3.3 in fig. 3.11. rotation sensor data is the most relevant sensor data for 

machine number 85. Thus, the prediction of this sensor data is highly related to 

failure prediction. 
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To do this, the historical error, failure, and sensor data is used. For machine number 

85, one error occurred at 2015-10-11 06:00:00 and one failure occurred at 2015-

10-12 06:00:00. Both error and failure occurred within an interval of 24 hours, and 

it happened on the month October. Thus, to assure the quality of data only the data 

of October is used. This will also lead to the concept that the machine learning 

algorithm will know about the error, failure, & healthy data and the algorithm can 

also distinguish both the healthy and faulty operation of a machine.  

To predict the rotation data as response, the data from the month October is 

extracted. This data from the month October is scaled with standard scale. Then, 

the data is divided into 80% training and 20% testing by using cross validation 

randomly. The table below shows the error datetime, failure datetime, predictors, 

and response for the machine number 85 to train the algorithm. 

Error datetime Failure datetime Predictors Response 

2015-10-11 

06:00:00 

2015-10-12 

06:00:00 

Month, day, hour, 

voltage, pressure & 

vibration data 

Rotation 

Table 3.2: Error & failure datetime, predictors and response for machine number 19 
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The training data of the predictors can be seen from the figure below: 

 

Figure 3.13: Training data of predictors for machine number 85. 

 

Figure 3.14: Training data of response for machine number 85. 



 

 
26 

As explained in table 3.2, the predictors data to train the algorithm, can be seen 

from the fig. 3.13. In addition, the response data to train the algorithm, can be seen 

from fig. 3.14. These predictors and response must be defined properly so that the 

algorithm properly understand about the difference between the healthy and faulty 

data. 

With this known training data as in fig. 3.13, 3.14 and known response, the gaussian 

process regression algorithm is trained. The major parameters are the covariance 

function and the sigma value which is the length scale in equation (12) which is 

shown in detail from equation (5). The covariance function is the exponential 

function, and the length scale of sigma is calculated by using equation (13). This 

length scale is calculated by using the Euclidian scale within 2 data points. Other 

functions are kept fully independent during the calculation. To avoid overfitting, 

regularization is one of the parameters on gaussian process regression and it is set as 

0.05 for the prediction.  

By doing all this calculation, the most relevant sensor data is predicted as response. 

In addition, this predicted response is related with the calculated probability to 

define the high or low risk of experiencing machine failure. 

Finally, by using the equation (14), (15), and (16) RMSE, MAE, and RAE is 

calculated between the actual and predicted data. This three calculates the error 

estimation. In addition, by using equation (17) the correlation coefficient is also 

calculated between the actual and predicted data. This usually calculates how much 

the actual and predicted data are related to each other. With all these 4 statistical 

metrics the performance of the algorithm is evaluated.   
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4 Results 

4.1 Anomalies to error probability 

During the time period of an anomaly, the probability of error is calculated as 

shown in the figure below: 

 

Figure 4.1: Error probabilities during the anomalies time period. 

From fig. 4.1, it is seen that machine number 2 have low probability of errors, in 

contrast machine number 43 have high probability of errors during the time period 

of anomalies. There are some other machines for which both of this statement is 

positive.  
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In the similar procedure, the machines with high probability of errors are 

distinguished and this can be found on table 4.1. 

Anomaly Machine number Total machines 

Voltage 12,14,15,17*,18,26,31,32,37,38,43,53,55,56, 
63,66,72,73,80,82,83,87,90*,91*,93,98*. 
 

26 

Rotation 3*,9,10,12,13,15,16,20,25,27,33,36,37,38,39,
43,47,48,49,50*,51,58,64,65,66*,67,71,75,81,
82,85*,88,89*,90,95*,96,98,99*. 
 

38 

Pressure 7*,13*,15,16,17,22,23,27,37,43,44,49,54,56, 
57,58,61,66,69,70,73,76,85,87,95,97,98,99. 

28 

Vibration 7,8,12,13,15,18,19,21*,25,32,33,35,38,43,44,
45,46,48,49,54,56,62,63*,71,72,73,75,78,85,
88*,91,94*,98,99,100. 
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Table 4.1: Machines with high probability of errors during anomalies time period. 

N.B: The blue star is for the machines with very high error probability 

and red star are for the machines that have the error probability 1.  

From table 4.1, it is seen that for rotation anomalies machine number 95 and for 

vibration anomalies machine number 94 have the error probability of 1 which are 

marked in red star. For rotation anomalies, there are 38 machines, for vibration 

anomalies, there are 35 machines, for pressure anomalies, there are 28 anomalies, 

and for voltage anomalies, there are 26 machines having high to very high 

probability of errors. Thus, rotation anomalies have high relevancy for having more 

machines with high probability of errors during the time period of an anomaly.  
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4.2 Anomalies to failure probability 

The errors do not let the machine shut rather they lead to the machine failures. For 

this reason, the probability of machine failure is calculated during the time period of 

anomaly. The probability of machine failure is shown in the figure below:  

 

Figure 4.2: Failure probabilities during the anomalies time period. 

From fig. 4.2, machine number 6 and 77 still have zero probability of failures. The 

probability of machine failure is high for machine number 99 while the reverse is 

true for machine number 100 for any of the 4 anomalies. There are some other 

machines that satisfies this statement.  
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In this way, the machines with high probability of failures are distinguished and these 

machines can be found on the table 4.2. 

Anomaly Machine number Total machines 

Voltage 18,66. 2 

Rotation 9,37,47,51,81,85,98,99. 8 

Pressure 13,16,23,48,99. 5 

Vibration 21,32,45,85,99. 5 

Table 4.2: Machines with high probability of failure during the anomalies time period. 

From table 4.2. there are 8 machines for rotation anomalies, 2 machines for voltage 

anomalies and 5 machines each for pressure and vibration anomalies having high 

probability of failure during the time period of an anomaly. Thus, rotation anomalies 

have high relevancy of machine failures during this time period. 

In addition, machine number 99 have experienced high probability of failures for 

multiple anomalies. Thus, there is high probability that this machine will experience 

multiple failures. For machine number 85 this is also positive.  
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4.3 Prediction of rotation data as response 

For machine number 85, rotation data is predicted as response. The predicted 

rotation response for machine number 85 can be seen on fig. 4.3. 

 

Figure 4.3: Predicted rotation data for machine number 85. 

From fig. 4.3, it is seen that, the timestamps are in hour. Then, on the test data 

there is an anomaly, and the sum of the calculated probability of error and failure is 

approximately close to 1.60. Thus, an anomaly on the rotation data for this machine 

means that the machine is in high risk of experiencing error and failure. For this 

reason, the machine requires maintenance.  

To validate the performance of this prediction, 4 statistical metrics values are given 

below: 

RMSE MAE RAE R2 

0.0571 0.1727 0.0550 0.9435 

Table 4.3: RMSE, MAE, RAE, and R2values between the actual and predicted data. 

In table 4.3. RMSE, MAE, RAE values are the error estimation between the actual 

and predicted data. In contrast, the R2 values indicate how much the actual and 

predicted data are related to each other.  



 

 
32 

5 Discussion 

The maintenance of the machines can be performed by predicting the machine 

failure. The prediction of this failure is performed mainly by three parts.  

On the 1st part, the anomalies peak must be detected properly from the sensor data. 

To distinguish the anomalies from the noisy sensor data, filtering was performed by 

using the 12 nearest moving average filter. Several filters were tested but this filter 

was chosen as it is easy to implement than the other tested filter. In addition, several 

techniques had been tested for the detection of anomalies peak. But the sorting of 

the sensor values from higher to lower provided the better result to detect the 

anomalies peak. For further preprocessing of the sensor data, the standard scale was 

performed to carry out all the sensor data into a same scale before training the 

machine learning algorithm. 

On the 2nd part, the probability of machine error and failure was calculated by using 

the basic probability equation. The sum of this calculated probability of error and 

failure was used to distinguish the most relevant sensor data of a machine.  

On the 3rd part, gaussian process regression algorithm was used to predict the most 

relevant sensor data as response. For this prediction, several algorithms had been 

tested. But this algorithm was chosen as the data is normally distributed. Another 

reason was the minimum RMSE, MAE and RAE and maximum R2 values between 

the actual test data and predicted data. During this, the RMSE, MAE, RAE gave the 

error value of less than 0.20 and the R2 value was 0.9435 individually, which is 

acceptable. 

In addition, the monthly observation of a machine was performed for assuring the 

data quality by training the algorithm with both one error and one failure data.  In 

addition, for a month there are several machines that have no failure rather for 

another month there are multiple failures.  

The united nation had planned a 15-year plan. This plan aims at eradicating poverty, 

save the world, and develop the life of human being. This goal is not much achieved 

within the year 2020, but it is expected that within 2030, the most of these goals 

will be achieved [21]. 
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There are 17 goals among which ranked 9 have the goal about industry, 

infrastructure, and innovation. Among the goal 9 targets, 9.4 says about the 

efficiency of resources should be increased. Thus, the prediction of machine errors 

and failures will reduce the sudden downtime and unusual maintenance cost. 

Furthermore, any small problem can be fixed before it becomes big. This will 

increase any machine health by replacing only the defected components of any 

machine and it will be done only when any of the component experiences error and 

failure. Thus, the efficiency of a machine can be increased which can help sustainable 

development [21].  



 

 
34 

6 Conclusion 

In this thesis work, the anomaly peak detection was performed to calculate the 

probability of error and failure. The sum of this calculated probability defined the 

most relevant sensor data. The use of gaussian process regression algorithm 

successfully predicted this most relevant sensor data and coherent with the 

calculated probability to define the condition of a machine. If the sum of the 

calculated probability of error and failure is high and there is an anomaly on the 

predicted most relevant sensor data, then the machine requires maintenance. But if 

the sum of the calculated probability of error and failure is low and there is an 

anomaly on the most relevant sensor data, then the machine is in a good condition. 

From the calculation, it can be said that rotation data have the most relevancy for 

most of the machine’s failure prediction.  

The monthly observation of the machines can reduce the time consumed and 

ensures the data quality. During this observation, the prediction and detection of 

anomaly peak are very important for pdm. Finally, this prediction of failure can be 

done in real industries upon the policy and preference of a company.  

In future work, the remaining useful life (RUL) can be estimated by taking the error 

and failure history into account of all the 100 machines. In addition, more data can 

be used by using multiple errors and failures, for the similar prediction instead of 

using monthly observation.  
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Appendix A 

MATLAB code for the background of the dataset.  
%################################################################%  

%################################################################%  

%%%%%%%%%%% Master Thesis in Electronics/Automation %%%%%%%%%%%%%%  

%----------------------------------------------------------------%  

%-------------- Background of the maintenance, error ------------%  

%--------------     failure and machines dataset     ------------%  

%----------------------------------------------------------------&  

%--------------         University of Gavle          ------------%  

%----------------------------------------------------------------%  

%------- Topic: Analysis of Machine Condition to predict Failure %  

%----------------------------------------------------------------%  

%--------------    Masters in Electronics/Automation ------------%  
%----------------------------------------------------------------%  

%--------------         Md Abdur Rahman Akash        ------------%  

%----------------------------------------------------------------%  

%---------------            January 2022             ------------%  

%----------------------------------------------------------------%  

%################################################################%  

%################################################################%  

%%  
% Read the error data  
data = readtable('PdM_errors.csv');  
% Slice the table to extract only the datetime array  
tt = data.datetime;  
% Convert the datetime to year, month and day  
[y,mo,d] = ymd(tt);  
% Convert the datetime to hour, minute and second  
[h,mi,s] = hms(tt);  
% Insert the year, month, day, hour, minute, second value to the dataset  
data.year = y;  
data.month = mo;  
data.day = d;  
data.hour = h;  
data.minute = mi;  
data.second = s;  
% Convert the categorical data to numeric  
data.errorID = categorical(data.errorID);  
et = double(data.errorID);  
data.errorID = et;  
figure(1)  
subplot(3,1,1)  
% Plotting the histogram for years  
h_y = histogram(y);  
% Set the xlabel  
set(gca,'xtick', 2014:2016,...  
'xticklabel',{'2014','2015','2016'})  
% Calculate the number of bin and edges for histogram plot  
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Edg_y = h_y.BinEdges;  
count_y = h_y.BinCounts;  
center_y = Edg_y(1:end-1)+diff(Edg_y)/2;  
% Inserting the number for each year to the histogram plot  
text(center_y, count_y+550, string(count_y))  
% Labelling the axis  
xlabel('Year','fontweight','bold')  
ylabel('Number of errors','fontweight','bold')  
title('Number of errors for each year','fontweight','bold')  
legend('Total errors = 3919','fontweight','bold')  
% Putting the limit for yaxis  
ylim(ylim.*[1 1.2])  

subplot(3,1,2)  

% Plotting the histogram for months  
h_h = histogram(mo,'NumBins',12);  
% Set the xlabel  
set(gca,'xtick',1:12,...  
'xticklabel',{'Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'})  
% Calculate the number of bin and edges for histogram plot  
Edg_y = h_h.BinEdges;  
count_y = h_h.BinCounts;  
center_y = Edg_y(1:end-1)+diff(Edg_y)/2;  
% Inserting the number for each month to the histogram plot  
text(center_y, count_y+25, string(count_y))  
% Labelling the axis  
xlabel('Month','fontweight','bold')  
ylabel('Number of errors','fontweight','bold')  
title('Number of errors for each month','fontweight','bold')  
legend('Total errors = 3919','fontweight','bold')  
ylim(ylim.*[1 1.1])  
subplot(3,1,3)  
h_d = histogram(d,'NumBins',31);  
% Calculate the number of bin and edges for histogram plot  
Edg_d = h_d.BinEdges;  
count_d = h_d.BinCounts;  
center_d = Edg_d(1:end-1)+diff(Edg_d)/6;  
% Inserting the number for each year to the histogram plot  
text(center_d, count_d+10, string(count_d))  
xlabel('Day','fontweight','bold')  
ylabel('Number of errors','fontweight','bold')  
title('Number of errors for each day','fontweight','bold')  
legend('Total errors = 3919','fontweight','bold')  
ylim(ylim.*[1 1.1])  
figure(2)  
subplot(3,1,1)  
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h_h = histogram(h);  
Edg_h = h_h.BinEdges;  
count_h = h_h.BinCounts;  
center_h = Edg_h(1:end-1)+diff(Edg_h)/6;  
text(center_h, count_h+100, string(count_h))  
xlabel('Hour','fontweight','bold')  
ylabel('Number of errors','fontweight','bold')  
title('Number of errors for each hour','fontweight','bold')  
legend('Total errors = 3919')  
ylim(ylim.*[1 1.2])  
subplot(3,1,2)  
h_mi = histogram(mi);  
Edg_mi = h_mi.BinEdges;  
count_mi = h_mi.BinCounts;  
center_mi = Edg_mi(1:end-1)+diff(Edg_mi)/2;  
text(center_mi, count_mi+350, string(count_mi))  
xlabel('Minute','fontweight','bold')  
ylabel('Number of errors','fontweight','bold')  
title('Number of errors for each minute','fontweight','bold')  
legend('Total errors = 3919','fontweight','bold')  
ylim(ylim.*[1 1.2])  
subplot(3,1,3)  
h_s = histogram(s);  
Edg_s = h_s.BinEdges;  
count_s = h_s.BinCounts;  
center_s = Edg_s(1:end-1)+diff(Edg_s)/2;  
text(center_s, count_s+350, string(count_s))  
xlabel('Second','fontweight','bold')  
ylabel('Number of errors','fontweight','bold')  

title('Number of errors for each second','fontweight','bold')  
legend('Total errors = 3919','fontweight','bold')  
ylim(ylim.*[1 1.2])  
figure(3)  
h_comp = histogram(data.errorID);  
set(gca,'xtick',1:5,...  
'xticklabel',{'error1','error2','error3','error4','error5'})  
Edg_comp = h_comp.BinEdges;  
count_comp = h_comp.BinCounts;  
center_comp = Edg_comp(1:end-1)+diff(Edg_comp)/2;  
text(center_comp, count_comp+20, string(count_comp))  
xlabel('Errors','fontweight','bold')  
ylabel('Number of errors','fontweight','bold')  
title('Number of errors of the components','fontweight','bold')  
legend('Total errors = 3919')  
ylim(ylim.*[1 1.1])  
%%  
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% Read the failure data  
data = readtable('PdM_failures.csv');  
% Slice the table to extract only the datetime array  
tt = data.datetime;  
% Convert the datetime to year, month and day  
[y,mo,d] = ymd(tt);  
% Convert the datetime to hour, minute and second  
[h,mi,s] = hms(tt);  
% Insert the year, month, day, hour, minute, second value to the dataset  
data.year = y;  
data.month = mo;  
data.day = d;  
data.hour = h;  
data.minute = mi;  
data.second = s;  
% Convert the categorical data to numeric  
data.failure = categorical(data.failure);  
ft = double(data.failure);  
data.failure = ft;  
figure(1)  
subplot(3,1,1)  
% Plotting the histogram for years  
h_y = histogram(y);  
% Set the xlabel  
set(gca,'xtick', 2014:2016,...  
'xticklabel',{'2014','2015','2016'})  
% Calculate the number of bin and edges for histogram plot  
Edg_y = h_y.BinEdges;  
count_y = h_y.BinCounts;  
center_y = Edg_y(1:end-1)+diff(Edg_y)/2;  
% Inserting the number for each year to the histogram plot  
text(center_y, count_y+60, string(count_y))  
% Labelling the axis  
xlabel('Year','fontweight','bold')  
ylabel('Number of failures','fontweight','bold')  
title('Number of failures for each year','fontweight','bold')  
legend('Total failures = 761','fontweight','bold')  
% Putting the limit for yaxis  
ylim(ylim.*[1 1.2])  
subplot(3,1,2)  
% Plotting the histogram for months  
h_h = histogram(mo,'NumBins',12);  
% Set the xlabel  
set(gca,'xtick',1:12,...  

'xticklabel',{'Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'})  
% Calculate the number of bin and edges for histogram plot  
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Edg_y = h_h.BinEdges;  
count_y = h_h.BinCounts;  
center_y = Edg_y(1:end-1)+diff(Edg_y)/2;  
% Inserting the number for each month to the histogram plot  
text(center_y, count_y+10, string(count_y))  
% Labelling the axis  
xlabel('Month','fontweight','bold')  
ylabel('Number of failures','fontweight','bold')  
title('Number of failures for each month','fontweight','bold')  
legend('Total failures = 761','fontweight','bold')  
ylim(ylim.*[1 1.1])  
subplot(3,1,3)  
h_d = histogram(d,'NumBins',31);  
% Calculate the number of bin and edges for histogram plot  
Edg_d = h_d.BinEdges;  
count_d = h_d.BinCounts;  
center_d = Edg_d(1:end-1)+diff(Edg_d)/6;  
% Inserting the number for each year to the histogram plot  
text(center_d, count_d+5, string(count_d))  
xlabel('Day','fontweight','bold')  
ylabel('Number of failures','fontweight','bold')  
title('Number of failures for each day','fontweight','bold')  
legend('Total failures = 761','fontweight','bold')  
ylim(ylim.*[1 1.1])  
figure(2)  
subplot(3,1,1)  
h_h = histogram(h);  
Edg_h = h_h.BinEdges;  
count_h = h_h.BinCounts;  
center_h = Edg_h(1:end-1)+diff(Edg_h)/2;  
text(center_h, count_h+100, string(count_h))  
xlabel('Hour','fontweight','bold')  
ylabel('Number of failures','fontweight','bold')  
title('Number of failures for each hour','fontweight','bold')  
legend('Total failures = 761')  
ylim(ylim.*[1 1.2])  
subplot(3,1,2)  
h_mi = histogram(mi);  
Edg_mi = h_mi.BinEdges;  
count_mi = h_mi.BinCounts;  
center_mi = Edg_mi(1:end-1)+diff(Edg_mi)/2;  
text(center_mi, count_mi+50, string(count_mi))  
xlabel('Minute','fontweight','bold')  
ylabel('Number of failures','fontweight','bold')  
title('Number of failures for each minute','fontweight','bold')  
legend('Total failures = 761','fontweight','bold')  
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ylim(ylim.*[1 1.2])  
subplot(3,1,3)  
h_s = histogram(s);  
Edg_s = h_s.BinEdges;  
count_s = h_s.BinCounts;  
center_s = Edg_s(1:end-1)+diff(Edg_s)/2;  
text(center_s, count_s+50, string(count_s))  
xlabel('Second','fontweight','bold')  
ylabel('Number of failures','fontweight','bold')  
title('Number of failures for each second','fontweight','bold')  
legend('Total failures = 761','fontweight','bold')  
ylim(ylim.*[1 1.2])  
figure(3)  

h_fail = histogram(data.failure);  
set(gca,'xtick',1:5,...  
'xticklabel',{'comp1','comp2','comp3','comp4'})  
Edg_fail = h_fail.BinEdges;  
count_fail = h_fail.BinCounts;  
center_fail = Edg_fail(1:end-1)+diff(Edg_fail)/2;  
text(center_fail, count_fail+6, string(count_fail))  
xlabel('Failures','fontweight','bold')  
ylabel('Number of failures','fontweight','bold')  
title('Number of failures of the components','fontweight','bold')  
legend('Total failures = 761')  
ylim(ylim.*[1 1.1])  

%%  
% Load the sensor data  
data = readtable('PdM_telemetry.csv');  
% Plot the histogram of voltage data  
subplot(2,2,1) A8  
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histogram(data.volt)  
xlabel('Voltage','fontweight','bold')  
ylabel('Number of occurences','fontweight','bold')  
title('Normal distribution of voltage data','fontweight','bold')  
% Plot the histogram of rotation data  
subplot(2,2,2)  
histogram(data.rotate)  
xlabel('Rotation','fontweight','bold')  
ylabel('Number of occurences','fontweight','bold')  
title('Normal distribution of rotation data','fontweight','bold')  
% Plot the histogram of pressure data  
subplot(2,2,3)  
histogram(data.pressure)  
xlabel('Pressure','fontweight','bold')  
ylabel('Number of occurences','fontweight','bold')  
title('Normal distribution of pressure data','fontweight','bold')  
% Plot the histogram of vibration data  
subplot(2,2,4)  
histogram(data.vibration)  
xlabel('Vibration','fontweight','bold')  
ylabel('Number of occurences','fontweight','bold')  
title('Normal distribution of vibration data','fontweight','bold') [1]  

References 
[1] File exchange - MATLAB central.  

[Online]. Available: https://se.mathworks.com/matlabcentral/fileexchange/.  
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Appendix B 

MATLAB code for probability of error calculation during the anomalies time 

period. 

%################################################################% 
%################################################################% 
%%%%%%    Master Thesis in Electronics/Automation   %%%%%%%%%%%%%% 
%----------------------------------------------------------------% 
%--------------    Calculate the anomalies to error   -----------% 
%--------------    probability for all 100 machines   -----------% 
%----------------------------------------------------------------& 
%--------------      University of Gavle             ------------% 
%----------------------------------------------------------------% 
%------- Topic: Analysis of Machine Condition to predict Failure % 
%----------------------------------------------------------------% 
%-------------- Masters in Electronics/Automation    ------------% 
%----------------------------------------------------------------% 
%--------------      Md Abdur Rahman Akash           ------------% 
%----------------------------------------------------------------% 
%---------------            January 2022             ------------% 
%----------------------------------------------------------------% 
%################################################################% 
%################################################################% 

%% 
% Load the failure, error and anomalies data  
fail = readtable('PdM_failures.csv'); % Load failure data 
error = readtable('PdM_errors.csv'); % Load error data 
volt = readtable('voltage.csv'); % Load voltage anomalies data 
rot = readtable('rotate.csv'); % Load rotation anomalies data 
pres = readtable('pressure.csv'); % Load pressure anomalies data 
vib = readtable('vibration.csv'); % Load vibration anomalies data 
machine = readtable('PdM_machines.csv'); 
% Calculate the probality of error after  
% 12hours,24 hours and 48 hours for each machine  
% Calculate the probability for all the machines through iteration 
for iii = 1:100 % Iterate 100 times as machines are 100 
% Load the machine information with iteration 
mc1 = error(error.machineID ==iii,:); % Iterate error data 100 times 
mc2 = fail(fail.machineID ==iii,:); % Iterate failure data 100 times 
mc3 = volt(volt.machineid ==iii,:); % Iterate voltage  
% anomalies data 100 times 
mc4 = rot(rot.machineid ==iii,:); % Iterate rotate anomalies  
% data 100 times 
mc5 = pres(pres.machineid ==iii,:); % Iterate pressure anomalies  
% data 100 times 
mc6 = vib(vib.machineid ==iii,:); % Iterate vibration anomalies  
mc7 = machine(machine.machineID == iii,:); 
% data 100 times 
% Extract the error, failure and anomalies datetime 
e1 = mc1.datetime; % Extract error datetime 
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e2 = mc2.datetime; % Extract failure datetime 
e3 = unique(mc3.datetime); % Extract vibration anomalies datetime 
e4 = unique(mc4.datetime); % Extract rotation anomalies datetime 
e5 = unique(mc5.datetime); % Extract pressure anomalies datetime 
e6 = unique(mc6.datetime); % Extract vibration anomalies datetime 
n3 = e3([true; diff(e3) >= hours(48)]); % Extract vibration anomalies datetime 
n4 = e4([true; diff(e4) >= hours(48)]); % Extract rotation anomalies datetime 
n5 = e5([true; diff(e5) >= hours(48)]); % Extract pressure anomalies datetime 
n6 = e6([true; diff(e6) >= hours(48)]);% Extract vibration anomalies datetime 
% Caulculate the number of voltage anomalies becomes  
% any error before and after 48 hours  
volt_one_48_48 = 0; % Define to count number of logical 1 
volt_zero_48_48 = 0; % Define to count number of logical 0 
for pppt = 1:numel(n3) % Iterate through all the rows  
    % of voltage anomalies  
st1_48_48 = n3(pppt,1) - hours(48); % Define the start time  
et1_48_48 = n3(pppt,1) + hours(48); % Define the end time 
dh1_48_48 = isbetween(e1,st1_48_48,et1_48_48); % Find the match between  
% start and end time 
if dh1_48_48 == 0 
    volt_zero_48_48 = volt_zero_48_48+1; % Count number of 0 
else dh1_48_48 == 1 
    volt_one_48_48 = volt_one_48_48+1; % Count number of 1 
end 
end 
% Caulculate the number of rotation anomalies becomes any error  
% for before and after 48 hours 
rot_one_48_48 = 0;  % Define to count number of logical 1 
rot_zero_48_48 = 0; % Define to count number of logical 0 
for qqqt = 1:numel(n4) % Iterate through all the rows  
    % of rotation anomalies   
st2_48_48 = n4(qqqt,1) - hours(48); % Define the start time  
et2_48_48 = n4(qqqt,1) + hours(48); % Define the end time  
dh2_48_48 = isbetween(e1,st2_48_48,et2_48_48); % Find the match between  
% start and end time 
if dh2_48_48 == 0 
    rot_zero_48_48 = rot_zero_48_48+1; % Count number of 0 
else dh2_48_48 == 1 
    rot_one_48_48 = rot_one_48_48+1; % Count number of 1 
end 
end 
% Caulculate the number of pressure anomalies becomes any error  
% before and after 48 hours 
pres_one_48_48 = 0; % Define to count number of logical 1 
pres_zero_48_48 = 0; % Define to count number of logical 0 
for rrrt = 1:numel(n5) % Iterate through all the rows  
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    % of pressure anomalies   
st3_48_48 = n5(rrrt,1) - hours(48); % Define the start time 
et3_48_48 = n5(rrrt,1) + hours(48); % Define the end time 
dh3_48_48 = isbetween(e1,st3_48_48,et3_48_48); % Find the match between  
% start and end time 
if dh3_48_48 == 0 
    pres_zero_48_48 = pres_zero_48_48+1; % Count number of 0 
else dh3_48_48 == 1 
    pres_one_48_48 = pres_one_48_48+1; % Count number of 1 
end 
end 
% Caulculate the number of vibration anomalies becomes  
% any error before and after 48 hours 
vib_one_48_48 = 0; % Define to count number of logical 1 
vib_zero_48_48 = 0; % Define to count number of logical 0 
for ssst = 1:numel(n6) % Iterate through all the rows  
    % of vibration anomalies  
st4_48_48 = n6(ssst,1) - hours(48); % Define the start time 
et4_48_48 = n6(ssst,1) + hours(48); % Define the end time 
dh4_48_48 = isbetween(e1,st4_48_48,et4_48_48); % Find the match between  
% start and end time 
if dh4_48_48 == 0 
    vib_zero_48_48 = vib_zero_48_48+1; % Count number of 0 
else dh4_48_48 == 1 
    vib_one_48_48 = vib_one_48_48+1; % Count number of 1 
end 
end 
% probability of any error for voltage anomalies before and after 48 hours 
p1_48 = volt_one_48_48/length(n3); 
% probability of any error for rotation anomalies before and after 48 hours 
p2_48 = rot_one_48_48/length(n4); 
% probability of any error for pressure anomalies before and after 48 hours 
p3_48 = pres_one_48_48/length(n5); 
% probability of any error for vibration anomalies before and after 48 hours 
p4_48 = vib_one_48_48/length(n6);  
% Create empty matrix with 100 rows and 5 columns 
em1 = zeros(100,5);  
    em1(iii,1) = iii; % Store machine ID 
    em1(iii,2) = p1_48; % Store voltage anomalies to error 
    % anomalies before and after 48 hours 
    em1(iii,3) = p2_48; % Store rotation anomalies to error 
    % anomalies before and after 48 hours 
    em1(iii,4) = p3_48; % Store pressure anomalies to error 
    % anomalies before and after 48 hours 
    em1(iii,5) = p4_48; % Store vibration anomalies to error 
    % anomalies before and after 48 hours 
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    prob1_48(iii,1) = em1(iii,1); % Machine ID 
    prob1_48(iii,2) = em1(iii,2); % Voltage vs error  
    % probability before and after 48 hours 
    prob1_48(iii,3) = em1(iii,3); % Rotation vs error  
    % probability before and after 48 hours 
    prob1_48(iii,4) = em1(iii,4); % Pressure vs error  
    % probability before and after 48 hours 
    prob1_48(iii,5) = em1(iii,5); % Vibration vs error  
    % probability before and after 48 hours 
end 
figure(1) 
x1 = prob1_48(:,1); 
y1 = prob1_48(:,2:end); 
bar(x1,y1,'stacked') 
xlabel('Machine ID') 
ylabel('Probabilities') 
title('Error Probabilities during anomalies time period',... 
    'fontweight','bold') 
probability1_48 = array2table(prob1_48,'VariableNames',{'MachineID',... 
    'volt','rotate','pressure','vibration'}); 
  

References 
[1] File exchange - MATLAB central.  

[Online]. Available: https://se.mathworks.com/matlabcentral/fileexchange/.  
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Appendix C 

MATLAB code for probability of failure calculation during the anomalies time 

period.  

%################################################################% 
%################################################################% 
%%%%%%    Master Thesis in Electronics/Automation   %%%%%%%%%%%%%% 
%----------------------------------------------------------------% 
%--------------             Calculate the             -----------% 
%--------------   anomalies to failure probability    -----------% 
%----------------------------------------------------------------& 
%--------------      University of Gavle             ------------% 
%----------------------------------------------------------------% 
%------- Topic: Analysis of Machine Condition to predict Failure % 
%----------------------------------------------------------------% 
%-------------- Masters in Electronics/Automation    ------------% 
%----------------------------------------------------------------% 
%--------------      Md Abdur Rahman Akash           ------------% 
%----------------------------------------------------------------% 
%---------------            January 2022             ------------% 
%----------------------------------------------------------------% 
%################################################################% 
%################################################################% 

% Load the failure, error and anomalies data  
fail = readtable('PdM_failures.csv'); % Load failure data 
error = readtable('PdM_errors.csv'); % Load error data 
volt = readtable('voltage.csv'); % Load voltage anomalies data 
rot = readtable('rotate.csv'); % Load rotation anomalies data 
pres = readtable('pressure.csv'); % Load pressure anomalies data 
vib = readtable('vibration.csv'); % Load vibration anomalies data 
% Calculate the probality of failure after  
% 12 hours,24 hours and 48 hours for each machine  
% Calculate the probability for all the machines through iteration 
for iii = 1:100 % Iterate 100 times as machines are 100 
% Load the machine information with iteration 
mc1 = error(error.machineID ==iii,:); % Iterate error data 100 times 
mc2 = fail(fail.machineID ==iii,:); % Iterate failure data 100 times 
mc3 = volt(volt.machineid ==iii,:); % Iterate voltage  
% anomalies data 100 times 
mc4 = rot(rot.machineid ==iii,:); % Iterate rotate anomalies  
% data 100 times 
mc5 = pres(pres.machineid ==iii,:); % Iterate pressure anomalies  
% data 100 times 
mc6 = vib(vib.machineid ==iii,:); % Iterate vibration anomalies  
% data 100 times 
% Extract the error, failure and anomalies datetime 
e1 = mc1.datetime; % Extract error datetime 
e2 = mc2.datetime; % Extract failure datetime 
e3 = unique(mc3.datetime); % Extract vibration anomalies datetime 
e4 = unique(mc4.datetime); % Extract rotation anomalies datetime 
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e5 = unique(mc5.datetime); % Extract pressure anomalies datetime 
e6 = unique(mc6.datetime); % Extract vibration anomalies datetime 
n3 = e3([true; diff(e3) >= hours(48)]); % Extract vibration anomalies datetime 
n4 = e4([true; diff(e4) >= hours(48)]); % Extract rotation anomalies datetime 
n5 = e5([true; diff(e5) >= hours(48)]); % Extract pressure anomalies datetime 
n6 = e6([true; diff(e6) >= hours(48)]); % Extract vibration anomalies datetime 
% Caulculate the number of voltage anomalies becomes  
% any failure before and after 48 hours  
volt_one_48_48 = 0; % Define to count number of logical 1 
volt_zero_48_48 = 0; % Define to count number of logical 0 
for pppt = 1:numel(n3) % Iterate through all the rows  
    % of voltage anomalies  
st1_48_48 = n3(pppt,1) - hours(48); % Define the start time  
et1_48_48 = n3(pppt,1) + hours(48); % Define the end time 
dh1_48_48 = isbetween(e2,st1_48_48,et1_48_48); % Find the match between  
% start and end time 
if dh1_48_48 == 0 
    volt_zero_48_48 = volt_zero_48_48+1; % Count number of 0 
else dh1_48_48 == 1 
    volt_one_48_48 = volt_one_48_48+1; % Count number of 1 
end 
end 
% Caulculate the number of rotation anomalies becomes any failure 
% for before and after 48 hours 
rot_one_48_48 = 0;  % Define to count number of logical 1 
rot_zero_48_48 = 0; % Define to count number of logical 0 
for qqqt = 1:numel(n4) % Iterate through all the rows  
    % of rotation anomalies   
st2_48_48 = n4(qqqt,1) - hours(48); % Define the start time  
et2_48_48 = n4(qqqt,1) + hours(48); % Define the end time  
dh2_48_48 = isbetween(e2,st2_48_48,et2_48_48); % Find the match between  
% start and end time 
if dh2_48_48 == 0 
    rot_zero_48_48 = rot_zero_48_48+1; % Count number of 0 
else dh2_48_48 == 1 
    rot_one_48_48 = rot_one_48_48+1; % Count number of 1 
end 
end 
% Caulculate the number of pressure anomalies becomes any failure 
% before and after 48 hours 
pres_one_48_48 = 0; % Define to count number of logical 1 
pres_zero_48_48 = 0; % Define to count number of logical 0 
for rrrt = 1:numel(n5) % Iterate through all the rows  
    % of pressure anomalies   
st3_48_48 = n5(rrrt,1) - hours(48); % Define the start time 
et3_48_48 = n5(rrrt,1) + hours(48); % Define the end time 
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dh3_48_48 = isbetween(e2,st3_48_48,et3_48_48); % Find the match between  
% start and end time 
if dh3_48_48 == 0 
    pres_zero_48_48 = pres_zero_48_48+1; % Count number of 0 
else dh3_48_48 == 1 
    pres_one_48_48 = pres_one_48_48+1; % Count number of 1 
end 
end 
% Caulculate the number of vibration anomalies becomes  
% any failure before and after 48 hours 
vib_one_48_48 = 0; % Define to count number of logical 1 
vib_zero_48_48 = 0; % Define to count number of logical 0 
for ssst = 1:numel(n6) % Iterate through all the rows  
    % of vibration anomalies  
st4_48_48 = n6(ssst,1) - hours(48); % Define the start time 
et4_48_48 = n6(ssst,1) + hours(48); % Define the end time 
dh4_48_48 = isbetween(e2,st4_48_48,et4_48_48); % Find the match between  
% start and end time 
if dh4_48_48 == 0 
    vib_zero_48_48 = vib_zero_48_48+1; % Count number of 0 
else dh4_48_48 == 1 
    vib_one_48_48 = vib_one_48_48+1; % Count number of 1 
end 
end 
% probability of any failure for voltage anomalies before and after 48 hours 
p1_48 = volt_one_48_48/length(n3); 
% probability of any failure for rotation anomalies before and after 48 hours 
p2_48 = rot_one_48_48/length(n4); 
% probability of any failure for pressure anomalies before and after 48 hours 
p3_48 = pres_one_48_48/length(n5); 
% probability of any failure for vibration anomalies before and after 48 hours 
p4_48 = vib_one_48_48/length(n6);  
% Create empty matrix with 100 rows and 5 columns 
em1 = zeros(100,5);  
    em1(iii,1) = iii; % Store machine ID 
    em1(iii,2) = p1_48; % Store voltage anomalies to failure 
    % probability before and after 48 hours 
    em1(iii,3) = p2_48; % Store rotation anomalies to failure 
    % probability before and after 48 hours 
    em1(iii,4) = p3_48; % Store pressure anomalies to failure 
    % probability before and after 48 hours 
    em1(iii,5) = p4_48; % Store vibration anomalies to failure 
    % probability before and after 48 hours 
    prob1_48(iii,1) = em1(iii,1); % Machine ID 
    prob1_48(iii,2) = em1(iii,2); % Voltage vs failure  
    % probability before and after 48 hours 
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    prob1_48(iii,3) = em1(iii,3); % Rotation vs failure 
    % probability before and after 48 hours 
    prob1_48(iii,4) = em1(iii,4); % Pressure vs failure  
    % probability before and after 48 hours 
    prob1_48(iii,5) = em1(iii,5); % Vibration vs failure  
    % probability before and after 48 hours 
end 
prob1_48(6,:) = [6 0 0 0 0]; % Replace the infinity values 
prob1_48(77,:) = [77 0 0 0 0]; % Replace the infinity values 
prob1_48(6,:) = [6 0 0 0 0]; % Replace the infinity values 
prob1_48(77,:) = [77 0 0 0 0]; % Replace the infinity values 
figure(1) 
x1 = prob1_48(:,1); 
y1 = prob1_48(:,2:end); 
bar(x1,y1,'stacked') 
xlabel('Machine ID') 
ylabel('Probabilities') 
title('Failure Probabilities during anomalies time period',... 
'fontweight','bold') 
probability1_48 = array2table(prob1_48,'VariableNames',... 
{'MachineID','volt','rotate','pressure','vibration'}); 
%% 
% Save probability of failure and error 
save('fail.mat','probability1_48') 
% Load error probability 
p_e = load('error.mat'); 
% Load failure probability 
p_f = load('fail.mat'); 
% Define machine number 
mac_error_19 = p_e.probability1_48(19,:); 
mac_fail_19 = p_f.probability1_48(19,:); 
% Extract on one array 
all = [mac_error_19;mac_fail_19]; 
arr = table2array(all); 
% Slice the array 
with_mac_error = arr(1,:); 
wi_out_mac_error = with_mac_error(:,2:end); 
with_mac_fail = arr(2,:); 
wi_out_mac_fail = with_mac_fail(:,2:end); 
x = [1 2 3 4]; 
all_prob = [wi_out_mac_error;wi_out_mac_fail]; 
bar(x,all_prob,'stacked') 
set(gca,'xtick',1:4,... 
 'xticklabel',{'volt','rotate','pressure','vibration'}) 
legend('probability of error','probability of failure'); 
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Appendix D 

MATLAB code for data preprocessing, finding peaks and gaussian process 

regression.  

%################################################################% 
%################################################################% 
%%%%%%    Master Thesis in Electronics/Automation   %%%%%%%%%%%%%% 
%----------------------------------------------------------------% 
%--------------   Data preprocessing, finding peaks   -----------% 
%--------------   and Gaussian process regression (ML) ----------% 
%----------------------------------------------------------------& 
%--------------      University of Gavle             ------------% 
%----------------------------------------------------------------% 
%------- Topic: Analysis of Machine Condition to predict Failure % 
%----------------------------------------------------------------% 
%-------------- Masters in Electronics/Automation    ------------% 
%----------------------------------------------------------------% 
%--------------      Md Abdur Rahman Akash           ------------% 
%----------------------------------------------------------------% 
%---------------            January 2022             ------------% 
%----------------------------------------------------------------% 
%################################################################% 
%################################################################% 

clc 
clear all 
close all 
%% Load the sensor data 
data = readtable('PdM_telemetry.csv'); % Sensor data 
error  = readtable('PdM_errors.csv'); 
fail = readtable('PdM_failures.csv'); 
%% 
% Define the machine number 
r = data(data.machineID == input('machine ID =:'),:); % Machine ID 
f = fail(fail.machineID == input('machine ID =:'),:); 
e = error(error.machineID == input('machine ID =:'),:); 
% Split the datetime 
[y,mo,d] = ymd(r.datetime); 
[h,mi,s] = hms(r.datetime); 
% Year 
r.year = y; 
% Month 
r.month = mo; 
% Day 
r.day = d; 
% Hour 
r.hour = h; 
% Minute 
r.minute = mi; 
% Second 
r.second = s; 
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%% 
% Convert the categorical failure data to numeric  
f.failure = categorical(f.failure); 
ft = double(f.failure); 
f.failure = ft; 
% Convert the categorical error data to numeric  
e.errorID = categorical(e.errorID); 
et = double(e.errorID); 
e.errorID = et; 
%% 
% Split failure datetime into year, month and day 
[yf,mf,df] = ymd(f.datetime); 
% Split error datetime into year, month and day 
[ye,me,de] = ymd(e.datetime); 
f.month = mf; 
e.month = me; 
% Extract the monthly data 
f_1 = f(f.month == 1,:); 
e_1 = e(e.month == 1,:); 
plot(f_1.datetime,f_1.failure,'r*') 
hold on 
plot(e_1.datetime,e_1.errorID,'ko') 
xlabel('Datetime') 
ylabel('Errors and failures') 
legend('Failure','Error') 
hold off 
%% 
subplot(2,2,1) 
plot(r.datetime,r.volt) 
xlabel('Datetime') 
ylabel('Voltage data') 
title('Raw voltage data') 
subplot(2,2,2) 
plot(r.datetime,r.rotate) 
xlabel('Datetime') 
ylabel('Rotation data') 
title('Raw rotation data') 
subplot(2,2,3) 
plot(r.datetime,r.pressure) 
xlabel('Datetime') 
ylabel('Pressure data') 
title('Raw pressure data') 
subplot(2,2,4) 
plot(r.datetime,r.vibration) 
xlabel('Datetime') 
ylabel('Vibration data') 
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title('Raw vibration data') 
%% 
a1 = r.volt; % Split the voltage data 
a2 = r.rotate; % Split the rotation data 
a3 = r.pressure; % Split the pressure data 
a4 = r.vibration; % Split the vibration data 
s1 = movmean(a1,[12,0]); % Filter with 12 neighbouring points 
% of the voltage data 
s2 = movmean(a2,[12,0]); % Filter with 12 neighbouring points 
% of the rotation data 
s3 = movmean(a3,[12,0]); % Filter with 12 neighbouring points 
% of the pressure data 
s4 = movmean(a4,[12,0]); % Filter with 12 neighbouring points 
% of the vibration data 
f1 = smoothdata(s1); % Smooth the voltage filted signal edge 
f2 = smoothdata(s2); % Smooth the rotation filted signal edge 
f3 = smoothdata(s3); % Smooth the pressure filted signal edge 
f4 = smoothdata(s4); % Smooth the vibration filted signal edge 
r.volt = f1; 
r.rotate = f2; 
r.pressure = f3; 
r.vibration = f4; 
%% 
subplot(2,2,1) 
plot(r.datetime,r.volt) 
xlabel('Datetime') 
ylabel('Voltage data') 
title('Filtered & smoothed voltage data') 
subplot(2,2,2) 
plot(r.datetime,r.rotate) 
xlabel('Datetime') 
ylabel('Rotation data') 
title('Filtered & smoothed rotation data') 
subplot(2,2,3) 
plot(r.datetime,r.pressure) 
xlabel('Datetime') 
ylabel('Pressure data') 
title('Filtered & smoothed pressure data') 
subplot(2,2,4) 
plot(r.datetime,r.vibration) 
xlabel('Datetime') 
ylabel('Vibration data') 
title('Filtered & smoothed vibration data') 
%% 
g1 = f1; % Define the voltage filtered and smoothed data 
g2 = -f2; % Define the inverted rotation filtered and smoothed data 
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g3 = f3; % Define the pressure filtered and smoothed data 
g4 = f4; % Define the vibration filtered and smoothed data 
[pks1,locs1]=findpeaks(g1,'SortStr','descend','Npeaks',22); % Find the 
% voltage peaks and plot them 
subplot(2,2,1) 
plot(g1) 
hold on; 
plot(locs1, g1(locs1),'r*'); % These red start are the detected peaks  
xlabel('time in hours') 
ylabel('voltage') 
title('Detected voltage peaks') 
hold off 
[pks2,locs2]=findpeaks(g2,'SortStr','descend','Npeaks',15); % Find the 
% rotation peaks and plot them 
subplot(2,2,2) 
plot(g2) 
hold on; 
plot(locs2, g2(locs2),'r*'); % These red start are the detected peaks 
xlabel('time in hours') 
ylabel('rotation') 
title('Detected rotation peaks') 
hold off 
[pks3,locs3]=findpeaks(g3,'SortStr','descend','Npeaks',6);% Find the 
% pressure peaks and plot them 
subplot(2,2,3) 
plot(g3) 
hold on; 
plot(locs3, g3(locs3),'r*'); % These red start are the detected peaks 
xlabel('time in hours') 
ylabel('pressure') 
title('Detected pressure peaks') 
hold off 
[pks4,locs4]=findpeaks(g4,'SortStr','descend','Npeaks',10); % Find the 
% vibration peaks and plot them 
subplot(2,2,4) 
plot(g4) 
hold on; 
plot(locs4, g4(locs4),'r*'); % These red start are the detected peaks 
xlabel('time in hours') 
ylabel('vibration') 
title('Detected vibration peaks') 
hold off 
%% 
m1 = mean(r.volt); % Voltage mean calculation 
m2 = mean(r.rotate); % Rotation mean calculation 
m3 = mean(r.pressure); % Pressure mean calculation 
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m4 = mean(r.vibration); % Vibration mean calculation 
std1 = std(r.volt); % Voltage standard deviation calculation 
std2 = std(r.rotate); % Rotation standard deviation calculation 
std3 = std(r.pressure); % Pressure standard deviation calculation 
std4 = std(r.vibration); % Vibration standard deviation calculation 
sensor1 = (r.volt - m1) / std1; % Standard scaler on voltage data 
sensor2 = (r.rotate - m2) / std2; % Standard scaler on rotation data 
sensor3 = (r.pressure - m3) / std3; % Standard scaler on pressure data 
sensor4 = (r.vibration - m4) / std4; % Standard scaler on vibration data 
r.volt = sensor1; 
r.rotate = -sensor2; % Invert rotation data 
r.pressure = sensor3; 
r.vibration = sensor4; 
%% 
subplot(2,2,1) 
plot(r.datetime,r.volt) 
xlabel('Datetime') 
ylabel('Voltage data') 
title('Scaled voltage data') 
subplot(2,2,2) 
plot(r.datetime,r.rotate) 
xlabel('Datetime') 
ylabel('Rotation data') 
title('Scaled rotation data') 
subplot(2,2,3) 
plot(r.datetime,r.pressure) 
xlabel('Datetime') 
ylabel('Pressure data') 
title('Scaled pressure data') 
subplot(2,2,4) 
plot(r.datetime,r.vibration) 
xlabel('Datetime') 
ylabel('Vibration data') 
title('Scaled vibration data') 
%% 
% Extract the monthly data 
r_10 = r(r.month == 2,:); 
rng('default') % For reproducibility 
PD = 0.2; 
% Perform Nonstratified validation 
cv = cvpartition(size(r_10,1),'HoldOut',PD); 
% Split into 80% traing 
train = r_10(cv.training,:); 
% % Split into 20% testing 
test = r_10(cv.test,:); 
%% 
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% Train the model by changing the response variable name  
gprMdl = fitrgp(train,'volt~rotate+pressure+vibration+month+day+hour',... 
'KernelFunction','exponential',... 
      'FitMethod','fic','PredictMethod','fic','Regularization',0.05); 
%% 
% Define the predictors on the testing data 
x1 = [test(:,4),test(:,5),test(:,6),test(:,8),test(:,9),test(:,10)]; 
% Actual test data 
y1 = test.volt; 
% Predicted respons data with the model  
ypred = predict(gprMdl,x1) 
figure; 
plot(y1,'b--'); 
hold on; 
plot(ypred,'r'); 
xlabel('Timestamps') 
ylabel('Predicted vibration response') 
legend('Real test data','Predicted data','Location','Best'); 
hold off 
% R-square calculation  
Rsq = 1 - sum((y1 - ypred).^2)/sum((y1 - mean(y1)).^2); 
% RMSE calculation  
RMSE = immse(y1,ypred); 
% MAE calculation  
MAE = mean(abs(y1-ypred)); 
% RAE calculation  
RAE = sum((y1 - ypred))/sum(abs(y1 - mean(y1))); [1] 
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