
Citation: Bemani, A.; Björsell, N.

Aggregation Strategy on Federated

Machine Learning Algorithm for

Collaborative Predictive

Maintenance. Sensors 2022, 22, 6252.

https://doi.org/10.3390/s22166252

Academic Editor: Juan Fang

Received: 22 July 2022

Accepted: 17 August 2022

Published: 19 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Aggregation Strategy on Federated Machine Learning
Algorithm for Collaborative Predictive Maintenance
Ali Bemani † and Niclas Björsell *,†

Department of Electrical Engineering, Mathematics and Science, University of Gävle, 80176 Gävle, Sweden;
ali.bemani@hig.se
* Correspondence: niclas.bjorsell@hig.se; Tel.: +46-026-648795
† These authors contributed equally to this work.

Abstract: Industry 4.0 lets the industry build compact, precise, and connected assets and also has
made modern industrial assets a massive source of data that can be used in process optimization,
defining product quality, and predictive maintenance (PM). Large amounts of data are collected
from machines, processed, and analyzed by different machine learning (ML) algorithms to achieve
effective PM. These machines, assumed as edge devices, transmit their data readings to the cloud for
processing and modeling. Transmitting massive amounts of data between edge and cloud is costly,
increases latency, and causes privacy concerns. To address this issue, efforts have been made to use
edge computing in PM applications., reducing data transmission costs and increasing processing
speed. Federated learning (FL) has been proposed a mechanism that provides the ability to create
a model from distributed data in edge, fog, and cloud layers without violating privacy and offers
new opportunities for a collaborative approach to PM applications. However, FL has challenges in
confronting with asset management in the industry, especially in the PM applications, which need to
be considered in order to be fully compatible with these applications. This study describes distributed
ML for PM applications and proposes two federated algorithms: Federated support vector machine
(FedSVM) with memory for anomaly detection and federated long-short term memory (FedLSTM) for
remaining useful life (RUL) estimation that enables factories at the fog level to maximize their PM
models’ accuracy without compromising their privacy. A global model at the cloud level has also been
generated based on these algorithms. We have evaluated the approach using the Commercial Modular
Aero-Propulsion System Simulation (CMAPSS) dataset to predict engines’ RUL Experimental results
demonstrate the advantage of FedSVM and FedLSTM in terms of model accuracy, model convergence
time, and network usage resources.

Keywords: distributed machine learning algorithm; edge and fog computing; federated learning;
resource allocation; aggregation strategy

1. Introduction

In recent years, the number of Internet of Things (IoT) devices has increased dra-
matically due to the rapid advances in hardware, software, and wireless communications
technology, which provides data observation and measurement from physical work to cyber
work. An analysis in [1] shows that the IoT has a potential economic impact of between
USD 3.9 trillion and USD 11.1 trillion per year by 2025. Ericsson predicts that by 2050,
there will be 24 billion internet-connected devices around the world. It means almost every
object around us will be connected through wireless communication. In the past, we have
seen the process of transferring computing, data storage, and applications to cloud data
centers. In this way, an application has access to shared computing and storage resources
on demand. The cloud computing model has several advantages: shared resources, low
cost in deploying, high scalability, accessibility, and availability. IoT devices usually have
limited computing power and small memory, which are widely used in smart houses, smart

Sensors 2022, 22, 6252. https://doi.org/10.3390/s22166252 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22166252
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4284-6691
https://orcid.org/0000-0001-5429-7223
https://doi.org/10.3390/s22166252
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22166252?type=check_update&version=1

Sensors 2022, 22, 6252 2 of 24

cities, autonomous vehicle driving, industries, manufacturing, and industrial internet of
things. IoT devices continuously generate large amounts of data that need to be collected
and analyzed [2]. Transferring such a large amount of data to cloud servers increases com-
munication cost and network bandwidth usage, causes delayed system response, and puts
data privacy at risk. To solve this issue, fog or edge computing has been proposed, in which
data analysis and computation happen at such places where there is close proximity to the
physical location that data originate from [3].

The hierarchical and collaborative edge-fog-cloud architecture, which is shown in
Figure 1, has a great benefit. It enables us to use a distributed machine learning (DML)
algorithm to achieve an optimal solution while satisfying the given constraint over the
network, e.g., limitation on bandwidth usage, communications cost, delay, and packet
drops [4].

Figure 1. Hierarchical and collaborative edge-fog-cloud architecture.

The digital transformation of production and manufacturing, industry 4.0 (I4.0), uses
information and communication technology to create intelligent industries. I4.0 shares
this vision that many infrastructure technologies underlying cyber-physical systems and
data analytics are converged into a new distributed and automated dynamic network. The
generated data from IoT devices facilitate information visibility and process automation in
industrial digitalization. One of the applications that are primarily used in I4.0 is to predict
the failure of manufacturing equipment. PM allows the business owner to decide whether
to repair or replace the component before an actual breakdown affects the entire production
line. Therefore, I4.0 requires effective asset management to optimize the distribution of
tasks for PM models [5].

To achieve effective PM, huge amounts of data should be collected, processed, and
ultimately analyzed by an ML algorithm. Edge and fog computing can process data with
the use of distributed algorithms and provides opportunities to reduce data transfer costs
and increase processing speed, especially in PM applications [6]. The authors in [7] present
three main techniques that use distributed machine learning algorithms and data processing
on intermediate nodes. These techniques are categorized according to the place where the
data are processed: Edge, Fog, and Cloud.

Sensors 2022, 22, 6252 3 of 24

Since edge computing has emerged as an essential paradigm for IoT-based systems,
efforts are being made to use devices at the edge of the network to perform computations
as much as possible, rather than using the cloud to process data only [8].

FL is a kind of collaborative ML without centralized training data which aims to train
a global model from distributed data on different devices while protecting data privacy
and saving significant network bandwidth [9]. However, models trained by the federated
learning algorithm usually perform with lower accuracy than models trained by a standard
centralized algorithm, especially when the training data are not independent and identically
distributed (non-iid) on the edge devices. Zhu et al. provided a detailed analysis of the
influence of non-iid data on learning model with FL algorithm [10].

FL consists of two steps, local training and global aggregation. In local training, the
edge device downloads the model from the fog and computes an updated model using
its local data. The fog server then collects these updated models mainly by averaging. FL
can be used between fog and cloud also. In this case, the models’ parameters will typically
be aggregated in the cloud by federating method and then distributed between the fog
servers. The aggregation time in fog servers and cloud servers could be different, and this
is an essential hyperparameter for deploying FL in edge, fog, and cloud computing [11,12].

The terms cross-silo and cross-device are two reflections of real-world usage and
various Fl solutions for IoT applications that can be used in collaborative PM. Cross-silo
can be related to FL between fog and cloud in PM applications, where the fog can be
assumed as some companies that their PM data are geographically distributed, and the
cloud can be assumed as a related data center considered by the specific field of work of
these companies. Cross-device is the most commonly used FL setting in which clients are
identified as resource-constrained IoT edge devices and can be used between edge and fog
computation. This approach can facilitate remaining useful life prediction of an asset inside
a manufacturing company by taking advantage of edge data analytics [13].

Models trained in federated learning usually perform worse than models trained
in a centralized mode, especially when the training data are non-iid across local devices.
This is very common in PM applications due to various anomalies at edge devices and
human interaction in performing maintenance and reporting. Another issue in distributed
statistical analysis, especially in PM, can be Simpson’s paradox. It occurs when data
distribution causes some specific subgroups to have different trends of dependent and
independent variables compared to the aggregated data, which is likely in PM. These
issues need to be addressed in federated learning for collaborative PM, e.g., developing
techniques for handling non-iid data distribution and proposing a kind of algorithms to
detect the Simpson’s paradox at the edge and cloud levels.

1.1. Motivation

The cost of transferring all the PM raw data stored in the cloud and creating a central-
ized model is very high and violates privacy between organizations. The centralized models
are more accurate than the distributed models. Still, the motivation of this paper is to find a
distributed model that benefits from low data transfer to the cloud, reduces communication
workloads, and has a comparable accuracy in predicting failure with centralized models.

In edge-level FL scenarios for PM, which involve heterogeneous devices and various
failures, there may be clients who do not have sufficient computational resources to train the
global model. Model aggregation and global model accuracy can be degraded due to these
clients, which delays the training process. This situation may interrupt the collaborative
training process, which is too costly in predictive maintenance scenarios. The proposed
collaborative PM at the edge, fog, and cloud level is illustrated in Figure 2. Edge devices
in each factory contribute to making a local model at the fog level, and then the global
model is built from the model’s parameters in the fogs. The standard FL algorithm does not
provide any predictions for limited communication resources. As a result, the release of a
more evolved global model to clients may be delayed, and the system may not be able to
predict failure before it occurs.

Sensors 2022, 22, 6252 4 of 24

Figure 2. Proposed collaborative PM at the edge, fog, and cloud level.

In order to use a simple and accurate ML model for collaborative PM scenarios, support
vector machine (SVM) and long short term memory (LSTM) models are chosen to be treated
in a federated manner. SVM is a non-probabilistic classifier that is suitable for classification
and regression analysis. It separates data across a decision boundary such that the distance
between the nearest sample and the decision boundary is maximal [14]. The effectiveness
of SVM mainly depends on how the kernel and soft margin parameters are defined. The
kernel function can determine whether the SVM is linear or non-linear. In this work, an SVM
with a linear kernel is used in a federated manner to have the advantage of fast response in
the communication rounds. LSTM is a recurrent neural network capable of learning long
term dependencies between time steps of sequence data [15]. This capability helps process
time series data flow in predictive maintenance applications. In this work, an LSTM with
a random weighted connection of each cell is used in a federated manner, reducing the
model’s dimensionality for the transition between different layers.

1.2. Contributions

1. This work proposes two federated models (FedSVM and FedLSTM) for collaborative
PM, which provide a distributed model at FL edge devices. A communication graph
describes the communication between the edge devices and the local server in each
factory. This is achieved by activating these models in asynchronous mode. The server
does not need to wait to collect parameters and can perform with comparable results
to a centralized algorithm.

2. FedSVM utilizes a federated support vector machine (SVM) model in each edge
device to classify PM strategies. It could predict labels that mentioned the need to
do maintenance for one asset as an edge device at the cloud level without violating
privacy. In preprocessing of the data before they are fed to the model, a moving average
strategy has been implemented, which causes FedSVM to use a kind of memory inside
its process. This federated method is reliable and fast enough for online applications
such as PM.

3. FedLSTM utilizes a federated long short term memory (LSTM) model in each edge
device to predict the absolute values of an asset’s RUL. This method is useful for
learning from sequence data in each edge device. By applying the moving average
strategy, the number of consecutive blocks in FedLSTM is reduced compared to
without it, which significantly affects the training time of the model at the fog level.

4. These methods ensure that edge devices only exchange model parameters with the
fog servers and the fog servers send them to the cloud server for aggregation. As well
as they help speed up the local model convergence time because edge devices are
sometimes unable to quickly and instantly access the cloud server, leading to delays
in exchanging model updates.

Sensors 2022, 22, 6252 5 of 24

5. FedSVM and FedLSTM are evaluated against a case study of RUL prediction for
CMAPSS in a simulated collaborative PM. CMAPSS is a very well-known and bench-
mark dataset in RUL prediction. The results of these federal methods are compared
with centralized approaches to model performance, communication resource utiliza-
tion, and model convergence time.

The remaining of the paper is organized as follows. First, a brief review of the related
research is presented in Section 2. Then, the federated learning system model and interac-
tion between the different layers (edge, fog, and cloud) are discussed in Section 3. Section 4
is dedicated to explaining the details of FedSVM and FedLSTM architectures. Subsequently,
Section 5 gives the structure of the performance evaluation of FedSVM and FedLSTM, and
Section 6 analyzes the performance of the models and presents the experimental results.
Finally, Section 7 concludes the paper and provides future research.

2. Related Work

Edge and fog computing are being increasingly used to deploy distributed ML al-
gorithms, especially in resource-constrained environments [16–18]. Kay Bierzynski et al
in [19] discuss four possible approaches for distributing the workload among Edge, Fog,
and Cloud levels. Developments and challenges are also highlighted in this paper for im-
plementation in hardware, machine learning, security, privacy, and communication. In
general, this section is divided into two subsections. ML at the edge, fog, and cloud levels
includes most related works on FL and optimization algorithms, distribution strategies, and
hierarchical FL [9–12,20–29]. The second subsection, DML for collaborative PM, contains
most related works that use FL in PM applications and distributed ML for collaborative PM
scenarios [13,30–35].

2.1. Machine Learning at the Edge, Fog, and Cloud Levels

Centralized cloud computing is an ideal data integration solution to enable shared PM.
However, due to industrial competition and data privacy, the manufacturing sector will not
be satisfied with sharing its production data between companies. Due to legal restrictions,
an organization may sometimes be reluctant to centralize its asset failure data collected
from multiple production sites. Furthermore, the cost of centralizing all row data in a cloud
is too high and not affordable. Thus, edge and fog computing offer a potential solution for
the manufacturing industries to put isolated data islands together to teach better models
while protecting their business intelligence.

Designing a system that enables the efficient distribution of machine learning is chal-
lenging because each algorithm has a distinct communication pattern. DML is a growing
system with different solutions that differ in architecture, algorithm, efficiency, and perfor-
mance [20].

Wang et al. have considered, in [21], the problem of learning model parameters from
data distributed across multiple edge nodes without sending raw data to a centralized
location such as fog or cloud. They introduced an algorithm based on distributed gradi-
ent descent to train the models, including SVM models, convolutional neural networks
(CNNs), K-means, and linear regression. They analyzed the convergence rate of the pro-
posed gradient-descent-based algorithm for distributed learning and showed that this
convergence rate incorporates non-iid data.

Due to the rapid increase in FL research, several review papers have been published in
this area. A comprehensive survey on FL and analysis it from five aspects: data partitioning,
privacy mechanism, machine learning model, communication architecture, and systems
heterogeneity are given in [22]. The key communication challenges of FL applications in
IoT and edge devices are discussed in [23,24].

There are several algorithms for FL in distributed optimization. Most of these algo-
rithms have been evaluated and compared in [25], including FedAvg, FedProx, CO-OP,
and federated stochastic variance reduced gradient (FSVRG). The FedAvg algorithm works
by running the training task on the edge devices, where they share an overall model with

Sensors 2022, 22, 6252 6 of 24

the central server that is an average of all the parameters.The FSVRG algorithm’s goal is
to perform one full gradient computation centrally on fog or could, followed by many
distributed stochastic updates on each edge device which is performed by iterating through
a random permutation of the local data [26].

CO-OP proposes an asynchronous approach and merges any received edge model with
the global model. Contrary to FedAvg, merging an edge and a global model is performed
via a weighting scheme based on the models’ age difference. Another algorithm proposed
for FL is called FedProx, which is similar to FedAvg. FedProx makes simple changes that
allow for better performance and better heterogeneity. The reason behind this is that the
different edge devices used for FL often have their own limitations, so it would not be ideal
or realistic to expect all devices to do the same amount of work [27].

Different strategies for model aggregation and hierarchical FL are essential issues in
a distributed system at the edge, fog, and cloud levels. Lumin Liu et al. proposed the
hierarchical FL based on FedAvg for distributed systems [28]. They tried to formulate an
optimization problem based on the number of aggregations at the fog and cloud levels
compared to the number of iterations at the edge level. Based on their proposed architecture,
this model can be trained faster and achieve better communication efficiency. Another
study proposed a hierarchical FL to minimize training loss and latency by formulating an
optimization problem of edge aggregation interval control and time allocation [29].

2.2. DML for Collaborative PM

Research shows that fog computing which offers more computation capability than
edge devices can be exploited to implement ML algorithms for PM applications.

FL enables a collaborative model for PM at the edge level on cross-company data
for different manufacturing sites or even distributed across multiple organizations. This
method aims to exchange failure pattern data about one specific asset without sharing
the raw data that can be considered as sensitive commercial data. The authors of ref. [30]
proposed a new distributed PM algorithm based on FL and blockchain mechanisms.

One of the issues of using FL in the PM application is that some edge devices may not
have sufficient computational resources to train the global model on time. These clients
can cause delays in model aggregation and even disconnect during a training iteration and
prevent other edge devices from efficient collaborative learning of the failure pattern from
each other. To solve this issue, [13] proposed the Split Pred framework for collaborative PM,
which provides a cross-device FL to implement reliable model training at edge devices.

A real-time fault detection system for edge computing was proposed in [31]. They
used a two-layer architecture with a real-time fault detector on single-board computers,
developed based on an LSTM recurrent neural network executing on the backend. Baotong
Chen et al. proposed a system architecture for edge-based PM applications in IoT-based
manufacturing. They showed that distributed learning in edge computing provides some
advantages in terms of latency response for edge controlling and bandwidth optimiza-
tion. A cooperation mechanism between edge, fog, and cloud computing is discussed to
demonstrate the functionality of edge, fog, and cloud-based resources [32].

Ning Ge et al. in [33] have presented an empirical study on failure prediction in the
production line based on FL. They have developed a federated SVM algorithm for the
horizontal FL scenario and a federated random forest algorithm for the vertical FL scenario.
They have also analyzed the effectiveness of FL in comparison with centralized learning.
Their results reveal that the distributed FL algorithm can replace the centralized algorithm
for failure and maintenance prediction.

One principle in predictive maintenance is anomaly detection, and some research has
been done to deploy FL algorithms, mainly in this field. For instance, the authors in [34]
introduced a novel FL algorithm for the LSTM framework and evaluated it on anomaly
detection of sensors behavior in smart building applications. They proposed an FSLSTM
network which consists of a local LSTM model that runs on sensor edge devices and a
global model on fog that aggregates the weights, updates the parameters, and distributes

Sensors 2022, 22, 6252 7 of 24

them between the sensor edge devices. Their results show that this method converges
twice as fast as the centralized LSTM model in the training phase. Similar work on anomaly
detection is [35] in which authors proposed a novel communication efficient FL algorithm
for sensing time-series data in distributed anomaly detection applications. They offered
an attention mechanism-based convolutional neural network long short-term memory
(AMCNN-LSTM) model to detect anomalies accurately. This model captures the most
important features with the use of a CNN and then passes data to an LSTM, which predicts
the future time-series data.

For ease of resource following, a concise summary of the related research is provided
in Table 1.

Table 1. Summary of the related research.

Approach Ref Key Ideas

Distributed data
communication constraints

[16] Wireless communication in edge learning
[17] Deep neural network for fog-cloud based with adopting dynamic changes in resource variation
[18] Genetic algorithm for scheduling to minimize overall latency

ML at the
Edge, Fog, and Cloud levels

[19] Distributed ML and challenges for implementing (Hardware, security, privacy, and communication)
[20] A fruitful survey on distributed machine learning
[21] Proposed distributed gradient descent algorithm which fits for non-iid data

Federated ML
concepts and applications

[9] Stochastic method with variance reduction for solving the problem on federated learning
[10] Challenges of non-iid Data to Model Training on horizontal and vertical FL
[11] Overview of FL, technologies, protocols and applications
[12] Horizontal federated learning, vertical federated learning, and federated transfer learning
[22] Analyzing Fl regarding data partitioning, privacy, model, and communication

Federated
optimization algorithms

[25] FedAvg, FedProx, CO-OP, FSVRG
[26] FSVRG on fog or cloud
[27] FedProx

Distribution strategies and
hierarchical FL

[28] Hierarchical FL based on the number of aggregations compared to number of iterations (epochs)
[29] Hierarchical FL to minimize training loss and latency

Distributed ML for
collaborative PM scenarios

[30] Distributed PM algorithm based on FL and blockchain
[13] Cross-device FL for collaborative PM
[31] Real-time fault detection system for edge computing
[32] Edge computing in IoT based manufacturing
[33] Federated SVM for horizontal FL and federated random forest for vertical FL
[34] Novel FL algorithm for the LSTM model for anomaly detection
[35] Combination of CNN and LSTM in distributed anomaly detection applications

3. System Model

In this section, we describe the framework of FL over wireless communication in
different levels of edge, fog, and cloud layers. We will discuss the network model, federated
learning process, learning model, and how to fit the idea of FL on SVM and LSTM models.

3.1. Network Model

As depicted in Figure 2, we considered a general FL-supported wireless multi-agent
network between fog server and N distributed edge devices, denoted as the set N =
{1, . . . , N}. The fog server is directly connected to the cloud server through a wireless
link with the nearest base station. The fog server in each factory is also equipped with
computational resources to provide communication and computation services to the edge
devices. The edge devices could be some similar assets in a factory site, and communicate
with the fog server for an FL task via a wireless link. We assume that each i asset on a
factory site collects measurement data and has information about labeled training samples,
such as RUL information of one asset with its sensors measurement. This dataset is denoted
as Di =

{
ξi,l
}Di

l=1, which ξ represents the lth training sample at edge device i, ∀i ∈ N .
The whole dataset in each factory is the union of its edge devices datasets D =

⋃
i∈N Di.

We consider two machine learning models (SVM and LSTM) over this wireless network
between fog server and edge devices in different factory sites. The fog server and edge
devices collaboratively build shared SVM and LSTM models for predicting the labels. These

Sensors 2022, 22, 6252 8 of 24

shared models are trained by exchanging model parameter information while keeping all
the data locally at the edge devices. The global shared model will be made by aggregating
all the model parameters from fog servers.

3.2. Federated Learning Process

In an FL algorithm, a specific ML model is trained in a distributed manner among
some edge devices and then aggregated in a server (i.e., fog server). The goal of this kind of
process is to find a fog level model parameter w ∈ Rd in each factory with the objective of
minimizing a loss function f (w) on the whole dataset of that factory site. d is the dimension
of the parameters and should be the same for all factories. The fog and edge level learning
objective of the network can be expressed as follows, which is considered only for one
factory site.

min
w
{ f (w)}

f (w) =
N

∑
i=1

Di
D

fi(w)

fi(w) =
1

Di

Di

∑
l=1

Fi
(
w, ξi,l

)
,

(1)

where Di = |Di| is one of the data samples, fi(w) is the local loss function of edge device i,
and Fi

(
w, ξi,l

)
characterizes the loss of model parameter w on the training sample ξi,l . With

these definitions, the main objective in the cloud is to minimize the global loss function
FG(w) which is defined as the summation of all loss functions f j(w) in different factories,
j, ∀j ∈ M is the index number of a factory site.

FG(w) =
M
∑
j=1

f j(w). (2)

The principal analysis in the cloud and fog layer is based on the federated averaging
(FedAvg) Algorithm. The whole training process is periodical with an arbitrary number
of communication rounds (TG is the number of global communication rounds between
cloud and fog servers, and T j

l is the number of local communication rounds between edge
devices and fog server in different factories). Each local communication round has a different
number of iterations on edge devices E, defined as local epochs. The training process at the
tth communication round is described as follows:

1. Broadcasting from cloud server: Cloud server broadcasts the global model parameter
wt

cloud to all fog servers through a wireless link in the tth round.
2. Fog updating phase: All fog servers update their model parameters with the received

parameters from the cloud.
3. Broadcasting from local fog server: Fog servers broadcast the updated model parameters

wt
f og,j to all edge devices located at factory site number j through a wireless link.

4. Edge device updating phase: After receiving the fog level model parameter, each edge
device i ∈ N in factory j ∈ M trains its local model by applying E epochs of a kind
of optimization algorithms such as SGD and Adam. The iteration for SGD becomes

wt+1
i,j = wt

i,j − η∇ f j
i

(
wt

i,j

)
, (3)

where η is the learning rate and ∇ f j
i

(
wt

i,j

)
is the stochastic gradient of local loss

function in edge device i in factory j. After E epochs, edge device i uploads its update
model parameter wt+1

i,j to the connected fog server j.

Sensors 2022, 22, 6252 9 of 24

5. Aggregating on fog: After E iterations on the edge devices in each factory, once
receiving all the local model parameters, the fog server aggregates them and obtains
an updated model, which is known as a synchronous method.

wt+1
f og,j =

Nj

∑
i=1

Dj
i

Dj wt+1
i,j , (4)

where Dj is the whole data sample at factory site j. Another aggregation method is that
when an edge device updates its model parameter in fog, the server in fog immediately
creates an intermediate form of that agent’s parameters with its parameters and
returns it to the agent for the next iteration. In this method, defined as asynchronous
aggregation, the servers in the fog do not need to wait until they receive all the agents’
parameters.

6. Aggregating on cloud: The model parameter aggregation on the cloud happens once
in a while. The number of communication rounds between cloud and fogs is much
lower than the number of communication rounds between edge devices and fogs
(TG << T j

l). Therefore, when the cloud requests an update, a simple averaging with
different weights (Aj) depending on the size of the factory is performed on all fog
parameters

wt+1
cloud =

M

∑
j=1

Ajwt+1
f og,j, (5)

where ∑M
j=1 Aj = 1.

The complete description of edge, fog, annd cloud FL algorithm is shown in Algorithm 1.

Algorithm 1: Federation on the edge, fog, and coud.
Cloud server executes:
initialise w0
for each round t = 0, 1, . . . , TG do

for each factory site j ∈ M do
wt+1

f og,j ← Fog server executes(j, wt
cloud)

end
wt+1

cloud ← ∑M
j=1 Ajwt+1

f og,j

end

Fog server executes(j, w f og):
hj ← stepsize

for each round t = 0, 1, . . . , T j
l do

for each edge device i ∈ N do
wt+1

i,j ← Edge device uppdate(i, wt
f og)

end

wt+1
f og,j ← ∑

Nj
i=1

Dj
i

Dj wt+1
i,j ,

end
wt+1

f og,j will be returned to cloud server by request

Edge device uppdate(j, i, w):
{Di}N

i=1 = data partition
for each local epoch k from 1 to E do

wt+1
i,j = wt

i,j − η∇ f j
i

(
wt

i,j

)
end
return wi,j to jth fog server

Sensors 2022, 22, 6252 10 of 24

4. FedSVM and FedLSTM: Proposed Architecture
4.1. FedSVM

SVM is a supervised ML algorithm used to analyze data for classification. On PM
applications, it could be used as an alarm notification to inform factory management about
performing maintenance on one asset that is close to failure. The idea of FedSVM is first to
find one or several hyperplanes at the fog level that separate and classify failure data from
healthy data of all assets in a factory site and aggregate these hyperplanes at the cloud by
using federated averaging. The SVM model in each asset could have the largest margin on
a hyperplane separating the two groups. Still, the FedSVM wants to find the largest margin
on a federal hyperplane on the cloud without sharing the local data from edge devices and,
subsequently, fog servers.

The FedSVM architecture is illustrated in Figure 3. In order to aggregate the FedSVM
model at the fog and cloud level, we need to access the different edge devices’ support
vectors and their intercepts. After pre-processing the data set from each device at each
factory site, the faulty and healthy parts of the data can be separated from each other by
setting a threshold, i.e., measurement data from a device as long as its RUL is greater than
the threshold is assigned to +1, and the other part is assigned to −1. This enables us to
define the same objective function at the fog levels, as shown in Equation (6).

f (w) =
1
D

N

∑
i=1

fi(w) + λ||w||22

fi(w) = max(0, 1− yiwTxi),

(6)

where xi is the features extracted from the dataset, and yi is the label related to the features
for one edge device at one factory site. Due to the imbalance and non-iid data distributed
on edge devices in PM applications, λ as a regularizer has been added to the local loss
function. For updating the parameters at the fog levels, tho following gradient descent has
been used:

∂ fi(w) =

{
−yixi 1− yiwTxi > 0
0 Otherwise

. (7)

Figure 3. FedSVM architecture.

By these definitions, the subgradient for f (w) at the fog levels becomes

∂ f (w) =
1
D

N

∑
i=1

∂ fi(w) + 2λw. (8)

Sensors 2022, 22, 6252 11 of 24

One of the advantages of using FedSVM is that it is very fast and has a low convergence
time. Therefore it is very useful for online applications. The results of this method will be
presented in Section 6.

4.2. FedLSTM

The LSTM is a kind of recurrent neural network (RNN) that has the ability to take
feedback from multiple hidden layers in a specific way instead of one hidden layer like an
RNN. The LSTM can manage some memory blocks to remember the input pattern at the
beginning of the sequence [15], and it is beneficial for the prediction of temporal data such
as PM applications.

The LSTM neural network consists of several memory blocks, each consisting of a
memory cell and three types of gateways, as shown in Figure 4. Memory blocks are the
main infrastructure of an LSTM, enabling the LSTM to learn how long it has to remember
old time information when to forget, when to use new data, and how to generate output by
Combining the old memory with new input.

Figure 4. LSTM architecture and memory blocks.

The equations of the LSTM scheme are given as follows.

ft = σ(w f [ht−1,xt] + b f)

it = σ(wi[ht−1,xt] + bi)

ĉt = tanh(wc[ht−1,xt] + bc)

ct = ft ⊗ ct−1 + it ⊗ ĉt

ot = σ(wo[ht−1,xt] + bo)

ht = ot ⊗ tanh(ct),

(9)

where ft, it, and ot present the forget, input, and output gates, respectively, w and b are the
corresponding weight and bias parameters for these gates, c is used for cell state, and h is
the hidden state. Moreover, σ represents the sigmoid activation function, and ⊗ indicates
the Hadamard product.

The standard LSTM is made by the number of sequential blocks. Each of them is the
same as Figure 4 and sequentially connected. At the final block, a softmax function is used
as a final activation function, given as follows for the prediction.

vt = wvht + bv

ŷt = Softmax(vt),
(10)

By defining the cross-entropy loss function from the output of the LSTM block and
computing the partial deviation of this loss function with respect to the weights and bias,
the parameters of the model will be updated in a backpropagation process. after some
iterations (epochs) on this backpropagation process, the parameters should be sent to the
specific fog server for the fog aggregation. i.e., the gradient descent update rules for the
forget gate are as follows.

Sensors 2022, 22, 6252 12 of 24

wt+1
f = wt

f − η
∂J

∂w f

bt+1
f = bt

f − η
∂J

∂b f
,

(11)

where ∂J is the derivation of the cross-entropy loss.
Compared to the SVM model, the LSTM has a massive number of weight and bias pa-

rameters that force it to use higher bandwidth in the model distribution between edge, fog,
and cloud levels and adds a computational delay to the system. Therefore, the conventional
LSTM model is not proper for distributed learning in which the neurons in each memory
block are fully connected. FedLSTM proposed a random topology formation of synapses
used at each edge, fog, and cloud levels. This desired topology must first be designed in the
cloud and the model configuration applied to all fog servers and edge devices. The random
FedLSTM topology is shown in Figure 5, the dashed lines show the synapses removed
from the model, and the solid lines represent the remaining synapses. This model will be
distributed at the different edge, fog, and cloud levels, such as FedSVM in Figure 3.

Figure 5. Random topology formation of FedLSTM.

5. Structure of Performance Evaluation

This and the following section investigate the efficiency of FedSVM and FedLSTM
based on the model accuracy, convergence time, and communication resource usage in
a collaborative PM scenario. For this, we need a dataset to analyze the efficiency of the
model. Particularly in RUL prediction, CMAPSS [36] is a well-known and benchmarked
dataset. Many types of research have been done on this dataset, which is helpful for the
result comparisons of FedSVM and FedLSTM with centralized solutions.

5.1. Distributing CMAPSS for a Collaborative PM

C-MAPSS is a nonlinear dynamic model of a commercial turbofan engine implemented
in the MATLAB/Simulink by NASA. Changing the input parameters in this simulation
model makes it possible to simulate various degradation profiles in different engine condi-
tions. 4 time series (FD001, FD002, FD003, FD004) with different fault modes were generated
using these simulation tools. These dataset consists of multivariate time series and each of
them is divided into training and testing subset.

FD001 has 100 test trajectories and 100 train trajectories, including one fault mode
and one degradation (high-pressure compressor (HPC) degradation). FD002 has 260 test
trajectories and 259 train trajectories, including six fault modes and one degradation (HPC
degradation). FD003 has 100 test trajectories and 100 train trajectories, including one fault
mode and two degradations (HPC degradation, Fan degradation). FD004 has 248 test
trajectories and 249 train trajectories, including six fault modes and two degradations (HPC
degradation, Fan degradation).

Each time series consists of 21 sensor observations, three operating settings, a trajectory-
id, and a cycle count, which the RUL of an engine is estimated from it in terms of the number
of operation cycles before the engine runs to failure. The goal is to predict the RUL based
on the time series data by the model at the cloud level, which was trained by the federated
aggregation from the fog servers and, subsequently, edge devices. The whole CMAPSS is

Sensors 2022, 22, 6252 13 of 24

used throughout the experiments. i.e., time series FD001 is distributed equally among ten
edge devices located in two different factory sites for participating in a collaborative PM
scenario. Each edge device can train the global model (FedSVM or FedLSTM) by using its
local time-series data. The graph connectivity of the edge devices in two factory sites is
shown in Figure 6. FedSVM and FedLSTM based on Algorithm 1 is performed in different
edge, fogs, and cloud layers of this undirected graph. This is a synchronous federated
learning method in which fog and cloud have to wait to collect all the parameters from the
edge devices.

Figure 6. Undirected graph of communication between edge devices and fog servers for synchronous
FL.

Another type of graph connectivity is shown in Figure 7. Edge devices 5 and 6 can
play a role similar to fog servers in this configuration. This configuration is known as
asynchronous federated learning, in which each edge device can share its parameter with
its neighbors, which act as fog here. The difference between the asynchronous algorithm
and algorithm 2 is that the fog agents perform a simple federal averaging when they receive
a new parameter from one edge device and immediately return the recent update to the
specific edge from which it received the last parameter. It is assumed that fog servers
in different factories can communicate with each other. With this method, if some edge
devices cannot participate in fog aggregation due to resource constraints, the fog model
can continue to operate appropriately. The parameter sends from fog servers to the cloud
by request from the cloud.

Figure 7. Undirected graph of communication between edge devices and fog servers for asynchronous
FL, edge devices 5 and 6 play the fog roll.

By defining a doubly stochastic matrix as an undirected graph GA(E ,V) with vertex
set V and edge set E , it could be possible to manage the gradient descent over a massive
network connection. The doubly stochastic matrix A is defined as follows.

A ∈ Rd×d : aij ≥ 0, ∀i, j, A1 = 1 and AT1 = 1, (12)

where (i, j) ∈ E iff (j, i) ∈ E and aij ≥ η for some small positive η and set of neighbors
of vertex i is Ni = {j ∈ V | (i, j) ∈ E} ∪ {i}. For the undirected graph shown in Figure 7,
which has been used for the collaborative PM scenario, the doubly stochastic matrix is
defined as follows to see which nodes are directly connected.

Sensors 2022, 22, 6252 14 of 24

A =

1 0 0 0 1 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0 0 1

5.2. Data Preprocessing
5.2.1. Feature Selection

The time series raw in the CMAPSS dataset should be analyzed and arranged in the
same size and model for distribution between the edge devices. Features that remain
constant at all stages of time can have a negative impact on model training. The variability
of features of the dataset during failure was measured by the processability function
and has removed some sensor data which have zero profitability. Therefore, 14 sensor
measurements out of 21 sensors and two operating settings out of a total of three are used
as the raw input features. Then the training predictor was normalized to have a zero mean
and unit variance. In order to focus the FedLSTM model more on the part of the data that
the engines are most likely to fail, a clip of the responses has been made at the threshold of
100-cycle, and it is performed over all edge devices.

5.2.2. Moving Window Strategy

The input data to both models are in a 2D format like an image where one dimension
represents the sequence length, and the other represents the number of features. However,
the length of the time series data varies for each engine. Therefore, a fixed length of the data
sequence was extracted to make it compatible with the FedSVM and FedLSTM training
models.

The FedSVM is very fast and takes very little time to train, but it has no capabilities
to learn the temporal dependencies. Therefore, we added a kind of memory to the SVM
model by using the moving window strategy that creates multiple input and output
mapping while preserving the stochastic dependencies between the predictions. Moreover,
the moving window strategy can behave very well on the LSTM model for complex
dependencies since this method makes it possible to decrease the LSTM sequential blocks
and subsequently FedLSTM computational time.

The idea of the moving window is simple, a window with fixed values of window
length and stride, sliding over all the features data. Window length describes the length
of the time series data as a short memory used for RUL prediction at the end of the time
stamp, and stride is the value of shift between two consecutive windows. The corresponding
output for each sequence is the RUL at the last time-stamp of that sequence. The sensor
measurements of one engine and the moving window strategy are illustrated in Figure 8.

Sensors 2022, 22, 6252 15 of 24

Figure 8. Moving window strategy over sensor measurements of an engine.

5.3. Evaluating Metrics

Two popular metrics for evaluating the RUL prediction results based on FedLSTM
have been used in this study. Root mean square error (RMSE) and scoring Factor (SF).
RMSE is used to measure the deviation between the observation and actual values. This is
a standard evaluation indicator for error prediction.

RMSE =

√
1
κ

κ

∑
i=1

(Ŷi −Yi)2, (13)

where κ is the total number of test samples, which is defined based on the number of input
matrices coming from the moving window, Ŷi is the prediction value of RUL of the ith
turbofan engine, and Yi is the actual value of the ith turbofan engine.

Another evaluating metric is SF, which is an asymmetric function. It is used to evaluate
the prediction model based on early predictions and late predictions. The function achieves
a higher score when the RUL prediction value is less than the actual value. To avoid serious
consequences due to delayed prediction in PM application, it tends to predict early rather
than late.

SF =

 ∑xn
i=1 e

(
Ŷi−Yi

13

)
− 1, Ŷi −Yi < 0

∑xn
i=1 e

(
Ŷi−Yi

10

)
− 1, Ŷi −Yi ≥ 0

. (14)

The model with lower RMSE and SF values has higher efficiency and effectiveness.
For evaluating FedSVM, the following accuracy formula has been used

accuracy =
µP + µN

µP + µN + ΓP + ΓN
, (15)

where µP, ΓP, µN , ΓN are the number of true positives, false positives, true negatives, and
false negatives, respectively.

6. Experimental Results and Discussion

The reported experimental results on FedSVM and FedLSTM are averaged by ten
trials to reduce the effect of randomness. All the experiments are performed in python on a
Laptop with Intel Core i7–2.3 GHz CPU, 32-GB RAM, and NVIDIA RTX A3000 GPU. All the
edge devices, fog servers, and cloud servers work as virtual workers inside the python script
and collaborate based on the proposed algorithms and two communication topologies.
The only library used is Numpy to manage the database and scientific computing. All
the gradient descent methods, algorithms, and configuration has been implemented from
scratch. FedSVM and FedLSTM algorithms based on python are available at Github [37].

Sensors 2022, 22, 6252 16 of 24

The fedSVM and FedLSTM models are analyzed based on the proposed communi-
cation topologies shown in Figures 6 and 7, and subsequently on synchronous and asyn-
chronous federated algorithms.

6.1. FedSVM results

Figure 9 depicts the descending hinge loss function and convergence time of one
edge device on topology Figure 6 with the model optimizer (GD, SGD, and FSVRG). The
convergence time of a predictive model represents the number of iterations required at
edge devices to converge to an optimal loss function value. In FedSVM, each iteration
executes once time at edge level, and then the parameters are updated and sent back to the
fog servers. The number of iterations of a model optimizer at the edge level is called epoch.
When epoch is equal to one, it means that the number of iterations is equal to the number
of communication between the edge devices and the fog servers. Learning rate has a high
impact on convergence time. Therefore, this parameter plays a crucial role in distributed
learning. Because it not only consumes the computing resources of edge devices but also
involves several message exchanges between them. The results in Figure 9 show the fastest
convergence on synchronizing FedSVM with a learning rate equal to 0.01, as can be seen,
synchronous FedSVM can converge on different time-series of CMAPSS dataset only with
500 iterations. These features make FedSVM appropriate for distributed learning.

0 500 1000 1500 2000 2500 3000
iteration

103

3×102

4×102

6×102

Hi
ng

 lo
ss
 fu

nc
tio

n

FedSVM for an edge device on FD001
FSVRG
SGD
GD

0 500 1000 1500 2000 2500 3000
iteration

2×103

3×103

4×103
Hi
ng

 lo
ss
 fu

nc
tio

n
FedSVM for an edge device on FD002

FSVRG
SGD
GD

0 500 1000 1500 2000 2500 3000
iteration

103

4×102

6×102

Hi
ng

 lo
ss
 fu

nc
tio

n

FedSVM for an edge device on FD003
FSVRG
SGD
GD

0 500 1000 1500 2000 2500 3000
iteration

2×103

3×103

4×103

Hi
ng

 lo
ss
 fu

nc
tio

n

FedSVM for an edge device on FD004
FSVRG
SGD
GD

Figure 9. Convergence time of syncronous FedSVM based on the communication of Figure 6 with
different optimizer.

The cloud aggregation executes three times during the training process. Cloud aggre-
gation can be performed randomly when the channel load is low. Then the final model in
the cloud is used to predict the labeled RUL on the testing subset related to the different
time-series data. In FedSVM, the RUL prediction is restricted to a new label in which less than
TH as a threshold is “1”, and more than TH is “−1”. In this way, two classes are generated,
and the FedSVM classifier can be executed at the edge devices. This threshold was set at 50,
which means that the edge machine needs maintenance when its RUL is less than 50 cycles.
Based on the moving window strategy, 17 arrays of time-series data have been selected as
features. If the length of the window is 35, then a 35 by 17 array of measured signals with

Sensors 2022, 22, 6252 17 of 24

normalized values from 0 to 1 is generated as an input to the model. Each of these arrays is
35 ∗ 17 = 595, and a new entry into each vector of value “1” is also appended to them, which
enables the transformation wTxi to be affine rather than strictly linear.

Furthermore, the labeled RUL prediction based on the synchronous FedSVM of the
testing engine units in different time series of CMAPSS are shown in Figure 10. One
example randomly selected out of whole testing engine units, whose unit numbers are
19, 69, 12, and 111 respectively from FD001, FD002, FD003, and FD004, are presented for
demonstration. The cyan band shows the safe operation of the engine, and the chrome
yellow band indicates that the engine needs to do maintenance. The green line is the true
RUL, the blue line is the labeled RUL, and the red line is the prediction of the labeled
RUL. Therefore blue and red lines have only two values, “−100” demonstrates that the
engine is working on the safe operation side, and “100” notes that the engine needs to do
maintenance. It can be observed that the synchronous Fedsvm can detect the need to do
maintenance very well, even on the FD002 and FD004, if the machine will be stopped after
the first indication of the red line for doing maintenance. FD002 and FD004 time series
prediction is more complicated than FD001 and FD003.

0 20 40 60 80 100 120
num of Sequence

−100

−50

0

50

100

RU
L

Random test engine unit#19 from FD001

True labeled RUL
Predict labeled RUL
True RUL

0 20 40 60 80 100 120
num of Sequence

−100

−50

0

50

100

RU
L

Random test engine unit#69 from FD002

True labeled RUL
Predict labeled RUL
True RUL

0 20 40 60 80 100 120
num of Sequence

−100

−50

0

50

100

RU
L

Random test engine unit#12 from FD003

True labeled RUL
Predict labeled RUL
True RUL

0 20 40 60 80 100
num of Sequence

−100

−50

0

50

100

150

RU
L

Random te t engine unit#111 from FD004

True labeled RUL
Predict labeled RUL
True RUL

Figure 10. Four example of labeled RUL predictions for the testing engine based on the synchronous
FedSVM model.

Table 2 summarizes the performance of synchronous FedSVM, the duration of the
training process, which shows how much this algorithm is fast, is notified by the runtime,
and the final accuracy which has been calculated based on the (15), is illustrated in this
table. It can be observed that with the proposed synchronous FedSVM, even though the
data are distributed at the edge devices and the model is only shared between the edges,
the average accuracy of the algorithm is more than 85%.

Sensors 2022, 22, 6252 18 of 24

Table 2. Performance analysis of the synchronous FedSVM.

Optimizer Evaluation Metrics
Dataset

FD001 FD002 FD003 FD004

GD Runtime (s) 61.6 150 69 143.5
Final acc (%) 92.4 77.9 94.2 78.4

SGD Runtime (s) 18.9 43 20.5 45.5
Final acc (%) 92.5 78.9 92.2 71.7

FSVRG Runtime (s) 140 362 161 337
Final acc (%) 90.3 74 91.7 86.8

The performance of asynchronous FedSVM based on the undirected graph commu-
nication in Figure 7 is summarized in Table 3. It can be observed that even though, with
this algorithm, none of the fog servers need to wait to receive all the update parameters
from all edge devices, the average accuracy is acceptable, and it is close to the accuracy
of synchronous FedSVM. The asynchronous FedSVM is implemented with GD and SGD
optimizer, and due to the limitation of asynchronously updating the parameters from the
edge device, the FSVRG optimizer is not implemented.

Table 3. Performance analysis of the asynchronous FedSVM.

Optimizer Evaluation Metrics
Dataset

FD001 FD002 FD003 FD004

GD Runtime (s) 61.8 145 68.6 141.4
Final acc (%) 92.2 77.2 93.8 77.1

SGD Runtime (s) 19.8 42.5 21.4 43
Final acc (%) 90 77.5 92.1 83.1

6.2. FedLSTM Results

Each edge device’s 2D format input data from the moving window strategy is fed to
the LSTM block, as shown in Figure 4. The process is that 25 of these blocks are sequentially
arranged, and the whole 2D input data at each time is equally divided between these blocks.
The final block in this sequence led to a softmax activation function to predict the high
probability of RUL value related to the whole input 2D data. The results in Figure 11 show
the convergence of synchronous FedLSTM with only one iteration at the edge level and
100% connection of neurons. Non-iid data have a significant impact on the convergence of
distributed learning. As it turns out, edge number 2 in FD002 and FD003 has a different
anomaly that does not let it decrease the cross-entropy function at the same rate as other
agents. One of the solutions for this problem is to increase the number of iterations at the
edge level (epoch), which causes all cross-entropy functions to have the same convergence
rate. The effect of increasing the epoch number on the model’s accuracy will be shown later.

The RUL prediction results based on the synchronous FedLSTM of the testing engine
units in different time-series of CMAPSS are shown in Figure 12. One example randomly
selected out of whole testing engine units, whose unit numbers are 27, 101, 6, and 94
respectively from FD001, FD002, FD003, and FD004, are presented for demonstration.
In predictive maintenance applications, factory owners desire higher model prediction
accuracy in regions where the RUL value is small. As a result, RUL values above 100 are
clipped to 100 for all testing and training parts in the FedLSTM model. It can be observed
that with the FedLSTM model, even without transferring a massive amount of measured
data between edge, fog, and cloud levels and violating privacy, predictive accuracy is
acceptable on all time-series datasets, especially when edge devices are close to failure.

Sensors 2022, 22, 6252 19 of 24

0 2000 4000 6000 8000 10000 12000
iteration

20

40

60

80

100

Cr
os

s E
nt

ro
py

 lo
ss

 fu
nc

tio
n

FedLSTM with FD001 and epoch 1
Edge num 1
Edge num 2
Edge num 3
Edge num 4
Edge num 5
Edge num 6
Edge num 7
Edge num 8
Edge num 9
Edge num 10

0 2000 4000 6000 8000 10000 12000
iteration

0

20

40

60

80

100

120

Cr
os

s E
nt

ro
py

 lo
ss

 fu
nc

tio
n

FedLSTM with FD002 and epoch 1
Edge num 1
Edge num 2
Edge num 3
Edge num 4
Edge num 5
Edge num 6
Edge num 7
Edge num 8
Edge num 9
Edge num 10

0 2000 4000 6000 8000 10000 12000 14000
iteration

60

70

80

90

100

110

Cr
os

s E
nt

ro
py

 lo
ss

 fu
nc

tio
n

FedLSTM with FD003 and epoch 1
Edge num 1
Edge num 2
Edge num 3
Edge num 4
Edge num 5
Edge num 6
Edge num 7
Edge num 8
Edge num 9
Edge num 10

0 2000 4000 6000 8000 10000 12000
iteration

0

20

40

60

80

100

120

Cr
os

s E
nt

ro
py

 lo
ss

 fu
nc

tio
n

FedLSTM with FD004 and epoch 1
Edge num 1
Edge num 2
Edge num 3
Edge num 4
Edge num 5
Edge num 6
Edge num 7
Edge num 8
Edge num 9
Edge num 10

Figure 11. Convergence time of syncronous FedLSTM based on the communication of Figure 6.

0 20 40 60 80 100
num of Sequence

0

20

40

60

80

100

120

RU
L

Random test engine unit#27 from FD001
Pred RUL
True RUL

0 20 40 60 80 100
num of Sequence

0

20

40

60

80

100

120
RU

L
Random test engine unit#101 from FD002

Pred RUL
True RUL

0 20 40 60 80 100 120
num of Sequence

0

20

40

60

80

100

120

RU
L

Random test engine unit#23 from FD003
Pred RUL
True RUL

0 20 40 60 80 100
num of Sequence

0

20

40

60

80

100

120

RU
L

Random test engine unit#94 from FD004
Pred RUL
True RUL

Figure 12. Four example of RUL predictions for the testing engine based on the synchronous FedLSTM
model.

The two evaluation metrics used chiefly for analyzing the results are RMSE and SF,
explained in Section 5.3. The whole training process for synchronous FedLSTM has been
done with epoch numbers from 1 to 4, and the evaluating metrics have been calculated.
These results are summarized in Table 4. furthermore, the performance of asynchronous
FedLSTM based on the undirected graph communication Figure 7 is summarized in Table 5.
The number of communication cycles between edge, fog, and cloud is the same in all
experiments, and only the number of iterations in each agent has been changed.

Sensors 2022, 22, 6252 20 of 24

Table 4. Performance analysis of the synchronous FedLSTM.

Num of Epoch Evaluation Metrics
Dataset

FD001 FD002 FD003 FD004

1 RMSE 13.33 22.83 12.57 25.1
SF 242 226 156 560

2 RMSE 15.47 22.4 10.73 26.25
SF 720 690 2469 470

3 RMSE 15.53 22.93 9.7 24.85
SF 690 348 617 202

4 RMSE 14.5 21.68 9.65 17.14
SF 709 753 895 337

Table 5. Performance analysis of the asynchronous FedLSTM.

Num of Epoch Evaluation Metrics
Dataset

FD001 FD002 FD003 FD004

1 RMSE 16.14 22.11 14.68 29.5
SF 174 2877 1452 492

2 RMSE 16.01 21.15 11.8 26.4
SF 2097 2039 2769 3167

3 RMSE 15.81 21.16 11.87 26.1
SF 410 1852 2796 2535

4 RMSE 15.36 22.29 11.85 27.1
SF 1147 1473 5026 2650

The deep learning algorithm obtains good results in centralized RUL prediction in the
CMAPSS dataset. To compare the proposed FedSVM and FedLASTM model with centralized
prediction, some best predictions based on deep learning are shown in Table 6. By comparison
of the FedLSTM results with other prediction methods in Table 5, it can be confirmed that the
performance of the proposed FedLSTM in PM applications has comparable efficiency to the
conventional centralized approaches in terms of prediction accuracy.

Table 6. Results of other research for centralized RUL prediction on CMAPSS.

Prediction Model Evaluation Metrics
Dataset

FD001 FD002 FD003 FD004

DCNN [38] RMSE 12.61 22.36 12.64 23.31
SF 273 10412 284 12466

Deep CNN [39] RMSE 18.45 30.29 19.81 29.16
SF 1286 13570 1596 7886

MODBNE [40] RMSE 15.04 25.05 12.51 28.66
SF 334 5585 6557 6557

CNN-XGB [41] RMSE 12.61 19.61 13.01 19.41
SF 224 2525 279 2930

Conventional LSTM models in a distributed system suffer from a large number of model
parameters that must be passed between edge, fog, and cloud levels. Therefore, FedLSTM
proposed the random topology formulation of neural connections on each gate. Figure 13
depicts the RMSE of synchronous FedLSTM on FD003 under the different percentages of
neural connectivity. It can be observed that only 30% of the model accuracy has been lost by
reducing the number of synapse connections to half, and on the other hand, the bandwidth
usage and the training time are also decreased.

Sensors 2022, 22, 6252 21 of 24

50 60 70 80 90 100
The percentage of neural connections (%)

9

10

11

12

13

14

15

16

17

18

RM
SE

RMSE of sync FedLSTM on FD003

Epoch: 1
Epoch: 2
Epoch: 3
Epoch: 4

Figure 13. Results of random neural connection on synchronous FedLSTM.

6.3. Model Aggregation Analysis

Image classification tasks are considered for model aggregation analysis with FedSVM,
and the Modified National Institute of Standards and Technology dataset (MNIST dataset)
is used. Due to the binary classification of FedSVM, Two highly similar labels are selected
from the 10 hand-written classes, labels 1 and 7. A hierarchical FL with ten edge devices,
two fog servers, and a cloud server has been considered, similar to two topologies of
undirected communication graphs demonstrated in Figures 6 and 7. The distribution of
training data is the main issue in the FL algorithm. Therefore we have considered the
following two distribution cases and distributed the training data regarding labels 1 and 7
between the edge devices.

1. Edge-iid: The training data from labels 1 and 7 are identically distributed between the
ten edge devices.

2. Edge-non-iid: The training data of label 1 are distributed among edge numbers 1 to 5
under one fog server, and training data of label 7 are distributed among edge numbers
6 to 10 under another fog server.

The experiments of FedSVM for the proposed aggregation strategy are done with the
MNIST dataset under two distribution cases. Table 7 summarizes the performance of these
experiments, including the test accuracy and run-time of calculation. It can be observed
that the test accuracy of label prediction at the cloud with any optimization methods and
different conditions of iid, non-iid, synchronous, and asynchronous is around 97%. This
accuracy, compared with other similar proposals’ accuracy [28,29], shows this proposed
architecture’s advantage. The test accuracy of MNIST prediction in [28] is around 95%, and
in [29] is about 93%.

Table 7. Performance analysis of FedSVM With MNIST dataset.

Optimizer Evaluation Metrics

MNIST

Synchronous Asynchronous

iid Non-iid iid Non-iid

GD Runtime (s) 109.84 97.15 93.89 86.26
Final acc (%) 97.41 97.31 97.41 97.32

SGD Runtime (s) 1.52 1.61 2.37 2.36
Final acc (%) 97.69 97.32 96.86 96.76

SGD Runtime (s) 328.93 332.68 - -
Final acc (%) 96.95 96.23 - -

Sensors 2022, 22, 6252 22 of 24

7. Conclusions

Distributed ML algorithm over edge devices and their cooperation with fog and cloud
is a fast-growing research area with many challenges and opportunities, especially in PM
applications. Using federated ML algorithms has been shown to improve not only the
privacy and security of edge devices’ data but also communication efficiency and system
response time for real-time applications. In this article, two distributed models known as
FedSVM and FedLSTM were proposed to enable local edge devices within an FL algorithm,
to collaboratively train a global model at the cloud level in the context of collaborative
PM application. FedSVM model was analyzed based on two different communication
topologies and tested for convergence time and accuracy. FedSVM was found to be very
fast in training and suitable for distributed online applications in predicting the time to
do maintenance. On exact RUL prediction on distributed systems, FedLSTM with the
random connection between the neurons has been proposed and analyzed based on two
different communication topologies with synchronous and asynchronous algorithms and
tested on the CMAPSS dataset for convergence time and model accuracy. Comparison with
state-of-the-art research on centralized RUL prediction with CMAPSS revealed that the
utilization of FedSVM and FedLSTM results are comparable with centralized algorithms
and furthermore improving not only the privacy and security of edge devices but also
communication efficiency and system response time for real-time applications. The FedSVM
model has also been used for digits classification of the MNIST dataset and shows that the
aggregation strategy is general and can be used with other learning algorithms.

Improving the model aggregation algorithm to deal with heterogeneous hardware at
the edge level, non-iid data and Simpson’s paradox, which are popular in PM applications
due to the different anomaly occurs at edge devices are other research topics for future.

Author Contributions: Conceptualization, N.B. and A.B.; methodology, A.B.; software, A.B.; valida-
tion, N.B. and A.B.; formal analysis, N.B. and A.B.; investigation, N.B. and A.B.; resources, N.B.; data
curation, A.B.; writing—original draft preparation, A.B.; writing—review and editing, N.B. and A.B.;
visualization, N.B. and A.B; supervision, N.B.; project administration, N.B.; funding acquisition, N.B.
All authors have read and agreed to the published version of the manuscript.

Funding: The research was funded by the European Commission within the European Regional
Development Fund, Swedish Agency for Economic and Regional Growth, Region Gävleborg, and
the University of Gävle.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The CMAPSS dataset is available in: https://data.nasa.gov/Aerospace/
CMAPSS-Jet-Engine-Simulated-Data/ff5v-kuh6/ (accessed on 22 July 2022), and the MNIST dataset
is available in: http://yann.lecun.com/exdb/mnist/ (accessed on 22 July 2022).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

PM Predictive Maintenance
ML Machine Learning
FL Federated Learning
SVM Support Vector Machine
LSTM Long Short Term Memory
FedSVM Federated Support Vector Machine
FedLSTM Federated Long-Short Term Memory
RUL Remaining Useful Life
DML Distributed Machine Learning

https://data.nasa.gov/Aerospace/CMAPSS-Jet-Engine-Simulated-Data/ff5v-kuh6/
https://data.nasa.gov/Aerospace/CMAPSS-Jet-Engine-Simulated-Data/ff5v-kuh6/
http://yann.lecun.com/exdb/mnist/

Sensors 2022, 22, 6252 23 of 24

Non-iid Not Independent and Identically Distributed
CNNs Convolutional Neural Networks
FSVRG Federated Stochastic Variance Reduced Gradient
RNN Recurrent Neural Network
RMSE Root MEan Square Error
SF Scoring Factor

References
1. Manyika, J.; Chui, M.; Bisson, P.; Woetzel, J.; Dobbs, R.; Bughin, J.; Aharon, D. The Internet of Things: Mapping the Value Beyond the

Hype; McKinsey Global Institute, McKinsey & Company: Atlanta, GA, USA, 2015.
2. Mahdavinejad, M.S.; Rezvan, M.; Barekatain, M.; Adibi, P.; Barnaghi, P.; Sheth, A.P. Machine learning for Internet of Things data

analysis: A survey. Digit. Commun. Netw. 2018, 4, 161–175. [CrossRef]
3. Alli, A.A.; Alam, M.M. The fog cloud of things: A survey on concepts, architecture, standards, tools, and applications. Internet

Things 2020, 9, 100177. [CrossRef]
4. Firouzi, F.; Farahani, B.; Marinšek, A. The convergence and interplay of edge, fog, and cloud in the AI-driven Internet of Things

(IoT). Inf. Syst. 2021, 107, 101840. [CrossRef]
5. Aceto, G.; Persico, V.; Pescapé, A. A survey on information and communication technologies for industry 4.0: State-of-the-art,

taxonomies, perspectives, and challenges. IEEE Commun. Surv. Tutor. 2019, 21, 3467–3501. [CrossRef]
6. Teoh, Y.K.; Gill, S.S.; Parlikad, A.K. IoT and Fog Computing based Predictive Maintenance Model for Effective Asset Management

in Industry 4.0 using Machine Learning. IEEE Internet Things J. 2021. [CrossRef]
7. De Donno, M.; Tange, K.; and Dragoni, N. Foundations and evolution of modern computing paradigms: Cloud, iot, edge, and

fog. IEEE Access 2019, 7, 150936–150948. [CrossRef]
8. Zeng, Q.; Du, Y.; Huang, K.; Leung, K.K. Energy-efficient radio resource allocation for federated edge learning. In Proceedings of the

2020 IEEE International Conference on Communications Workshops (ICC Workshops), Dublin, Ireland, 7–11 June 2020; pp. 1–6.
9. Konečný, J.; McMahan, B.; Ramage, D. Federated optimization: Distributed optimization beyond the datacenter. arXiv 2015,

arXiv:1511.03575.
10. Zhu, H.; Xu, J.; Liu, S.; Jin, Y. Federated Learning on Non-IID Data: A Survey. arXiv 2021, arXiv:2106.06843.
11. Aledhari, M.; Razzak, R.; Parizi, R.M.; Saeed, F. Federated learning: A survey on enabling technologies, protocols, and applications.

IEEE Access 2020, 8, 140699–140725. [CrossRef]
12. Yang, Q.; Liu, Y.; Chen, T.; Tong, Y. Federated machine learning: Concept and applications. ACM Trans. Intell. Syst. Technol. (TIST)

2019, 10, 1–19. [CrossRef]
13. Bharti, S.; Mcgibney, A. Privacy-Aware Resource Sharing in Cross-Device Federated Model Training for Collaborative Predictive

Maintenance. IEEE Access 2021, 9, 120367–120379. [CrossRef]
14. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
15. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
16. Zhu, G.; Liu, D.; Du, Y.; You, C.; Zhang, J.; Huang, K. Toward an intelligent edge: Wireless communication meets machine learning.

IEEE Commun. Mag. 2020, 58, 19–25. [CrossRef]
17. Lakhan, A.; Mastoi, Q.U.A.; Elhoseny, M.; Memon, M.S.; Mohammed, M.A. Deep neural network-based application partitioning and

scheduling for hospitals and medical enterprises using IoT assisted mobile fog cloud. Enterp. Inf. Syst. 2021, 16, 1–23. [CrossRef]
18. Aburukba, R.O.; AliKarrar, M.; Landolsi, T.; El-Fakih, K. Scheduling Internet of Things requests to minimize latency in hybrid

Fog-Cloud computing. Future Gener. Compure Syst. 2020, 111, 539–551. [CrossRef]
19. Bierzynski, K.; Escobar, A.; Eberl, M. Cloud, fog and edge: Cooperation for the future? In Proceedings of the 2017 Second

International Conference on Fog and Mobile Edge Computing (FMEC), Valencia, Spain, 8–11 May 2017; pp. 62–67.
20. Verbraeken, J.; Wolting, M.; Katzy, J.; Kloppenburg, J.; Verbelen, T.; Rellermeyer, J.S. A survey on distributed machine learning.

ACM Comput. Surv. (CSUR) 2020, 53, 1–33. [CrossRef]
21. Wang, S.; Tuor, T.; Salonidis, T.; Leung, K.K.; Makaya, C.; He, T.; Chan, K. When edge meets learning: Adaptive control for

resource-constrained distributed machine learning. In Proceedings of the IEEE INFOCOM 2018-IEEE Conference on Computer
Communications, Honolulu, HI, USA, 16–19 April 2018; pp. 63–71.

22. Zhang, C.; Xie, Y.; Bai, H.; Yu, B.; Li, W.; Gao, Y. A survey on federated learning. Knowl. Based Syst. 2021, 216, 106775. [CrossRef]
23. Shi, Y.; Yang, K.; Jiang, T.; Zhang, J.; Letaief, K.B. Communication-efficient edge AI: Algorithms and systems. IEEE Commun. Surv.

Tutor. 2020, 22, 2167–2191. [CrossRef]
24. Lim, W.Y.B.; Luong, N.C.; Hoang, D.T.; Jiao, Y.; Liang, Y.C.; Yang, Q.; Niyato, D.; Miao, C. Federated learning in mobile edge

networks: A comprehensive survey. IEEE Commun. Surv. Tutor. 2020 22, 2031–2063. [CrossRef]
25. Nilsson, A.; Smith, S.; Ulm, G.; Gustavsson, E.; Jirstrand, M. A performance evaluation of federated learning algorithms. In Proceedings

of the Second Workshop on Distributed Infrastructures for Deep Learning, Rennes, France, 10–11 December 2018; pp. 1–8.
26. Konečný, J.; McMahan, H.B.; Ramage, D.; Richtárik, P. Federated optimization: Distributed machine learning for on-device

intelligence. arXiv 2016, arXiv:1610.02527.
27. Li, T.; Sahu, A.K.; Zaheer, M.; Sanjabi, M.; Talwalkar, A.; Smith, V. Federated optimization in heterogeneous networks. arXiv 2018,

arXiv:1812.06127.

http://doi.org/10.1016/j.dcan.2017.10.002
http://dx.doi.org/10.1016/j.iot.2020.100177
http://dx.doi.org/10.1016/j.is.2021.101840
http://dx.doi.org/10.1109/COMST.2019.2938259
http://dx.doi.org/10.1109/JIOT.2021.3050441
http://dx.doi.org/10.1109/ACCESS.2019.2947652
http://dx.doi.org/10.1109/ACCESS.2020.3013541
http://dx.doi.org/10.1145/3298981
http://dx.doi.org/10.1109/ACCESS.2021.3108839
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1109/MCOM.001.1900103
http://dx.doi.org/10.1080/17517575.2021.1883122
http://dx.doi.org/10.1016/j.future.2019.09.039
http://dx.doi.org/10.1145/3377454
http://dx.doi.org/10.1016/j.knosys.2021.106775
http://dx.doi.org/10.1109/COMST.2020.3007787
http://dx.doi.org/10.1109/COMST.2020.2986024

Sensors 2022, 22, 6252 24 of 24

28. Liu, L.; Zhang, J.; Song, S.H.; Letaief, K.B. Client-edge-cloud hierarchical federated learning. In Proceedings of the ICC 2020-2020
IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–6.

29. Xu, B.; Xia, W.; Wen, W.; Zhao, H.; Zhu, H. Optimized Edge Aggregation for Hierarchical Federated Learning. In Proceedings of
the 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall), Norman, OK, USA, 27–30 September 2021; pp. 1–5.

30. Mohr, M.; Becker, C.; Möller, R.; Richter, M. Towards collaborative predictive maintenance leveraging private cross-company
data. In INFORMATIK 2020; Gesellschaft für Informatik: Bonn, Germany, 2021; pp. 427–432. [CrossRef]

31. Park, D.; Kim, S.; An, Y.; Jung, J.Y. LiReD: A light-weight real-time fault detection system for edge computing using LSTM
recurrent neural networks. Sensors 2018, 18, 2110. [CrossRef] [PubMed]

32. Chen, B.; Wan, J.; Celesti, A.; Li, D.; Abbas, H.; Zhang, Q. Edge computing in IoT-based manufacturing. IEEE Commun. Mag. 2018,
56, 103–109. [CrossRef]

33. Ge, N.; Li, G.; Zhang, L.; Liu, Y. Failure prediction in production line based on federated learning: An empirical study. J. Intell.
Manuf. 2021, 1–18. [CrossRef]

34. Sater, R.A.; Hamza, A.B. A federated learning approach to anomaly detection in smart buildings. ACM Trans. Internet Things 2021, 2, 1–23.
[CrossRef]

35. Liu, Y.; Garg, S.; Nie, J.; Zhang, Y.; Xiong, Z.; Kang, J.; Hossain, M.S. Deep anomaly detection for time-series data in industrial iot:
A communication-efficient on-device federated learning approach. IEEE Internet Things J. 2020, 8, 6348–6358. [CrossRef]

36. Saxena, A.; Goebel, K. Turbofan Engine Degradation Simulation Data Set, NASA Ames Prognostics Data Repository; NASA Ames
Research Center: Moffett Field, CA, USA, 2008. Available online: https://data.nasa.gov/Aerospace/CMAPSS-Jet-Engine-
Simulated-Data/ff5v-kuh6/ (accessed on 22 July 2022).

37. Available online: https://github.com/ali-bemani/Collaborative-PM-at-the-edge-fog-and-cloud-levels.git (accessed on 22 July 2022).
38. Li, X.; Ding, Q.; Sun, J.Q. Remaining useful life estimation in prognostics using deep convolution neural networks. Reliab. Eng.

Syst. Saf. 2018, 172, 1–11. [CrossRef]
39. Sateesh Babu, G.; Zhao, P.; Li, X.L. Deep convolutional neural network based regression approach for estimation of remaining useful

life. In International Conference on Database Systems for Advanced Applications; Springer: Cham, Switzerland, 2016; pp. 214–228.
40. Zhang, C.; Lim, P.; Qin, A.K.; Tan, K.C. Multiobjective deep belief networks ensemble for remaining useful life estimation in

prognostics. IEEE Trans. Neural Netw. Learn. Syst. 2016, 28, 2306–2318. [CrossRef]
41. Zhang, X.; Xiao, P.; Yang, Y.; Cheng, Y.; Chen, B.; Gao, D.; Liu, W.; Huang, Z. Remaining useful life estimation using CNN-XGB with

extended time window. IEEE Access 2019, 7, 154386–154397. [CrossRef]

http://dx.doi.org/10.18420/inf2020_39
http://dx.doi.org/10.3390/s18072110
http://www.ncbi.nlm.nih.gov/pubmed/29966374
http://dx.doi.org/10.1109/MCOM.2018.1701231
http://dx.doi.org/10.1007/s10845-021-01775-2
http://dx.doi.org/10.1145/3467981
http://dx.doi.org/10.1109/JIOT.2020.3011726
https://data.nasa.gov/Aerospace/CMAPSS-Jet-Engine-Simulated-Data/ff5v-kuh6/
https://data.nasa.gov/Aerospace/CMAPSS-Jet-Engine-Simulated-Data/ff5v-kuh6/
https://github.com/ali-bemani/Collaborative-PM-at-the-edge-fog-and-cloud-levels.git
http://dx.doi.org/10.1016/j.ress.2017.11.021
http://dx.doi.org/10.1109/TNNLS.2016.2582798
http://dx.doi.org/10.1109/ACCESS.2019.2942991

	Introduction
	Motivation
	Contributions

	Related Work
	Machine Learning at the Edge, Fog, and Cloud Levels
	DML for Collaborative PM

	System Model
	Network Model
	Federated Learning Process

	FedSVM and FedLSTM: Proposed Architecture
	FedSVM
	FedLSTM

	Structure of Performance Evaluation
	Distributing CMAPSS for a Collaborative PM
	Data Preprocessing
	Feature Selection
	Moving Window Strategy

	Evaluating Metrics

	Experimental Results and Discussion
	FedSVM results
	FedLSTM Results
	Model Aggregation Analysis

	Conclusions
	References

