Påbyggnad av våningsplan ovanför befintligt höghus

En fallstudie inom förtätning av storstäder

Farida Khatibi och Shara Ali

2020

Examensarbete, Grundnivå (högskoleexamen), 15 hp
Byggnadsteknik
Byggnadsingenjör

Handledare: Bengt Eriksson
Examinator: Johan Norén
Förord

Efter nära tre års studier på Byggnadsingenjörsprogrammet vid Högskolan i Gävle, avrundar vi utbildningen med följande examensarbete. Detta avslutande moment i programmet omfattar 15 högskolepoäng och har infallit under våren 2020.

Konceptet med påbyggnad är ett ämne som Vi ömsesidigt har funderat över sedan en tid tillbaka. Tack vare detta moment och forskningen i allmänhet, har genomgripande kunskaper inom konstruktionsteknik och byggprocessen erhållits. Genom denna fallstudie har Vi fått en bred och djup insikt i ingenjörsyrket, och de erhållna kunskaperna medföljer i bagaget i yrkeslivet vid inträde i byggbranschen.

Sammanfattning

I hela landet expanderas städerna alltmer till följd av ökad befolkningsmängd. Utvecklingen ger upphov till bostadsbrist och kräver större och modernare infrastruktur i städerna. Markytan behöver då utnyttjas för etablering av ny infrastruktur och nya bostäder. Då markytan redan är begränsad uppstår ett dilemma i detta sammanhang. Vad ska prioriteras, produktionen av bostäder eller utveckling av infrastruktur?

Nyckelord

Förtätning
Bostadsbrist
Påbyggnad
Taklyft
Konstruktion
Projektering
Abstract

Throughout Sweden, the cities expand due to increased population. The expansion causes housing shortage and the need for larger infrastructure especially in larger cities where the ground surface is more limited and restricted. These circumstances cause a dilemma as to whether the establishment of new infrastructure or new residential apartments should be prioritized, basically the establishment of new infrastructure vs. the establishment of new residential apartments.

A suggestion of a solution for this case is *vertical building extension* implying to build above an existing building without any utilization of the ground surface being required or needed. The empty space above an existing building, whether it is a high rise building or a single-family house, is being turned to advantage for expansion of the floor area.

This concept is an alternative to *horizontal building extension*. Unlike vertical building extension, it requires utilization of the ground surface and is therefore not suitable for this case.

This thesis constitutes a case study covering the projecting phase in the building process of vertical building extension of storeys on existing high-rise buildings located in large cities such as Stockholm. Vertical building extension is presented as a solution for densification of large cities. There are several subjects which are investigated in the projecting phase. Architecture, urban planning, geotechnics, building construction and sustainability are a few of the subjects and these are specifically investigated in this case study.

The aim with this paper is through the mentioned investigation, to clarify why vertical building extension could be a solution for urban circumstances like housing shortage.

This case study is based on qualitative research. Collection of scientific information has been done through both literature research and online research.

Keywords

Densification
Housing shortage
Building extension
Vertical building extension
Construction
Projecting phase/Planning
Innehållsförteckning

1. Inledning ... 1
 1.1 Bakgrund ... 1
 1.2 Problemformulering .. 2
 1.3 Avgränsningar ... 3
 1.4 Syfte och mål .. 3

2. Metod .. 5
 2.1 Litteratursökning ... 5
 2.2 Webbaserad sökning ... 5

3. Förtätning av storstaden ... 6
 3.1 Påbyggnad – volymökning i höjdled ... 6
 3.2 Tillbyggnad – volymökning i sidled ... 7
 3.3 Bostadsbristens påverkan .. 8
 3.4 Infrastrukturens påverkan ... 9
 3.5 Miljöpåverkan och hållbar utveckling .. 9
 3.5.1 KL-trä .. 10
 3.5.2 Limträ ... 11
 3.6 Varianter av höghus ... 13

4. Juridiska förutsättningar vid påbyggnad ... 14
 4.1 Reglemente vid påbyggnad ... 14
 4.2 Projektering av påbyggnad ... 15
 4.2.1 Detaljplanens reglering av påbyggnad .. 16
 4.2.2 Bygglövsprocessen vid påbyggnad ... 17
 4.3 Arkitektonisk symmetri i förtätat område ... 20

5. Byggtekniska egenskaper med påbyggnad ... 21
 5.1 Egentyg hos våningsplan och befintligt höghus .. 22
 5.2 Nyttiga lasters förekomst och utökning ... 23
 5.3 Vindlasters tillökning med höjden ... 24
 5.4 Behov av stomförstärkning .. 25
 5.5 Grundens förutsättningar .. 26
 5.6 Säkerhet vid brand ... 27
 5.7 Byggnadstekniska farors utfall .. 28

6. Analys av utförda påbyggnader i Sverige ... 29
 6.1 Trikåfabriken 9 i Stockholm .. 30
 6.1.1 Referensbyggnadens bakgrund .. 30
 6.1.2 Förtätning i Stockholms stad ... 31
 6.1.3 Konstruktionstekniska aspekter ... 32
 6.1.4 Detaljplan och planbestämmelser för Trikåfabriken 9 33
 6.1.5 Miljö och hållbar utveckling ... 35
 6.2 Skellefteå Kraft i Skellefteå .. 36
 6.1.1 Referensbyggnadens bakgrund .. 36
 6.1.2 Förtätning i Skellefteå kommun ... 36
 6.1.3 Konstruktionstekniska aspekter ... 37
 6.1.4 Detaljplan för Skellefteå Kraft ... 38
 6.1.5 Miljö och hållbar utveckling ... 40

7. Diskussion kring förtätning genom påbyggnad ... 41
8. Slutsats .. 44
9. Referenser ... 45
10. Bilagor .. 47
1. Inledning
1.1 Bakgrund

I dagsläget är efterfrågan på bostäder större än tillgången av bostäder i många städer och framförallt i Stockholm. Detta innebär att det för tillfället råder bostadsbrist i dessa städer. Vid sidan av bostadsbristen råder det stort tryck på den begränsade och reglerade markytan i storstäderna. Förutom tillgången på bostäder, medför befolkningsökningen behov av utvecklad infrastruktur som vägar och anläggningar kvantitetsmässigt och kvalitetsmässigt där. Efterfrågan på bostäder respektive reglerad och begränsad markytta och efterfrågad utvecklad infrastruktur orsakar ett dilemma för bostadsproduktionen och stadsplaneringen i varje växande stad gällande vilken utveckling som ska prioriteras.

En påbyggnad kan utföras utan att arbete på eller i markytan erfordras till skillnad från tillbyggnad som innebär att man bygger i sidled: på marken. Tack vare gjorda framsteg i konstruktionsteknik, är det mha. välutvecklade konstruktionsmetoder möjligt att uppföra ytterligare våningsplan ovanpå en befintlig byggnad. Konceptet möjliggör idéer!
1.2 Problemformulering

Utgångspunkten för det problem som forskas följer den didaktiska strukturen enligt följande:

- Vad? Med hänsynning till bakgrunden ovan, råder det urbana omständigheter som bostadsbrist, begränsad och reglerad markyta och behov av utveckling av den befintliga infrastrukturen i form av modernisering/expansion i många städer. Dessutom har somliga städer som mål att locka fler människor till att flytta dit där arbetskraft är ett möjligt motiv. Denna typ av förändring i invånarantal kräver naturligtvis också ett större behov av fler bostäder samt fler arbetslokaler.

- Hur? För att kunna ta hänsyn till både bostadsproduktionen och stadsplaneringen i en stad eventuellt i ett restriktivt område är en idé att förtäta staden eventuellt området. Förtätningen kan göras genom påbyggnad av våningsplan ovanför befintliga byggnader.

- Varför? Genom påbyggnad av våningsplan på befintliga höghus kan på så sätt fler bostäder och även lokaler skapas, vilket främjar minskningen av rådande bostadsbrist. Dessutom att genom utnyttjande av det fria utrymmet ovanför ett befintligt höghus kan arbete i den omgivande markytan göras för andra projektidéer relaterade till stadsplanering istället för att nya byggnader uppförs.

Figur 1. Sambandet mellan utgångspunkterna och frågeställningarna utgörande forskningen, kärnan i fallstudien.

Konceptet med påbyggnad förutsätter olika företeelser relaterade till bl.a. arkitektur, miljö och byggkonstruktion. En påbyggnad bör således planeras och utredas inom dessa aspekter innan den sätts igång. Det finns många frågor som bör besvaras innan igångsättningen.
Forskningen omfattar studie i dessa aspekter samt analys av två utförda påbyggnader i Sverige. För denna fallstudie är önskan med forskningen att den ger svar på följande frågeställningar:

1. Vilka förutsättningar bör ett befintligt höghus ha vid påbyggnad av våningsplan?

2. Varför är påbyggnad mer optimal än tillbyggnad vid förtätning av en storstad?

1.3 Avgränsningar

I projekteringskredit av byggprocessen ingår olika aspekter med en konstruktion vilka utreds innan byggproduktionen kan sättas igång. Aspekterna som utreds är alltifrån byggeprojektets konstruktionstekniska aspekter till den juridiska aspekten Ämnenas förekomst och omfattning i utredningen kan variera beroende på vad för typ av byggeprojekt som avses samt relevansen för byggeprojektet.

För just idén om förtätning av en stad mha. påbyggnad av våningsplan ovanför ett befintligt höghus liknar dess byggprocess den för nyproduktion. För denna fallstudie har de främsta ämnen valts och forskningen omfattar utredning av påbyggnad inom områdena konstruktionsteknik, geoteknik, arkitektur, miljö och stadsplanering. Ämnen relateras till varandra och utgör tillsammans en färdigställd konstruktion i slutändan. Forskningen i helhet ska möjliggöra besvarande av frågeställningarna i avsnitt 1.2. De avgränsade områdena i denna forskning är följande:

- **Konstruktionsteknik** - Stabilitet, säkerhet och beständighet är de mest väsentliga egenskaperna som ett våningsplan bör ha för att kunna hållas upprätt. Genom att bygga ovanför ett befintligt höghus belastas det ytterligare och dess jämviktsläge ändras, vilket bör beaktas i projekteringskredit.

- **Geoteknik** - Även grunden belastas, som redan belastas av det befintliga höghuset. Grundens egenskaper samt dess struktur som beror av vilken *jordtyp* som är befintligt, avgör om påbyggnaden är möjlig att utföra eller inte.

- **Miljö** - I modern tid sker utredningar av ett byggeprojekts effekter på miljön alltmer och lösningar för hållbar utveckling utforskas ständigt. Nuvarande metoder är val av specifika miljövänliga byggnadsmaterial som samtidigt uppfyller konstruktionstekniska eventuellt arkitektoniska krav på en byggnad.
Arkitektur - En byggnads estetik regleras också av regler och bestämmelser. I de områden och kvarter där grundregeln är att byggregementets exteriör ska passa in i omgivningens utseende är syftet att bevara den särskilda symmetrin i områdets utseende. De estetiska egenskaperna som förutsätts rör bl.a. kulör, arkitektoniska drag och stil. Efter ändringen ska exteriörens innebörd fortsätta vara avläsbar.

Avgränsningar har även gjorts för vilken typ av byggnad som forskningen ska behandla. Valet är höghus som även kan definieras som en kategori för olika varianter av byggnader i flera våningar ingår. Ett exempel på höghus är flerbostadshus.
Anledningen till att just höghus har valts är för att visionen är förtätning av restriktiva urbana områden där främst höghus i olika varianter förekommer. I detta fall omfattar forskningen projekterande utredning av påbyggnad på höghus som därav utgör forskningsobjektet.

1.4 Syfte och mål

Syftet med detta examensarbete är att forskningen ska ge svar på frågeställningarna ovan inom områdena byggkonstruktion, arkitektur, miljö, stadsplanering och geoteknik. Målet är att erhålla dels en bred vetenskaplig uppfattning och helhetssyn inom dessa områden i projekteringskedet av byggprocessen för just påbyggnad, dels kunskaper om hur folkäta störständer kan expanderas i yta utan att den befintliga ytan utnyttjas. De erhållna kunskaperna ska medföljas i bagaget i yrkeslivet inom byggbranschen.
2. Metod

Denna fallstudie utgör en litteraturstudie baserad på kvalitativ forskning med ett teoretiskt innehåll. Innehållet grundar sig på studerat stoff från dels kurslitteratur som har använts under programmets gång, dels från internet i form av vetenskapliga artiklar samt auktoriserade källor. Det vetenskapliga stoffet har analyserats och utretts till egna ord och tolkningar.
En referensram bestående av regler, bestämmelser, råd och risker vid påbyggnad har tagits fram. Utredning av dessa aspekter som bör beaktas i samband med påbyggnad, utgör ett underlag för arbetet i projekteringsskedet i byggprocessen.

2.1 Litteratursökning

En del av det erhållna stoffet har hämtats från olika kurslitteraturer som har använts i diverse kurser under utbildningens gång. Reliabiliteten för innehållet i varje kurslitteratur påvisas i det faktum att respektive kurslitteratur har varit specifikt utvald för användning i respektive studerad kurs. Under kursernas gång har upplagorna av samtliga av de använda kurslitteraturerna varit godkända, vilket bidrar till deras validitet.

2.2 Webbaserad sökning

Resten av det stoff som inte har hämtats från kurslitteratur, har hämtats från websidor. Auktoriserade företags webbsidor med stoff om påbyggnad har använts, vilket bidrar till reliabilitet och validitet i det använda stoffet. Boverket har använts flitigt från vilket det mesta av allt stoff har hämtats.
En vetenskaplig artikel med koppling till denna forskning och frågeställningar har använts. Artikeln är referentgranskad (peer-reviewed) innan användning. Vid sökning efter artikeln användes Discovery och Google Scholar. Sökorden var då påbyggnad, våningsplan, taklyft, förtätning, projektering och bostadsbrist.
3. Förtätning av storstaden

I allmänhet innebär begreppet förtätning inom stadsplanering ökad exploateringsgrad och intern utveckling av befintlig bebyggelse. Konceptet kan utföras på flera olika sätt beroende på om det är en byggnad eller infrastruktur som ska genomgå förändringen. Genom att bygga inåt i staden ges fler invånare möjligheten att bo i eller närmare innerstaden, utan att exploatering av marken erfordras. Dessutom är det en strategi för att främja bostadsbristen (Boverket 2016; Bergsten, 2005).

3.1 Påbyggnad - volymökning i höjdled

Volymökning i höjdled, vertikal förtätning, taklyft, påbyggnad... samtliga benämningar är synonymer till varandra och innebär expansion av byggnadsvolym på höjden. Modifieringen utgör en ändring av byggnad och är en bygglövsplichtig åtgärd. Volymökningen sker genom att ett nytt
eller flera nya våningsplan byggs ovanför en befintlig byggnad. Det fria utrymmet ovanför en byggnad kan utnyttjas för etablering av fler lägenheter, lokaler eller annat typ av utrymme i exempelvis storstäders innerstad som vanligtvis upplevs som trång. Det ger fler människor möjligheten att leva eller driva verksamhet i eller nära stadskärnan.

Vertikal förtätning kan motiveras ur miljömässigt perspektiv och som en strategi för att uppnå hållbar utveckling. När fler bostäder etableras i centrala områden, blir det kortare avstånd till centralt belägna service samt ett förminskat beroende av bil. Utvecklingen kan bidra till en minskning av växthusgaser och övriga utsläpp (Bergsten, 2005).

3.2 Tillbyggnad - volymökning i sidled

![Figur 3. Modell av tillbyggnader längs en bebyggelse.](image)
Horisontell förtätning, volymökning i sidled eller tillbyggnad är ett alternativ till påbyggnad och utgör en ändring av byggnad samt en bygglovsplichtig åtgärd i diverse fall. Vid en tillbyggnad under 15 kvadratmeter är åtgärden inte bygglovsplichtig.

3.3 Bostadsbristens påverkan

Bostadsbristen har många aspekter. Två av aspekterna innebär att det finns ett underskott av bostäder i en kommun respektive att det finns ett underskott av bostäder i en kommun respektive att hyreskostnaden är högre än vad invånarna har råd eller är villiga att betala. Båda aspekterna ger upphov till bostadsbristens uppkomst som i sin tur ger upphov till ökad efterfrågan på bostäder inom lämpliga marginaler liksom till en rimlig kostnad. Båda nämnda aspekter är i dagsläget aktuella i de flesta storstäderna.

Den aktuella bostadsbristen är till stor del kvar från befolkningsökningen från tidigare år. Till följd av lågkonjunkturen och övriga ekonomiska omständigheter under 1990-talet, har bostadsproduktionen sedan dess haft ungefär samma låga nivåer. Även under och några år efter finanskrisen år 2008, har den inte varit igång tillräckligt mycket, vilket har resulterat i för få bostäder producerade under den aktuella perioden. I samband med befolkningsökningen under de senaste åren, har bostadsbristen ökat
ännu mer och därmed erfordras fler bostäder att produceras framöver; omkring 45.000 – 50.000 bostäder per år under fem år bör produceras i syfte att eliminera bostadsbristen inom de närmaste åren, enligt Boverket (2013).

3.4 Infrastrukturens påverkan

Parallellt med storstädernas utveckling, krävs förbättrad infrastruktur i form av vägar, järnvägar och anläggningar vilka kan kräva byggbar mark som samtidigt behövs för bostadsproduktion.
Regionerna är i full expansion, både till ytan och befolkningsmässigt. Alltför människor pendlar mellan flera orter då branscher och jobb är väldigt varierande och mest tillgängliga i storstäderna.
Access till diverse nöjen, vård och övrig service kan vara mer begränsad i dessa städer pga. avståndet. Denna och liknande omständigheter sätter stort tryck på infrastrukturen i dessa städer. Förutom bostadsproduktionen, erfordras stora investeringar i infrastrukturen också, både lokala och regionala. Kollektivtrafiken som har expanderats mycket på senare år, är i ständigt behov av utveckling. För miljöns skull samt för de ständig ökande bränslepriserna erfordras större satsningar på just kollektivtrafiken i syfte att minska transporter med bil.
I dagsläget går utvecklingen alltmer mot en ökad transport med kollektivtrafik än bil. Därmed ökar behovet av fler spårvagnar, tåg- och busstationer på fler orter samt att tätorterna binds samman med storstäderna för underlättade transportmöjligheter mellan varje storstad och tätort. Dessa utvecklingar kräver i sin tur utökade vägar och järnvägar för ökad kapacitet då den redan befintliga infrastrukturen är svårt belastad när det gäller ur miljösynpunkt, buller och trånghet (Byggföretagen, 2020).

3.5 Miljöpåverkan och hållbar utveckling

Bostadsproduktionen medför flera effekter på miljön. Produktionen ska resultera i ett hållbart byggande där mark, vatten och övriga naturresurser används sparsamt och effektivt och att framförallt nyttjande av förnybara naturresurser sker. Målet är att bl.a. minska på materialsvinn och utsläpp av
växthusgaser samt sprida kunskaper om denna omständighet.

Det finns flera varianter av träbaserade material som är både miljövänliga och samtidigt uppfyller kraven på bl.a. styvhet och hållfasthet. Exempel på sådana byggnadsmaterial i trä är KL-trä och limträ. Båda materialen används allt flitigare i byggbranschen och uppfyller som nämnt de viktigaste konstruktionstekniska kraven.

Genom att bygga i KL-trä och/eller limträ är det möjligt att lösa lokala och regionala omständigheter som bostadsbrist samtidigt som det är ett sätt att bidra till hållbar utveckling. På så sätt möts förtätningens olika aspekter som miljö, konstruktionsteknik men även estetik dvs. arkitektur.

3.5.1 KL-trä

Det är lämpligt för alltifrån småhus till höghus som ska genomgå en ändring som påbyggnad. Ett nytt väningsplans stomme kan framställas i KL-trä som med sin låga vikt medför begränsad belastning på både det befintliga höghuset och grunden och är även ett utmärkt val ur miljömässigt perspektiv. Materialet tillverkas enligt kraven i standarden SS-EN 16351 och förekommer i olika
hållfasthetsklasser. Vanligtvis består tvärsnittet i KL-träet av brädor av samma hållfasthetsklass i huvudbärriktningen. KL-trä med högre hållfasthet i dess tvärsnitts ytssikt samt i skivans huvudbärriktning gäller vid maximerad utnyttjande av virkets hållfasthet. Effekten på virket är vanligtvis som störst i ytssikten samt i huvudbärriktningen.

![Figur 4. KL-trä (Träguiden, 2017).](image)

![Figur 5. Byggnadsdelar av KL-trä (Martinsons, 2020).](image)

3.5.2 Limträ

En annan variant av trä är limträ, som är ett miljövänligt och styvt material i förhållande till sin vikt. Det används dels för estetiskt bruk, dels för bärande såväl som icke bärande konstruktioner och diverse byggnadsdelar som bjälkklag och väggar. Den är uppbyggd av hoplimmades träbalkar, lameller, av framförallt granvirke från hållbara skogar inrikes och är därför mer styvt än ett vanligt

Balkarna är av högre hållfasthetsklass och hanterar drag- och tryckkrafter i över- och underkant. I resten av balkarna är materialet av lägre hållfasthetsklass, tillräckligt styvt för att hantera de mindre krafterna. Då virkets hållfasthet är väldigt hög, gör det lämpligt för stora spännvidder. En stomme som framställs i limträ medför både begränsad belastning i både grund och befintligt höghus samtidigt som det utgör ett godkänt val ur hållbarhetssynpunkt.

Framställningsprocessen av limträ kräver få resurser. Materialet i sig producerar enbart låga halter av koldioxidutsläpp. Den maximalt godkända fuktkvoten i materialet är 16%. Det är ett anpassningsbart material som kan återanvändas och återvinnas samt nyttjas som en energiresurs. Vid inträffad brand har den goda egenskaper som skydd och stabilitet och den sistnämnda ökar ju större dimensionen är. Vid fel hantering av limträ kan det uppvisa bl.a. mögel. Även under en byggnads brukstid bör träet skyddas från skadegörelser av dylika slag och framförallt de bärande byggnadsdelarna i limträ och trä i allmänhet (Svenskt trä, 2018).
3.6 Varianter av höghus

De befintliga flerbostadshusen har uppförts under olika tider och varierar därför i stil och form.

Miljonprogrammet var ett nationellt byggprojekt där omkring en miljon bostäder producerades i hela landet under perioden 1965-1975. Samtliga av de ovannämnda hustyperna av flerbostadshus uppfördes under denna period (Björk & Reppen, 2000).

Val av höghus samt dess lämplighet för att genomgå en påbyggnad av våningsplan varierar av bl.a. husets aktuella höjd, våningar och byggetekniska förutsättningar. Ur den juridiska aspekten regleras påbyggnadens omfattning av maximal höjd och antal våningar som höghuset får ha totalt och marginalerna specificeras i aktuell detaljplan, vilken presenteras närmare i avsnitt 4.2.1 Detaljplanens reglering av påbyggnad. Ett höghus samt grundens konstruktionstekniska aspekt med avseende på påbyggnad presenteras i avsnitt 5. Byggetekniska egenskaper med påbyggnad.

4. Juridiska förutsättningar vid påbyggnad

4.1 Reglemente vid påbyggnad

Vid påbyggnad skall kraven för ändring följas. Dessa krav är identiska med de tekniska egenskapskraven samt utformningskraven som gäller vid uppförande av nyproduktion (PBL 1 kap. 4§).

![Figur 8. Normer för ändring av byggnad (Boverket, 2020).](image)

Vid påbyggnad av ett våningsplan bör ett befintligt höghus förutsättningar och bärförmåga beaktas och utredas. Vid påförd last bör byggnaden besitta god bärförmåga, beständighet och stabilitet i syfte att brott undviks i byggnadsdelarna. De ändringar som görs på byggnaden ska ske på så sätt att bärförmågan och hållfastheten inte överskrids (Boverket, 2017).

Avsteg och anpassning från de ställda kraven får endast göras med anledning av påbyggnadens omfattning och höghusets förutsättningar (Boverket, 2018). Däremot är det av säkerhetsskäl inte tillåtet att avsteg görs från lagar och krav på bärförmåga, stabilitet och hållfasthet (Boverket, 2017).

4.2 Projektering av påbyggnad

Vid prövning av idén för vilken förhandsbeskedet gäller, utför byggnadsnämnden en så kallad lokaliseringsprövning innebärande inspektion av den plats där byggnationen ska ske gällande dess lämplighet för byggnation. Utgångspunkten i prövningen är att man utgår ifrån principer i den gällande översiktsplanen, bestämmelser, lagar och regler i det andra kapitlet i PBL. Synpunkter från grannar och andra som berörs på platsen, påverkan på trafik och den omgivande arkitekturen utgör villkor för den tilltänkta byggnationen.

4.2.1 Detaljplanens reglering av påbyggnad

Det initiala steget i ett byggprojekt är att studera den aktuella detaljplanen för det område i vilket projektet ska utföras. Det görs för att säkerställa att projektets omfång och omfattning stämmer överens med vad detaljplanen förespråkar. De parametrar som regleras i detaljplanen är:

- Byggnadsarea
- Byggnadshöjd
- Antal våningar
- Taklutning
- Prickmark (mark som inte får bebyggas)
- Korsmark (mark som endast tillåter att komplementbyggnad byggs)
- Avstånd till tomtgränser.

Innan man går vidare till nästa steg vilket är att ansöka om tillstånd till att genomföra påbyggnaden, gäller det att ändringen inte strider mot den gällande detaljplanen. Dessutom ska det avsedda höghuset som ska genomgå ändringen, inte strida mot detaljplanen när det gäller bl.a. den totala tillåtna byggnadshöjden och antalet våningar. Både påbyggnaden och den befintliga byggnaden ska vara planenliga (Göteborgs stad Stadsbyggnadskontoret, 2021; Svensk Byggtjänst, u.å.)

4.2.2 Bygglovssprocessen vid påbyggnad

![Bygglovssprocessen](image)

Figur 9. En sammanställning av bygglovssprocessen.

- Anmälningsblankett om bygglov
- Planritning, skala 1:100
- Fasadritningar, skala 1:100
- Sektionsritningar, skala 1:100
- Uppmättningsritning dvs. en ritning före ändring

Specifikt för ett projekt med påbyggnad ska ritningarna redovisa hur våningsplanet påverkar det befintliga höghuset. För dessa handlingar finns legitimerade och certifierade företag för byggherren att vända sig till (Projektledning, 2018).

Granskning av bygglövsansökan påbörjas efter att alla handlingar anges vara fullständiga. Här prövas om den framtidiga påbyggnaden uppfyller de allmänna bygkraven. Enligt Boverket prövar byggnadsnämnden om

- den tilltänkta påbyggnaden följer aktuell detaljplan,
- den befintliga byggnaden är lämplig för sitt ändamål,
• den befintliga byggnaden har en lämplig form, färg och materialverkan eventuellt tillgänglighetsanpassad

Påbyggnationen kan inte påbörjas förrän ett startbesked ges från byggnadsnämnden. Efter ett beviljat byggliv samt startbesked från byggnadsnämnden hos kommunen, kan byggnationen sättas igång. I detta skede ska även upphandling samt samordning av olika projektörer göras av projektledaren.
Projektledaren bör se till att samtliga projektörer involveras i byggeprocessen och att arbetet flyter på (Aulin et al., 2015).

Precis som bygglovets giltighetstid, upphör startbeskedet om projektet inte påbörjas inom två år. Om byggnationen påbörjas innan startbesked kan det tillkomma en s.k. byggsanktionsavgift (Plan- och byggförordningen (2011:338), 9. kap. 2 §.).

Ett slutsamråd ska hållas där påbyggnationen har genomförts när byggnaden är färdigt. Enligt PBL (2010:900), 10. kap. 32 §. ska byggnadsnämnden vid slutsamrådet gå igenom:

- hur kontrollplanen har följts,
- avvikelser från de krav som gäller för projektet,
- kontrollansvariges utlåtande,
- dokumentation från arbetsplatsbesöket samt andra dokumentation över projektets utförande,
- behov av andra åtgärder,
- förutsättningar för ett slutbesked

Ett slutbesked innebär att byggnaden kan tas i bruk. Byggnadsnämnden kan efter slutsamrådet ge ett beslutbesked om byggherren har visat att alla krav och villkor som gäller för projektet är uppfyllda (Boverket, 2018).
4.3 Arkitektonisk symmetri i förtätat område

Då ett befintligt höghus genomgår en ändring som påbyggnad är det viktigt att beakta dess och kvarterets arkitektoniska gestaltning och värna om de kulturhistoriska värdena. Ett nytt våningsplan ska vara utformat och gestaltat på liknande sätt där den arkitektoniska symmetrin i kvarteret inte går förlorad, vilket görs genom användning av material och kulörer som är stilenliga med den aktuella arkitektoniska gestaltningen. Helheten ska fortfarande utgöra ett resultat av den aktuella arkitektoniska gestaltningen.

![Figur 10. En modell över arkitektonisk utformning av befintlig byggnad som genomgår en påbyggnad.](image)
5. Byggtekniska egenskaper med påbyggnad

Ett befintligt höghus belastas ständigt av olika typer laster. En förutsättning för denna företeelse är att de inverkande lasterna tillsammans ska understiga höghusets bärformåga både vid konstruering och bruk av höghuset. Denna princip gäller för uppfyllande av Boverkets krav gällande god stabilitet, beständighet och säkerhet mot brott. Dessa krav skall uppfyllas under hela höghusets livslängd, dvs. under hela den tid som höghuset är i bruk.

I detta sammanhang införs begreppet gränstillstånd, som avser överstigande av den gräns för vilken byggnaden inte är dimensionerad. Gränstillstånd omfattar följande två kategorier:

- Brottgränstillstånd - den gräns i vilken brott i en konstruktion eller konstruktionsdel inträffar
- Bruksgränstillstånd - den gräns för vilken otillåten användning gäller vid normal användning

En konstruktion befinner sig ständigt i jämvikt, både i kraftjämvikt och momentjämvikt. Vid pålastning inträffar ett nytt jämviktsläge och medför även deformation på konstruktionen. Lasteffekter som tvärkrafter, dragkrafter, tryckkrafter och moment samt instabilitetsfenomen som vippning, knäckning, böjning, stjälpning och buckling uppstår vid överstigande av de inverkande lasterna. Av den orsaken är storleken på lasterna den främst avgörande faktorn för konsekvenserna och deras storlek av lasteffekterna och instabilitetsfenomenen. Således bör samtliga belastningar beaktas vid dimensionering och utformning av en konstruktion i syfte att förebygga olyckor och ras orsakade av bl.a. brott i konstruktionen (Boverkets konstruktionsregler, EKS 10 [BKR], BFS 2015:6).

Förutom de krav som avser brott och andra svåra skador i konstruktionen, ställs det även krav på att byggnadsdelars funktioner och egenskaper vid normal användning inte bör äventyras i syfte att bibehålla dem (Bergsten, 2005).
Övriga fall som kan missgynna stabiliteten och säkerheten i höghuset är korrosion, kemiska och biologiska angrepp. Dessa fall riskerar att försämrar konstruktionen med tiden och bör beaktas i samband med att de inverkande lasterna beaktas. De inverkande lasterna presenteras närmare.

Vid påbyggnad av våningsplan bör hänsyn i första hand tas till det befintliga höghusets förutsättningar och potential. Påbyggnad är en avancerad teknik där säkerhet, stadga och beständighet är väsentliga faktorer som prioriteras högst under hela byggprocessen. Höghuset ska vara konstruerad på så sätt att det eller delar av det inte rasar, eller på vilken större deformation inte uppstår till följd av bruk av höghuset eller vid tillförd påverkan.

Vid projektering av en påbyggnation, bör möjligheterna för hissinstallation utredas. För en hissinstallation krävs ingrepp i befintlig stomme vilket påverkar dess bärighet. Därav är det ytterst viktigt att en hissinstallation projekteras (och utförs) nöjgrant med avseende på både hissens funktion och installation samt stommens beständighet.

5.1 Egentyngd hos våningsplan och befintligt höghus

Egentyngden avser höghusets konstruktionsdelar och bärverk som anses vara fasta och permanenta då lasten är bunden till konstruktionen. Även icke-lätt flyttbara konstruktionsdelar betraktas vanligtvis som bundna. Till de bundna konstruktionsdelarna inräknas konstruktionsdelar som tak, väggar, bjälklag, pelare, trappa, grundplatta, reglar och balkar. Varje konstruktionsdel klassas efter dess säkerhetsnivå vid eventuell olycka med avseende på personskador. Se Figur 11.

Figur 11. Säkerhetsklassificering av byggnadsdelar (Isaksson et al., 2010).
Indelningen sker i tre säkerhetsklasser. Den första (säkerhetsklass 1) utgör låg risk för olyckor och medför mindre allvarliga konsekvenser, den andra (säkerhetsklass 2) utgörande lagom risk och medförande allvarliga risker, och den tredje (säkerhetsklass 3) utgörande stor risk och medförande mycket allvarliga konsekvenser.

De konstruktionsdelar som tillhör säkerhetsklass 3 är främst de konstruktionsdelar placerade i grunden samt bärande väggar och pelare på bottemplan. Dessa konstruktionsdelar bär förutom deras egentvagt, även upp egentvagten av de ovanliggande konstruktionsdelarna samt övriga ovanliggande laster som inte kategoriseras som egentvagd (Isaksson, Mårtensson, & Thelandersson, 2010).

Vid påbyggnad av våningsplan påverkas främst egentvagten hos höghuset eftersom att lasten av våningsplanets konstruktion också räknas som egentvagd, vilket medför ökad egentvagd hos höghuset i efterhand. Lasten av den nya stommen ska genom den befintliga stommen föras ned till grunden. Detta förlagp sätter krav på stabiliteten i både höghuset och grunden. Båda faktorerna bör därför vara konstruerade för att ta upp den nya belastningen från ett eller fler nya våningsplan.

Egentvagden hos den nya stommen regleras av hur den dimensioneras och projekteras samt vilket eller vilka material som används. Genom att konstruera stommen i limträ och/eller i KL-trä, uppfylls kraven med avseende på vikt och styvhet, vilket har nämnts i avsnitt 3.3.1 KL-trä och 3.3.2 Limträ. Belastningen på det befintliga höghuset blir då inte påtaglig (Bergsten, 2005).

5.2 Nyttiga lasters förekomst och utökning

Människor, möbler och annan inredning belastar en byggnad likt övriga laster och benämns som nyttiga laster. Beroende på byggnadens användningsområde, verksamhetstyp, de förekommande möblerna och deras utbredning och kvantitet, kan de nyttiga lasterna i ett höghus vara olika. Denna last varierar i tiden och situationer och kategoriseras därför som en variabel last. De kan verka i enskilda punkter eller i utbredde form (Isaksson et al., 2010). Se Figur 12.

Vid påbyggnad av våningsplan ökar de nyttiga lasterna i form av vistande människor och inredning, vilket medför att höghuset belastas ytterligare. Redan vid projektering av våningsplanet beaktas dess kapacitet för tillkommande nyttiga laster genom att beräkningar görs för specifikt nyttiga laster.

Figur 12. Utbredda laster och punktlaster av möbler respektive närvarande personer.
5.3 Vindlastens tillökning med höjden

Vindlast kan definieras som en dynamisk variabel last med en särskild hastighet mot en byggnad. Lasten bör beaktas vid dimensionering särskilt vid påbyggnad eftersom att lasten vanligtvis ökar med höjden. Således gäller att ju högre en byggnad är, desto mer ökar den anträffande vindlasten.

Vid påbyggnad av våningsplan på ett befintligt höghus ökar dess höjd beroende på antal våningsplan och takhöjden. Vid ökad byggnadshöjd, ökar trycket mot höghuset vilket medför ett större vindsug från det. Vindtrycket som anträffar byggnaden utgör en vindlast i form av horisontell respektive vertikal last som höghuset ska motstå. Vid ökad byggnadshöjd, ökar därmed vindlasten mot höghuset. Se Figur 13 där vinden anträffar en byggnad och det uppstår vindtryck och vindsug.

Figur 13. Illustration av vindlast
(Byggforskserien, 2011).

Figur 14 och 15. Stabiliserande vindstag.

Genom vägskivor, takplåt samt andra liggande byggnadselement omvandlas den horisontellt anträffande vindlasten till skjuvkrafter. Dessa verkar parallellt med skivan vilket kallas skivverkan, och medför stabilisering i byggnaden.

Mha. liggande element på våningsplanets fasad uppstår skivverkan mellan fasaden och vindlasten då elementen tar upp laster i samma plan, dvs. horisontella laster. Summan av den inverkande lasten blir då 0 (Träguiden, 2020).

5.4 Behov av stomförstärkning

Vid påbyggnad av våningsplan ökar belastningen på höghuset ytterligare och främst i form av egentygnd då höghuset och det nya våningsplanet tillsammans utgör en modifierad konstruktion. Därefter ökar nyttiga laster från inredning och vistande människor samt ökad vindlast till följd av konstruktionens ökade byggnadshöjd. De nyttiga lasterna och våningsplanets egentygnd medför ökat vertikaltryck på höghuset medan vindlasten medför ökat horisontaltryck på höghuset. Se Figur 17.
De ökade trycken medför i sin tur ökat krav på den befintliga stommens stabiliserande egenskap. Vid eventuell instabilitet vid påbyggnad innebär det att det befintliga höghusets stomme inte förmår att ta upp dessa tillkommande belastningar, finns det olika alternativ till förstärkning i byggnaden. Kostnaden är avgörande för val av stomstabilisering. Det kan vara en dyr satsning men i slutändan är det en investering i personsäkerheten och även höghuset.

5.5 Grundens förutsättningar

Ett befintligt höghus belastar grunden. Påbyggnad av våningsplan medför belastning på ett befintligt höghus, vilket i sin tur medför ytterligare belastning i grunden. Belastningen kan medföra deformationer och sättningar i jorden i olika omfattningar som beror av hela byggnadens tyngd, storlek samt jordtyp och dess egenskaper.

De inverkande lasterna i och på ett höghus belastar i sin tur grunden vars effektivspännningar ökar och ger i sin tur upphov till deformationer som sättningar (Sällfors, 2013). Se Figur 18.

Figur 18. Rörelser orsakande instabilitet i byggnaden (Buildsafe, u.å.).
Med lasterna av och på våningsplanet ökar höghusets totala tyngd, vilket ökar belastningen på grunden. Tryckta konstruktioner kan bidra till olika osäkerheter där ibland instabilitet i grunden samt i höghuset i sig. Vid ökad belastning på höghuset påfrestas grunden ytterligare.

Belastningen kräver att grundläggningens utformning är utförd på så sätt att jorden kan ta upp lasterna och hindra allftor stora sättningar samt brott från att uppstå. Skadorns omfång beror av vad för jordart det är i omgivningen. Den avgörande faktorn hos jorden är dess egenskaper som bärlighet och hur den reagerar under olika förhållanden. Följande jordarter är förekommande (Geobear, u.å.), från svagast till starkast:

- Dy, gyttja, torv
- Lera
- Silt
- Sand och grus
- Morän
- Berg

I anslutning till en grundförstärkt eller en fast grundlagd byggnad, kan markförstärkning göras i syfte att förebygga risken för omfattande marksättningar. Vid erforderlig markförstärkning kan höga kostnader tillkomma (Grundförstärkningsgruppen, 1979).

5.6 Säkerhet vid brand

Kraven för brandskydd och brandsäkerhet för ändring är identiska med kraven för nyproduktion. Vid utformning av våningsplanet skall brandskydd tillämpas för att uppnå god brandsäkerhet. Följande villkor är angelägna vid inträffad brand:

- Begränsning av brand och rök för att inte spridas till omgivande utrymmen
- Kvarstående bärförmåga i byggnaden under en viss tid efter branden
- Att närvarande personer kan lämna byggnaden eller räddas
- Att säkerhet råder vid räddningsmanskapets insats
Brandskyddsåtgärders omfattning regleras av räddningsmanskapets insatstid för ingripande i den brinnande byggnaden som ska utrymmas, eller av begränsning av brandens spridning. I vissa fall kan fler brandskyddsåtgärder krävas.

En byggnads utrymmen indelas i verksamhetsklasser. Detta görs efter den verksamhet som utrymmet är avsett för samt de vistande personernas kännedom om byggnaden och möjligheter till utrymning. Småhus omfattas av verksamhetsklass 3 vilket innebär att de vistande personerna har god kännedom om utrymmet och kan utrymma på egen hand (Boverket, 2011).

Vid brand bör trappans placering inte påverka utrymningsvägen i planlösningen. För en ny sådan dimensioneras den med utgångspunkten i det mest kritiska fallet (Brandkonsultförening, 2018).

5.7 Byggnadstekniska farors utfall

För dimensionering av brunnar, stuprör och takrännor kan värden för kritiska fall användas och i synnerhet de värden som gäller för den staden i vilken byggnaden är belägen (Teknikhandboken, u.å.).

Ett höghus avloppssystem är unikt och dess utformning är lämpat efter höghusets utformning och storlek. Vanligtvis pumpas vatten upp genom vattenledningar till varje våningsplan. Ju högre ett höghus är, desto större blir vattentrycket i vattenledningarna i avloppssystemet. Därav kan avloppssystemet eventuellt behöva justeras eller expanderas vid en påbyggnation beroende på påbyggnationens omfattning och i synnerhet antal våtrumsutrymmen som ska förekomma (Dinbyggare, u.å.).
6. Analys av utförda påbyggnader i Sverige

Under de senaste åren har konceptet med påbyggnad fått en större utbredning i Sverige och det sprids ständigt. Påbyggnad har tillämpats på många höghus och andra typer av byggnader i flera städer runtom i landet. Behov av förtätning samt insikten i hållbar utveckling - urbanisering respektive klimat-/miljöfrågor - får många byggherrar respektive stadsplanerare att satsa på just påbyggnad vid önskan om expansion av byggnadsvolymen respektive vid förtätning av en stad eller befintlig bebyggelse.

Svenskt trä (2020) skriver att befintliga bebyggelser i städerna expanderas och förtätas för en mindre kostnad och tidsåtgång. De påbyggnader som utförs i innerstäder skapar fler arbetslokaler och bostäder i bl.a. centrala delar av städerna där kollektivtrafiken samt diverse service är tillgänglig.

Det unika med påbyggnad är att ändringen medför flexibilitet i byggnaden då den kan användas för ytterligare ett ändamål än enbart det ursprungliga som exempelvis för bostäder samtidigt som för arbetslokaler. Dessutom är det möjligt att utöka det befintliga ändamålets omfattning som exempelvis att fler bostäder produceras vilket dämpar bostadsbristen.

Att påbyggnaden sker i trä är ännu en fördel som motverkar eventuella sättningar, behov av grund- eller stomförstärkning tack vare dess låga vikt i förhållande till dess styvhet. Att välja påbyggnad i trä är därför ett smart val för miljön, grunden och den befintliga konstruktionens lastförmåga.

I denna forskning presenteras två framstående påbyggnader i trä utförda i Sverige. Respektive påbyggnad med befintlig konstruktion utgör ett referensobjekt vars omvandling med påbyggnad analyseras och utreds. De parametrar som utreds med respektive påbyggnad är vilka förändringar i området eller staden som byggprojektet har medfört. Som underlag för forskningen används framförallt detaljplanen för respektive referensobjekt där möjligheter till utvecklad stadsplanering i form av vägar och nät utreds.

Motivet till valet av just dessa två påbyggnader är att de har utförts i två olika expanderande städer: Stockholms stad som ständigt är i en expanderande fas respektive Skellefteå Kommun som i nuläget satsar på att locka alltfler människor till att bosätta sig där.

Referensobjekten utgör goda konkreta exempel på hur och varför just påbyggnad i trä ska väljas vid behov av förtätning i en stad. Dessa utförda projekt har uppmärksammat mycket både inom byggbranschen och i media. Var och en av dem uppfyller krav gällande bl.a. inverkan på miljön, hållbar utveckling, konstruktionsteknik och estetik (Svenskt trä, 2020).
6.1 Trikåfabriken 9 i Stockholm

6.1.1 Referensbyggnadens bakgrund

![Figur 19. Trikåfabriken med den påbyggda byggnadsdelen i koppar (Arild Vågen, Wikipedia).](image)

Hela Trikåfabriken 9 är en unik kontorsbyggnad om 25.000 kvadratmeter som exteriört är en kombination av dess ursprungliga industriestil i form av tegelfasader med inrättade moderna fönster med stora glasrutor. Den nybyggda delen och den befintliga byggnaden möts genom ett nybyggt våningsplan med fasader i glas vilket balanserar de olika karaktärerna i byggnadens exteriör. Därav speglar byggnaden i helhet både äldre och modern arkitektur. Dess interiör präglas av inredning i trä och ger en känsla av modernitet och natur.

Trikåfabriken 9 utgör en större, mer omfattande, miljöklassad och föredömlig byggnad. Föredömet ligger dels i den stabila konstruktionen trots ökad belastning, dels i den unika exteriören och interiören med deras respektive stilar. För exteriören handlar det om de nya våningsplanen som sammanfaller med de omgivande byggnadernas kulör, vilket skapar en vacker symmetri i kvarteret (Fabege, u.å.; Svenskt trä, 2020; Tengbom, u.å.).
6.1.2 Förtätning i Stockholms stad med omnejd

Projektet med påbyggnad av våningsplan på Trikåfabriken 9 är ett steg mot ökad förtätning i allmänhet Stockholmsregionen och i synnerhet Hammarby Sjöstad. Ändringen har medfört att mark och natur har besparats, vilket bidrar till möjligheten för eventuell utveckling av vägar och övrig infrastruktur i området. Konceptet gynnar stadsutvecklingen i regionen i helhet då flera liknande stadsutvecklande projekt dvs. projekt relaterade till stadsplanering kan möjliggöras och genomföras.

Stockholms stad med omnejd utgör den mest aktiva regionen för arbetsmarknad i hela Sverige och därmed finns det redan stora behov av att de befintliga infrastrukturen däribland vägar och nät utvecklas samt att bostadsbristen löses. Storstadsproblem av dylika slag ökar mer i och med att Stockholm med omnejd ständigt ökar i invånarantal.

Genom ett antal ökade bostäder i staden, får många bosatta utanför Stockholm men som arbetar i staden, en möjlighet att flytta närmare arbetsplatsen. Vid förtätning av områden med trafikförbindelser till Stockholm blir åtkomsten till staden ännu enklare. Utvecklingen ger upphov till att mindre nyttjade vägar i bland annat mindre stadsdelar tas i bruk alltmer.

Förtätning av även mindre bebyggelser och stadsdelar tas då i bruk mer. Genom förtätning av befintliga mindre bebyggelser till ytan, ges ett helt nytt liv i området som kan locka fler människor till att bosätta sig där. Förtätningen ger även här upphov till fler jobb i och med att områdets bl.a. handelsmässiga utbud ökar.

Hela strategin handlar om att inte riva de befintliga bebyggelserna och snarare utveckla dem. För just Stockholms fall är det en lämplig strategi eftersom att staden med omnejd präglas av mindre men många befintliga bebyggelser som skulle kunna ges ett nytt liv och användas på nytt. På så sätt kan det befintliga bevaras och samtidigt expanderas.

De centrala delarna i huvudstaden är de områden som lockar människor mest. Förtätning av de avsedda delarna medför kortare reseavstånd och restider till innerstadens utbud av arbetskraft, kultur, nöje och även utbildning. Den ökade stadskvalitén ger även upphov till fler jobb speciellt för de unga som önskar att arbeta i bl.a. butiker, restauranger eller caféer.

För tillfället är förtätning i Stockholms stad med omnejd en relativt aktuell process och prognosen för ökad förtätning ser ljus ut (Stockholms stad, 2014). En möjliggörande orsak är det faktum att många befintliga byggnader i staden uppfördes under bl.a. miljonprogrammets tidsperiod, år 1965–1973, och i stommen av framförallt armerad betong. Den armerade betongens styrka kombinerat med påbyggnad i limträ och KL-trä förverkligar en ändring relaterad till förtätning liksom påbyggnad som i många fall inte erfordrar förstärkning i grund och/eller stommen, vilket givetvis beror på påbyggnationens
omfång. Därav förmår många av de flerbostadshusen byggda då, att kompletteras med ytterligare våningsplan liksom Trikåfabriken 9 (Broman & Friman, 2019).

6.1.3 Konstruktionstekniska aspekter

Projektet med påbyggnad på Trikåfabriken 9 omfattar två ihopsatta nya stommar med fyra respektive sex nya våningsplan. Stommen omfattas av bjällklag och väggar i KL-trä och pelare och balkar i limträ. I helhet är det en lätt konstruktion i förhållande till dess styvhet.

I den ursprungliga konstruktionen från år 1929 respektive 1960 har grundförstärkning utförts mha. stålrörsålar och stomförstärkning i form av nya stabiliserande betongväggar. Dessutom har befintliga betongpelare förstärkts.

Teoretiskt sett har förstärkningen medfört att referensbyggnadens bärighet och beständighet har ökats. I praktiken innebär det en ökad potential hos referensbyggnaden att bära upp den nu förändrade egentungden i hela konstruktionen - dvs. både den nya respektive den ökade egentungden - samt de ökande nyttiga lasterna från ny inredning och vindlaster som ökar vid ökad höjd.

Den befintliga konstruktionen förmår att bära upp lasten av de nya våningsplanen dels för dess ursprungliga konstruktion i armerad betong och utförda grund- och stomförstärkningar i efterhand, dels för träsorternas låga densitet i förhållande till deras höga styvhet (Tyréns, u.å.).

Den nya stommen utgör även en brandsäker konstruktion vilket också är tack vare båda träsorters brandhämmande egenskaper. Se Figur 20 där den nya påbyggda trästommen redovisas.

Figur 20. En perspektivvy av Trikfabriken stammen i trä. (Visudata, u.å.).
6.1.4 Detaljplan och planbestämmelser för Trikåfabriken 9

Trikåfabriken 9 är den äldsta byggnaden i Hammarby Sjöstad som har bevarats. Byggnaden har sedan dess uppförande på 1920-talet haft ett särskilt anseende och utgör idag en byggnad fylld av historia. Dess anseende och betydelse för området gör att byggnaden är ett kulturarv som skall bevaras och inte förvanskas vid ändring av byggnad. Denna punkt specificeras i den aktuella detaljplanen och de tillhörande planbestämmelserna som täcker Trikåfabriken 9 (Fabege, u.å.).

För analys av den avsedda påbyggnaden på Trikåfabriken 9 används alla fyra dokument.

![Figur 21. En närbild av Trikåfabriken 9 och beteckningen J i den gällande detaljplanen.](image1)

![Figur 22. En närbild av Trikåfabriken 9 och beteckningen JK1 i det aktuella tilläggsdokumentet till den gällande detaljplanen.](image2)
Den nyare benämningen JK1 ersätter den äldre beteckningen J, och de innebär motsatsen till varandra. JK1 innebär att avsett verksamhetsbruk för i synnerhet Trikåfabriken 9 är kontorsändamål utan resurskrävande industri medan beteckningen J förespråkar industriändamål som avsett verksamhetsbruk för i synnerhet Trikåfabriken 9 Stadsbyggnadskontoret Stockholm, 2008; Stockholms stads Stadsplanekontor, 1940). Ur juridiskt perspektiv har alltså områdets markanvändning omvandlats från industriändamål till framförallt kontorsändamål vilket Trikåfabriken 9 i dagsläget uppfyller.

Figur 23. En närbild av Trikåfabriken 9 (röd ruta) och omgivande gator (blåa rutor) vilka möts i den anvisade rondellen i rött.
I detta fall är just påbyggnad av våningsplan en lämplig lösning. Det krävs inget arbete i den omgivande markytan. Enligt samtliga dokument finns det ingen begränsning för antalet våningsplan för Trikåfabriken 9 men en begränsning om 22 meters byggnadshöjd gäller samt byggnadens konstruktionstekniska egenskaper däribland de geotekniska förutsättts för påbyggnad och dess omfång (Stadsbyggnadskontoret Stockholm, 2008; Stockholms stads Stadsplanekontor, 1940).

6.1.5 Miljö och hållbar utveckling

Trikåfabriken 9 är ett gott föredöme gällande miljö och hållbar utveckling. Det är bl.a. för dess stomme i limträ och KL-trä som också binder koldioxid vilket lämnar mindre avtryck i den omgivande luften. Träanvändning av dylikt slag erfordrar inte stora eventuellt färre förstärkningsåtgärder i grund och stomme.

Det slutar inte där. Taket är utrustat med solceller vilket effektivisar byggnadens energianvändning.

Ännu en gynnande egenskap med denna påbyggnad är att den har utförts i en redan befintlig miljö där kollektivtrafik och service finns tillgänglig. Istället för att etablera en ny bebyggelse med bl.a. nya byggnader, vägar och service nyttjas denna befintliga bebyggelse i Hammarby Sjöstad till fullo!

Projektet med påbyggnad på Trikåfabriken 9 har certifierats med BREEAM-SE:s nivå *Very Good*. Utmärkelsen gäller hela projektets bygprocess innefattande bl.a. byggnadens påverkan på miljön samt dess energi- och vattenhushållning (Fabege, u.å.; Svenskt trä, 2020; Tengbom, u.å.).
6.2 Skellefteå Kraft i Skellefteå

6.2.1 Referensbyggnadens bakgrund

I centrala Skellefteå har en påbyggnad utförts på en av Skellefteå Krafts två ihopsatta kontorsbyggnader. Avsikten med denna påbyggnad har varit Skellefteå Krafts behov av större yta, mer specifikt en helt ny byggnad. En rådande omständighet då har varit byggnadens läge i ett trångt centralt område. Då har det passat sig med ett taklyft i KL-trä och limträ.

Den befintliga byggnaden bestod av nio våningar där sju av dessa planer var över marken och två som var källarvåningar. Påbyggnaden är i form av två våningar som skapades en yta på 1500 kvadratmeter. Projektet genomfördes år 2018.

Förutom den goda kvaliteten som projektet har medfört, har det även varit lyckat i tidsåtgången. Både KL-trä och limträ har goda förutsättningar till att tillämpas i prefabricerade byggnadsdelar och har tack vare dess unika sammansättning förmågan att förkorta tidsåtgången för montaget av de prefabriknade bygkkomponenterna.

6.2.2 Förtätning i Skellefteå kommun

Skellefteå är lokaliserat i Västerbottens län. Befolkningen i kommunen har länge varit omkring 73 000 invånare (Statiska Centralbyrån, 2021).

År 2016 antog kommunens fullmäktige en Fördjupad översiktsplan av Skellefteå. Fördjupningen
betonar kommunens mål med bland annat öka befolkningen till 80 000 invånare fram till år 2030 (Skellefteå kommun, 2020).

6.2.3 Konstruktionstekniska aspekter

![Figur 25. En sektionsvy av Skellefteå Krafts befintliga stomme i betong och påbyggda våningsplan i trä. (Wikström, 2017)](image-url)
6.2.4 Detaljplan för Skellefteå Kraft

Figur 26. En närbild av Sirius 16 i den gällande detaljplanen.

För Skellefteå krafts byggnad gäller fastighetsbeteckning Sirius 16. Kvarteret Sirius är lokaliserat i stadsdelen Älvsbacka, nordvästra hörn som angränsar till E4 i väster och järnvägen i norr.

Figur 27. En närbild av Sirius 16 och beteckningen K och Cn i det gällande detaljplan

Figur 28. En närbild av Sirius 16 i det aktuella tilläggsdokumentet till den gällande detaljplanen.
I den gällande detaljplanen betecknas området med kvartersmark K och Cn som står för kontor respektive centrum. Se Figur 27. Detta innebär att användningen för kvarteret ska vara kontor, handel/service, hotell samt institutioner.

Ändringen som har uppförts i detaljplanen angående påbyggnaden är bland annat den maximala byggnadshöjden för den södra byggnaden, som har ändrat från 41m till 52m. Den södra byggnaden har markerats med bokstaven f respektive k. Se Figur 28. Detta innebär att betecknad del kan byggas på och ut men att de eventuella ändringarna ska ta hänsyn till byggnadens befintliga karaktär. I detta fall ska påbyggnaden hålla en tydlig och enkel form, fasad i koppar med tydlig symmetri i tex fönster och nischer.

6.2.5 Miljö och hållbar utveckling

7. Diskussion kring förtätning genom påbyggnad

I takt med att många städer ökar i invånarantal, ökar stadsproblem som bostadsbrist och behov av utvecklad infrastruktur som vägar. Båda faktorerna kräver byggs mark och ställer därför en stad inför stora utmaningar då många städer har brist på byggs mark samtidigt som dess grönska och vegetation bör bevaras.

En lösningsstrategi till en expanderande stad är förtätning genom påbyggnad. Många kommuner i Sverige har som mål att förtäta städerna. Det är på tiden att det tomma utrymmet ovanför befintliga höghus utnyttjas och att det byggs mer på höjden istället för i marken.

Förtätning genom påbyggnad banar vägen för utvecklingen av en stad genom att både bostadsproduktion och stadsplanering beaktas då bostadsproduktionen kan ske på höjden av höghus samtidigt som marken används för genomförande av olika typer av nödvändiga anläggningar och vägarbeten som är väsentliga för välfärden.

Den klassiska ändringen av en byggnad i form av tillbyggnad är således inte en lämplig strategi för expansion av en byggnads volym i exempelvis Stockholm. I tider som dessa där kollektivtrafikens betydelse för den dagliga tillvaron är väldigt viktig i framförallt storstäderna, behöver även den utvecklas i form av expansion och modifiering vilket innebär att möjligheterna för tillbyggnad begränsas.

Ett exempel till detta faktum är påbyggnation på Trikåfabriken 9 i Stockholm. Trafiken i omgivningen medför att tillbyggnad inte är lämpligt, dels enligt den gällande detaljplanens begränsning för det, dels i praktiken då byggnadens läge är alldeles intill en rondell samt är omgiven av flera gator som sammanvävs vid rondellen.

Ett till exempel på tillbyggnadens olämplighet i framförallt centrala delar av en stad, är Skellefteå Kraft i Skellefteå. Vid önskan om expansion av byggnadsvolymen, ansågs tillbyggnad inte vara en lämplig lösning av samma anledning som Trikåfabriken 9: byggnadens läge och omgivande trafik. Dessa faktorer gör påbyggnad mer lämplig än tillbyggnad i en resurskrävande stad i ständig urban utveckling.

Med samma strategi som Trikåfabriken 9 respektive Skellefteå Kraft, kan fler påbyggnader utföras i fler städer i hela landet. Med dagens teknik och hela byggnadsteknikens framsteg i utvecklingen, svarar arbete i limträ och KL-trä på de flesta konstruktionstekniska, miljömässiga, juridiska, geotekniska och arkitektoniska kraven. Trots denna utveckling, är påbyggnad en avancerad teknik som kräver utredningar inom de ovan nämnda aspekterna innan projektet kan startas.

Liksom båda byggnader bör höghuset åtgärdas genom förstärkning av grunden och/eller den befintliga stommen eller ännu enklare: att vara överdimensionerat, dvs. ha tillräckligt stor kapacitet för att bära upp de tillkommande lasterna i form av egentygnd, nyttiga laster och vindlaster. Dessa
faktorer gäller med avseende på en påbyggnad i en stomme i framförallt KL-trä och limträ - en lätt men ändå styv stomme.

Av byggtekniska, juridiska och framförallt etiska skäl skall en förundersökning på ett höghus ske redan i projekteringsskedet av ett projekt liksom påbyggnad av fråningsplan. Motivet till det är att genom undersökningen upplysa om både det befintliga höghusets och grundens potential och förutsättningar till ökad pålastning.

Säkerhet, stabilitet och beständighet är väsentliga faktorer som prioriteras högst och störst i samtliga av byggsprocessens skeden - innan, under och efter. Ett höghus som ska genomgå en påbyggnad bör vara konstruerat på så sätt att det eller delar av det inte rasar, eller på vilket större deformationer inte uppstår till följd av bruk av det eller vid tillförd påverkan.

Vid dimensionering av planlösning för en påbyggnad av fråningsplan, bör hänsyn till utrymning vid brand tas. Vid eventuell brand ska utrymning från det eller de nya fråningsplanen ske på ett säkert sätt och inte hindras pga. Både bunden och icke bunden inredning, dvs. byggnadsdelar bundna till konstruktionen respektive allmän inredning.

Både Stockholm och Skellefteå är växande städer som präglas av höghus i alla former. Många av dem uppfördes under miljonprogrammet, framförallt flerbostadshus och i armerad betong. En betongkonstruktion förmår att bära upp en stomme i KL-trä och limträ, liksom Trikåfabriken 9 och Skellefteå Kraft.

En korrekt och noggrant utförd lastnedräkning är en förutsättning för att kunna utforma en korrekt, stabil och beständig påbyggnad av fråningsplan. Olika dimensioneringsvärden för laster gäller för påbyggnadens ändamål. Vid påbyggnad av fråningsplan vars användningsområde är kontor eller annat allmänt ändamål, blir dimensioneringsvärdena för framförallt nyttiga laster och egentydig högre än för bostäder. Inredning och därav de nyttiga lasterna, beror av utrymmets användningsområde och vilken typ av aktivitet som ska utföras där.

Vindlasten som varierar av byggnadens höjd, förutsätter att tillräckligt stort stöd finns i tak, väggar och mark för att lasten ska föras ned till grunden och inte medföra kollaps i konstruktionen.

Effekterna av en påbyggnad på miljön varierar av hur det utförts. Just för påbyggnad i en växande stad, är förtydning mha. miljövänliga material som trä gynnsamt, liksom KL-trä och limträ. Ännu en viktig detalj med sambandet mellan påbyggnad och miljö är att påbyggnad inte kräver nyttjande av markyta till skillnad från tillbyggnad.

Den juridiska aspekten med påbyggnad sammanfattas till stor del i detaljplanen, som avgör om påbyggnad av fråningsplan är tillåtet på en avsedd byggnad. Restriktionerna ökar ju mer central den
avsedda byggnaden är belägen, vilket även avgör om bygglov beviljas eller inte för projektet. Dessutom ska påbyggnationen inte ändra den befintliga byggnadens utseende i syfte att motstå förvanskning av den.

Anledningen till att påbyggnader inte sker i större utsträckning är dels de oväntade kostnader som kan förekomma under projektets gång och dels den långa och komplicerade processen vid byggnation av påbyggnader.

Både Stockholm och Skellefteå har som mål att expanderas i både yta och utbud av utbildning och arbete. Förätning genom påbyggnad är en strategi som utvecklar städerna samtidigt som det kan uppstå begränsningar. Rätt utfört är detta ett effektivt och hållbart sätt att förtäta.
8. Slutsats

Liksom ett mynt, har även påbyggnad två sidor. Det finns förstås olika faktorer som kan begränsa möjligheten för en påbyggnations genomförande. Vid beaktande av parametrar som en befintlig konstruktions och grunds förutsättningar, detaljplanens principer, juridiska lagar och regler samt noggranna och detaljerade utredningar i ett byggprojekts fullständiga byggprocess, är det i väldigt många fall inte omöjligt att genomföra en påbyggnad. Tack vare de gjorda framstegen i konstruktionsteknik är påbyggnad en projektidé som har visat sig vara en hållbar och lämplig taktik. Det är projekten med Trikåfabriken 9 och Skellefteå Kraft goda konkreta exempel för!
11. Referenser

Geobear. (u.å.). Bor du på såvitt mark med dålig närhet?. Hämtad från https://www.geobear.se/alternativa/samrekognitionen/

12. Bilagor

Bilagor 1. och 2. Detaljplan för fastigheten Trikåfabriken 9
samma som likaså byggnadsrätt område framför bonings- och arbetsrum
vara minst tolv (12) meter, byggnadsnämnden dock obetyg att på grund
av särskilda förhållanden lika eller minskar detta nått. I övrigt skall
går göras någon storlek och fom, som byggnadensmoden med hänse
byggnad och byggnadens egenskaper prövas erforderligt. Gården må
byggnadens prövar överbyggs helt eller delvis till en höjd av
höget fyra (4) meter över gata invid tom.

avstånd till grannes gräns.

Byggnadsnämndenuger att med hänsyn till bebyggelens bekvämlig
och höjd medela förskrifts angående avstånd till grannes gräns.

Husbyggnad och våningsantal.

A med A beteckat område får byggnad uppföra till en höjd av höget
tolv (12) meter.

A med B betecknat område får byggnad uppföra till en höjd av höget
fyra och en halv (4,5) meter.

A med C beteckna område får byggnad uppföra till den höjd och med
det antal våningar, byggnadens industriella anlägg kräver och byggnads-
nämnden med hänsyn till bebyggelse och övriga omständigheter prövar
och, att byggnad vid gatu ej får uppföra till större höjd än som avser
avståndet mellan byggnadslinjerna och avståndet till gata och höget till
en höjd av tjugotvå (22) meter. Byggnad inne i tom må àtta sluta över
ett plan, som, för den händelse byggnaden uppföra till större tillåtna
höjd, från gatanadens överkan tänkes höja sig inåt byggnaden med en
lutning-av tjugotre (23) grader, dock höget till tjugotvå (22) meter.
Byggnadsnämnden må dock saka för mindre byggnadspartier något större
höjd.

Tillhör Kungl. Maj. beslut:

den 18 oktober 1900
(Beträffande § 1, se Kungl. Maj. Brev),
Stockholm i Kommunikationsdepartementet.
Er officiell
Nils Arens.

Betyrken A tjuutens vägnar;

Sigurd Lang. 1618
Tillägg till detaljplan för delar av Verksamhetsområdet i stadsdelen Södra Hammarbyhamnen i Stockholm
TDp 2006-16348-54

BAKGROUND

Fastigheterna regleras av äldre planer från 1940-talet (PL 2022 C samt PL 3047 A) som i de omkringliggande kvarteren i flesta fall är upphävda, ändrad eller tillagd i och med utvecklingen av Hammarby Sjöstad. Området har ganska smalt utvecklats, från industriområde med hamnverksamhet till bostadsområde och kontorsverksamhetsområde.

ORGANISATORiska FRÅGOR

Ansvarsfördelning
Förslag av tillägg till detaljplan upprättas av Stadsbyggnadskontoret. Fastighetsägarna ansvarar för drift och skötsel av bebyggelse på kvartersmark.

Genomförandetid
Planens genomförandetid är 5 år från och med det datum planen winner laga kraft.

Tidplan
Antagande SBV 4:e kvartalet, år 2008
Laga kraft 4:e kvartalet, år 2008

FASTIGHETSrÄTTSLiga FRÅGOR

Ägandeförhållande
De olika fastighetsägarna redovisas nedan efter de fastigheter som planen omfattar:

- Trikåfabriken 3 ägs av Stockholms stad men uppläts genom tornätt till RE Eriksson Fastigheter AB.
- Trikåfabriken 4 ägs av Fäbege AB.
- Trikåfabriken 8 ägs av Fabege AB.
- Trikåfabriken 9 ägs av Fabege AB.
- Trikåfabriken 12 ägs av Fabege AB.
- Korrhoppet 1 ägs av Stockholms stad men upplåts genom tomrätt till Fabege AB.
- Korrhoppet 5 ägs av Stockholms stad men upplåts genom tomrätt till Fabege AB.
- Päsen 1 ägs av K/B Textilvägen 7.
- Päsen 7 ägs av Svenska Hus AB.
- Päsen 8 ägs av Stockholms stad men upplåts genom tomrätt till Fabege AB.
- Godsvagnen 9 ägs av RC Loket AB.
- Päsen 9 är privatägd.

EKONOMISKA FRÅGOR
Planförslaget medför inga kostnader för staden. Kostnader för upprättandet av detaljplanen delas lika mellan de olika fastigheterna.

TEKNISKA FRÅGOR
Då fastigheterna idag till stor del används till kommersiella verksamhet och planen avser att ändras till bostäder, kommer ingen förändring att ske, vad gäller de tekniska frågor som kan beröras.

Malin Olsson
Sektionschef

Jonas Claeson
Handläggare
Bilaga 6. Plankarta för detaljändring för fastighet Trikåfabriken 9
Bilaga 7. Plankarta för fastighet Sirius 16
Bilaga 8. Detaljplan för fastighet Sirius 16
LÄNSSTYRELSEN
Västerbottens län
Planenheten
Byrådirektör Göteborg
Tél 390/0 73 85

BESLUT

1 (3)

1987-66-17
1987-06-22
11.082-1140-B7

SKELLEFTEÅ KOMMUN
Kommunskansliet
Ink. 87. 06. 18.

Fastsättelse av förslag till ändring av stadsplan för kvarteret Vega samt delar av kvarteret Sirius och kvarteret Lur inom stadsdelens Järvstucka i Skellefteå kommun, Fästerbottens län.
(7 bilaga)

BESLUT

Länsstyrelsen fastställer förslaget.

Redogörelse för breendet

Förslaget har antagits av kommunfullmäktige i Skellefteå kommun den 24 mars 1987.

Förslaget är åskådliggjort på karta, upprättad av stadsarkitektkontoret planverksamhet, Skellefteå, i december 1986 med därtill hörande beskrivning och bestämmelser.

Anmärkningar och bedömningar

1. Anmärkning

Sit Olof föreslår att parkeringsområdet norraomt om kyrkan nyttjas av kyrkoherdarnas vid gudstjänster, kyrkliga för- rättningar och sammankomster. Vidare påpekas att något samråd inte skett med församlingen om ett eventuellt samansättande av parkerings- området och hur i så fall parkeringsbehovet skall tillgodoses.

Bedömning

2. Anmärkning

Skolstyrelsen påpekar att befintliga bilplatser inom fastigheten torr i inte redovisas på illustrationsplanen. Dessutom framför önskemål om att tänka tills till skolhusets behov av tillgång til- platser i allmän parkering vid utförandet av nya P-platser.

Utan avgift

Kontakt

Oras: 901 843 50
Telefon: 002-10 00 00
Post: 23 87 -3-0
Direkt: 002-10
Bedömning

Att befintliga bilplatser inte redovisats på illustrationsplanen saknar i detta fall betydelse. Enligt handlingarna har en utredning gjorts av parkeringsbehovet och tillgången av parkeringsplatser för skolan. Denna visar att undersökta av fyra bilplatser.

Då det är möjligt att även rymma dessa inom egen tomt synes bilplatsbehovet vara tillgodose ett. Bilplatser på allmän parkering förutsätts ordnas när behov uppat är.

3. Annemning

Vägförvaltningen anser det vara av synnerlig vikt att parkeringsfrågan kan lösas på ett aceptabelt sätt. Redan i dag torde föreligga ett undersök på parkeringsplatser. Då förvaltningen ej haft tillgång till den i beskrivningen omnämnade beräkningen av bilplatsbehovet vill den ej göra närmare kommentarer.

Länstyrelsen har vid förhandsgranskningen av förelagets påpekat visser oklarheter i redovisningen av bilplatserna. Bl a har inte redovisats hur bilplatsarna skall läsas för den utnyttjade byggnadsrätten. Vidare påpekades att sammanredovisningen var ofullständig.

Bedömning

Vad gäller bilplatsbehovet har kommunen uttalat att det bor klara inom kvartersmark. I detta fall förmodligen genom att en del av byggnadsrätten tas i anspråk för t ex parkeringsdäck i flera plan.

Detta beslut kan överkallas hos regeringen, se bilaga (formulär 4).

Rune T arrogant
Bitr länarkitektin Göthe Forsberg

Bilaga

Hur man överkallas
Förslag till ändring av stadsplan för kv Vega samt delar av kv Sirius och kv Tor m.m. inom stadsdelen Alvsbacka i Skellefteå kommun, Västerbottens län

upprättat i december 1985 av stadsarkitektkontorets planavdelning.

BESKRIVNING

Platsdata

Läget, område

Planområdet är beläget i nordvästra delen av Alvsbacka. Viktoriaäsgatan (E4) skiljer området från Centrum. Delar av Kanalgatan, Bäckgatan, Nygatan och Kyrkogård ingår i planområdet samt parkområde och parkering norr om stads- kyrkan. Planområdet är 3,6 ha.

Planeringsförutsättningar

Befintliga planer

För västra Alvsbacka finns byggnadsrännande beslut 1985-06-09 om parkeringsnödbanan.

Befintliga förhållanden

I kv Tor ligger Kanalskolan som är huvudbyggnad i funktionalistisk stil, uppförda 1922-35, ingår i bevarande- programmet för Skellefteå centrum antaget av kommunfullmäktige 1982-01-27.

Kv Sirius och Vega rymer främst kontorslokaler, samt en del verkstad- och föråldrelokaler, huvudsakligen nyttgjorda av Skellefteå Kraftverk som är fastighetsägare. Explo- nis räkna kontore- -konferens- och utställningslokaler finns i kv Sirius.

Planförslag

Förslagen stadsplaneändring föranledes av ett större nybyggnadsperspektiv i kv Vege. Det innefattar hotellet med 150 run, restauranger, kontorslokaler samt utemöteslokal- och mässlokaler. Denna lokaliserande till kv Vega motiverar förändringar av Kanalgatan samt utplanning av Kanalskolan.

Allmän plats

Hotellentén är förlagd vid Bäcksgatan och nuvarande mynning i Kanalgraven. Tomtmarken för att nå parkeringar inom kvartet är belägen ca 50 meter därför. En angöringszon redovisas vid hotellentén. För att klara runda vändningen från Södra Kanalgraven och tillfarten till angöringszonen för fordon som kommer från E4, föreslås köyring framför Kanalskolan förflyttad Österut.

Från angöringszonen vid hotellentén erfordras en rundkjörningsmöjlighet för att nå parkering inom kvartet. En föreslagen upplösning genom mittpartiet i Kanalgraven redovisas för att klara detta funktion.

Södra Kanalgraven rättas ut fram till anslutningen mot Nygatan. Nuvarande park- och parkeringsområde söderut utvidgas härigenom och föreslås utformas som en torgeta, med stenläggning, som delvis kan nyttjas för parkering.

Kvarteresmäl, allmänt ändamål

För kv Tor föreslås en gränsjustering i västra delen med hänsyn till ondskapen av gatuarken. Skolomt men minskas något.

Tillåten byggnadshöjd ändras till att anges i förhållande till grundkortens nollplan, i likhet med planbestämmandena för övriga kvarter i omgivningen. Bestämmelsen i gällande plan om särmeld miljöhygien för kulturhistoriskt värdefull bebyggelse bibehålls.

Kvarteresmäl, hantemlådämål

Nuvarande byggnader som kvarstår efter aktuella nybyggen utgör 19 000 kvm våningstall exklusive källarvåningar. Hotell- och kontorbygget uppad i ca 12 200 kvm ovan mark, samt drygt 3 000 kvm värdes i två källarplan med några lokaler respektive parkeringsgarage för 80 bilar. En garage-, föräls- och verkstadsbyggnad på 700 kvm är också aktuell att uppdosa lämna skytterparkeringssats inre ut i ca 100 bilar med en våningstall på ca 3 000 kvm.

För framtida utbyggnader återstår av byggnadsrätten en 15 000 kvm exklusive ersättning för de byggnader som kan komma att rivas.

Planutformningen är relativt flexibel. Tillåtna byggnadshöjder anges som taklisthöjder anpassade till biffiliga hus inom kvartet och i kv Tor. Precisionerade byggnadsrätten anges endast för visata huskroppar där högre byggnadshöjd tillåtas.
Längs Kanalgatan, åsom nuvarande kv Vega, ges möjligt-
het att uppföra hus förlegade i getalivet till nåma
höjd som Kamalskolan huvudbyggnader. Förgårdsmark
i gällande etadplan utgår. För det aktuella hotel-
 och kontorebygget föreslås högre tillåtna byggnadsutkast
indragen från getalivet. Hotelldelen föreslås som en
hög byggnadskropp, som rymer enligt våningar. För kon-
torsdelen, som mot gatan rymer fyra våningar, tillåts
en ytterligare våning indragen från getalivet.

Hotell- och kontorsdelen sammanbinder med en överglasad
gård, vars tillåtna höjd regleras av en särskild plan-
bestämmelse.

Förgårdsmark som inte får byggas redovisas mot kvar-
terets västra gräns och vid nuvarande entréen i sydvästra
höjden av kvartersområde. Ett sträck i nuvarande Bäckgatan
föreslås likaledes som mark som inte får byggas, då
det erfordras för kvarters interna kommunikationer.
Det utgör samtidigt gräns mellan områden med olika till-
låtna byggnadshöjder. Vid norra plangränserna, mot järn-
vägsområdet, föreslås en två meter bred zon som inte
får byggas.

I övrigt begränsas byggeaderätten av ett ledningsområde
i kvarters nordvästra del.

Parkerings-
område

I gällande plan finns ett parkeringsområde nordväst om
kyrkjan. Parkeringsområdet föreslås utvidgat. Området
omfattar i första hand för kv Slöjdpark samt för kyrkans
parkeringsbehov. Det avses utformat som en terräng
att tillsammans med omgivande mark på allmän plats.

Teknisk för-
körsfjärd, led-
ningsområde

Den tekniska försörjningen är utbyggd inom planområdet.
Med hänse på att kv Sirius och Vega sammanläggs och
mellanliggande del av Bäckgatan utgår som gatunät, kom-
mer där befintligt VA-ledningsnät att utgå. En dagvatten-
ledning i nordvästra delen av kv Sirius kommer att vara
kvar och att redovisas på plankarta som område för under
jordiska ledningar.

Planförslaget upprättas i samråd med kommunala nämnder
och förvaltningar, länsstyrelsens planenhet, statens
vägverk, televerket, Skellefteå kraftwerk m fl.

Utformningen av planförslaget har skett i samråd med
Skellefteå kraftverk som äger kv Vega och dem del av
kv Sirius som ingår i förslaget.

Statens Järnvägar har anfört att en två meter bred mark-
rema som inte får byggas är erfororderlig vid kv Sirius
norra gräns mot spårområdet. Detta tillsynedes i plan-
förslaget.

STADSARKITEKTKONTORET
Planavdelningen

O. Eriksson-Olita
Planarkitekt

Ann-Marie Andersson
Planarkitekt
<table>
<thead>
<tr>
<th>Fastighet</th>
<th>Lokalkategori/ väningsyta</th>
<th>Parkeringnorm/ antal p-pl/1000 m²</th>
<th>Erforderligt antal p-pl</th>
<th>Redovisat antal p-pl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nybygget i kv Vega</td>
<td>Hotell 5200 m²</td>
<td>18/1000</td>
<td>94</td>
<td>80 p-pl</td>
</tr>
<tr>
<td></td>
<td>Restaurang</td>
<td>15/1000</td>
<td>45</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>Kontor 4800 m²</td>
<td>15/1000</td>
<td>19</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Konferens/Mässalokaler 2400 m²</td>
<td>8/1000</td>
<td>19</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Befintlig byggnad</td>
<td>Kontor 1000 m²</td>
<td>15/1000</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Vega 21</td>
<td>(Lager/Förrådelokaler 960 m²)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>245 p-pl</td>
<td>207 p-pl</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sirius 19</td>
<td>Kontor 6000 m²</td>
<td>15/1000</td>
<td>102</td>
<td>62 p-pl</td>
</tr>
<tr>
<td>Befintliga byggnader</td>
<td>Konferenslokaler 3000 m²</td>
<td>8/1000</td>
<td>24</td>
<td>(varav 34 p-pl under tak)</td>
</tr>
<tr>
<td></td>
<td>Verkstädslokaler 250 m²</td>
<td>12/1000</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>(Lager, Förrådelokaler 2100 m²)</td>
<td>-</td>
<td>-</td>
<td>garage 25 p-pl</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>129 p-pl</td>
<td>87 p-pl</td>
</tr>
<tr>
<td>Sirius 18,</td>
<td>Kontor 2100 m²</td>
<td>15/1000</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>befintlig byggnad</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sirius 19</td>
<td>Verkstad 400 m²</td>
<td>12/1000</td>
<td>5</td>
<td>32 p-pl</td>
</tr>
<tr>
<td>befintlig byggnad</td>
<td>(Förråd 560 m²)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Sirius 20</td>
<td>Verkstad 250 m²</td>
<td>12/1000</td>
<td>3</td>
<td>38 p-pl</td>
</tr>
<tr>
<td>ny byggnad</td>
<td>(garage 450 m²)</td>
<td>-</td>
<td>-</td>
<td>136 p-pl</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>160 p-pl</td>
<td>215 p-pl</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totalt inom föreslagne kvarters</td>
<td></td>
<td></td>
<td>413 p-pl</td>
<td>280 p-pl</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Förslag till ändring av stadsplan för kv Vega samt delar
av kv Sirius och kv Tor m.m inom stadsdelen Älvsbacka i
Skellefteå kommun, Västerbottens län

Uprättat i december 1986 av stadsarkitektkontorets plan-
avdelning.

BESTÄMMELSER

§ 1

Planområdete användning

Byggnadsområden

a) Med Aq betecknat område får användas endast för
allmänt ändamål. Sådan förändring av befintlig
byggnad får ej vidtas som förvanskar dess yttre
form och allmänna karaktär. Ny bebyggelse får
ej uppföras. Utan hinder nära kan medges vilse
begränsad ny bebyggelse som med hänsyn till om-
rådets allmänna karaktär prövas lämplig.

b) Med H betecknat område får användas endast för
handel och ändamål.

Specialområden

Med Ip betecknat område får användas endast för par-
keringsändamål.

§ 2

Mark som icke eller endast i mindre omfattning får be-
byggas

1 mon

Med punktprickning betecknad mark får icke byggas.

2 mon

Med punkt- och ringprickning betecknad mark får under-
byggas och användas för handel och garage i två källar-
plan.

§ 3

Särskilda föreskrifter angående områden för allmänna
ledningar

1 mon

På om U betecknad mark får inte vidtas anordningar som
hindrar framdragande och underhåll av underjordiska all-
männa ledningar.

2 mon

Inom U och plus jämte siffror i cirkelsegment beteck-
nat område får icke vidtas åtgärder som hindrar fram-
dragande och underhåll av allmänna ledningar under det
höjdlinje 1 meter i förhållande till grundkartans noll-
plan som beteckningen anger.
§ 4
Exploatering av bebyggelseområde

Inom med siffror i parallelogram betecknat område får bebyggelse ovan markplanet uppföras med högst den summotions värde i kvadratmeter som siffran anger. Rönt område får icke indelas i mer än en tomt.

§ 5
Byggnads utformning

1 mom
Byggnad får uppföras med det antal våningar som bestämmelserna angående byggnads höjd möjliggör.

2 mom
På med plus jämte sifra i romb betecknat område får byggnad uppföras till högst den höjd i meter över grundkartans nollplan som siffran anger.

3 mom
Med punkt och ringen beteckning samt plus jämte sifra i romb betecknad mark får icke läggas på högre höjd över grundkartans nollplan än siffran anger.

4 mom
Med rutmäter betecknat område får täckas med genom- siktligt glas�� varu nivå med högst 2,5 meter för överskrida den linje som förbinda omgivande byggnaders högsta tillstånda höjder +36,0 respektive +46,0 meter över grundkartans nollplan. Kortsidorna under glas- toget får föreses med genomgående väggar av glas.

STADSARKITEKTEKONTORET
Planavdelningen

C Eriksson-Olsson
Planarkitekt

Ann-Marie Andersson
Planarkitekt

Tillhör hushållstimelen i Västerbottens
1987-06-12 Utdelt

Göran Frölberg

61
Bilaga 9. Plankarta för detaljändring för fastighet Sirius 16
Lagakraftbevis

Ändring av detaljplan, tillägg till plankarta och bestämmelser för del av fastigheten Sirius 16 inom stadsdelen Alvsbacka Skellefteå kommun, Västerbottens län.

Byggs- och miljöämnder har antagit detaljplanen 2018-04-05 § 21.

Eftersom byggs- och miljöämnderns beslut inte har överklagats har beslutet vunnit laga kraft 2018-04-27.

Samhällstygnad
Fysisk planering, plan

Carina Lundström
Administrator
§ 81

Dnr 2017.663

Ändring av detaljplan för del av Sirius 16 inom stadsdelen Älvsbacka

Sammanfattning

Detaljplanen upprättas med standardförslag som.

Syftet med planen är att möjliggöra en tillbyggnad på två våningar samt skydda de värdefulla byggnaderna.

Planen bedöms inte innebära någon betydande miljöpåverkan.

Totalt en tvåställd synpunkt: Länstyrelsen anser att handlingen är korrekt och att framtida etablering i Centrals stan kan påverka kulturmiljön men har i övrigt ingen erin

Beslut

Bygg- och miljöområden intar detaljplanen.

Beslutssunderlag

Samhällsbyggnads tjänstekravelse 2018-01-14
Granskningsutkast 2018-03-22
Planen utförd 2018
Förlag på utförande, Collage arkitekter 2018-02-21
Paragraf 2018.03.22

Paragraf 2018.03.22

Beslutet sändes till:

Länstyrelsen
Kommunala lantbruksämbetet
Kommunstyrelsen
Kommunbestyrelsens kontoret, mark och byggnadsverk
Samhällsbyggnad, plan
Sakläggare som inte tillgodosätts

Justering (sign)

Utdragsbevärkande

64