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A B S T R A C T   

Prolonging garment longevity is a well-recognized key strategy to reduce the overall environmental impact in the 
textile and clothing sector. In this context, change or degradation in esthetic or visual appeal of a garment with 
usage is an important factor that largely influence its longevity. Therefore, to engineer the garments for a 
required lifetime or prolong longevity, there is a need for predictive systems that can forecast the trajectory of 
visual degradation based on material/structural parameters or use conditions that can guide the practitioners for 
an optimal design. This paper develops a deep learning based predictive system for washing-induced visual 
change or degradation of selected garment areas. The study follows a systematic experimental design to generate 
and capture visual degradation in garment and equivalent fabric samples through 70 cycles in a controlled 
environment following guideline from relevant washing standards. Further, the generated data is utilized to train 
conditional Generative Adversarial Network-based deep learning model that learns the degradation pattern and 
links it to washing cycles and other seam properties. In addition, the predicted results are compared with 
experimental data using Frechet Inception Distance, to ascertain that the system prediction are visually similar to 
the experimental data and the prediction quality improves with training process.   

1. Introduction 

To compensate overall environmental impacts stemming from the 
surging consumption of consumer goods, several emerging strategies are 
being practiced aiming towards a sustainable paradigm of production 
and consumption (Akenji et al., 2015). Prolonging or extending the 
product lifetime is one such key strategy (Rogers et al., 2015; Goworek 
et al., 2020). It aims at meeting the global consumer demand by 
extending the product lifetime that also leads to slowing-down the 
consumption cycle, reducing new products, and consequently 
decreasing the demand for raw materials (Rogers et al., 2015). In 
addition, extending product longevity has been identified as an impor
tant facilitating factor for circular business models (Gillabel et al., 
2021). 

Currently, textiles and clothing are estimated as the fourth highest- 
pressure category in terms of using the primary raw material con
sumption (Manshoven et al., 2019) and less than one percent of recycled 
textiles are reused in new clothing (Ellen MacArthur Foundation, 2017). 
In this context, clothing longevity is argued to be the single most critical 
strategy that can help in substantial reduction of the environmental 

footprint (Cooper et al., 2013). According to a UK based study by 
Downes et al. (2011), about 100,000 tonnes of CO2-eq and 2000 tonnes 
of waste per year can be reduced by extending the lifespan of 10% of 
t-shirts. On the contrary, the utilization of clothing has almost halved (or 
the disposal rate has almost doubled) between 2000 and 2015 (Ellen 
MacArthur Foundation, 2017). With this trajectory, the textile and 
clothing industry is expected to account for nearly 26% of the carbon 
emission budget on the 2-degree Celsius pathway as per Paris agreement 
by the year 2050 (Ellen MacArthur Foundation, 2017). 

For garment longevity, previous studies have highlighted numerous 
barriers related to businesses, product development, and usage that 
hinder prolonging the lifetime (Jensen et al., 2021; Goworek et al., 
2020; Oxborrow et al., 2015). Additionally, the inability to judge or 
predict longevity is a key concern for retailers, which in turn hinders the 
ability to communicate its benefit to consumers in a meaningful way, 
thus resulting in opportunity loss. For instance, extant studies (e.g. 
Langley et al. (2013), BSR/NICE (2012)) have found how customer 
preference and even willingness to pay can be considerably higher for 
long-life, durable products. According to Jacobs and Hörisch (2021), the 
lack of information on longevity leads to information asymmetry 
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between consumers and retailers that may result in adverse selection 
problems, such as the increased risk of purchasing a short-lived item by 
misjudging it to be long-lasting. Jensen et al. (2021) highlighted how 
this can hinder consumers in not only purchasing an appropriate prod
uct to meet their demand but also in optimally using the product before 
disposal. 

While there are different ways to determine product lifetime or 
longevity, e.g. in terms of degradation of different functionalities over 
time or usage frequency, in different product types; predicting garment 
longevity is complex due to its multi-scalar nature. Besides functional 
properties, visual appearance is a vital factor in determining garment 
longevity (Gnanapragasam et al., 2018). Consequently, how such visual 
appearance, which in turn influences the garment’s esthetic appeal, 
degrades over time is an important factor that decides the end-of-life 
(Wakes et al., 2020), yet difficult to determine. Further, while studies 
on garment longevity encompassing various closely related concepts of 
product durability – which include the aspects of material durability, 
design, etc. – as well as consumer use behavior can be found (eg. 
(McLaren et al., 2015; Laitala and Klepp, 2021) to mention a few), 
exploring longevity in terms of visual or esthetic degradation is scantly 
explored in extant literature so far. 

The absence of information that provides a projection of how ex
pected longevity changes over time is a critical barrier that not only 
hinders the consumers to make an informed purchasing decision but also 
makes it difficult for the consumers to use the garment. At the most, 
companies rely on practices such as product development iterations to 
improve the performance or for setting high-performance standards 
(Jensen et al., 2021), which may require extensive hit-and-trial experi
ments before reaching an optimal design and materials parameters for a 
pre-decided lifetime. Thus longevity predictive systems are not only of 
critical importance for prolonging garment longevity or designing gar
ments for the desired lifetime but also for the consumers to make an 
informed purchase decision. 

In light to this, our study focuses on developing a model for pre
dicting the degradation of visual appearance of garments that mainly 
occurs due to washing-induced visual changes. A clear premise for our 
research lies in the axiom that a garment that degrades faster in visual 
appearance is expected to lose its esthetic appeal, and thus gets dis
carded earlier in comparison to a similar garment that loses its 
appearance slowly. It is further in line with the findings of multiple 
studies (e.g. Chapman (2021)) which reveal garment esthetic appeal and 
how it degrades over time as an important factor for longevity. The 
overall visual changes in a garment can be attributed to various factors, 
such as changes in shade, color, texture, luster etc. However, to build a 
predictive system based on these parameters, one may require addi
tional effort to predict each of these parameters individually, and sub
sequently to re-create overall visual change to make it comprehensible 
to the end-users, it requires an aggregated system that can combine all 
these parameters. Therefore, in order to reduce the complexity, our 
study adopts a pragmatic approach that employs machine learning 
models which are trained for predicting the overall visualization for 
given degradation conditions. 

The predictive system is based on the deep-learning-based condi
tional Generative Adversarial Network (GAN) that is trained for pre
dicting and rendering the visual degradation in the seam area joining 
two fabric pieces. The key contribution of this paper is linked to the 
novel way of predicting and visualizing garment degradation by the 
application of artificial intelligence. While in this study, a limited 
number of parameters are used for demonstrating a novel way of rep
resenting visual degradation, the process and method can be followed 
for scaling up the model for incorporating additional parameters. 
Therefore this paper makes a critical contribution by laying down the 
foundation for the prediction of visual degradation in garments, and 
covers an important research gap. 

The rest of the study follows the following structure. Section 2 pre
sents related literature, and Section 3 discusses the materials and 

methods – including the experimental procedure for empirical data 
generation and labeling, and the description of GAN model development 
along with the training process – used in this study. Further Section 4 
presents the results and finally Section 5 discusses the main conclusions 
and future research directions. 

2. Garment longevity and visual degradation 

2.1. Garment longevity 

Prolonging garment longevity has been widely acknowledged as an 
effective strategy to prevent waste and overall reduce the product’s 
environmental impact (Klepp et al., 2020; Oxborrow et al., 2015). 
Existing literature has focused on understanding garment longevity from 
a wide range of aspects, ranging from identifying the concept of clothing 
longevity or lifespan (Klepp et al., 2020) and understanding consumer 
behviour around longevity (Laitala and Klepp, 2020, 2021; Klepp et al., 
2020; Langley et al., 2013), to strategies for prolonging it by involving 
different stakeholders and paths (Gwilt and Pal, 2017; Cooper et al., 
2016). While the overall lifetime of a garment is decided by a combi
nation of parameters including consumer’s acceptance and willingness 
to actively use the product, the product durability – which is an 
important component for prolonging product longevity – is closely 
linked with the material degradation over use and time. 

Garments are predominantly made of textiles that complex struc
tures of fibers assemblies manufactured either by forming web-like 
layers of fibers or by assembling fibers into yarns that are then inter
laced or inter-looped to form 2D sheet-like textile fabrics (Lomov and 
Verpoest, 2005). Clothes or garments, in this context, are next in the 
level of structural hierarchy that are formed by cutting and sewing 
textile fabrics in a defined fashion. The physical, mechanical, and visual 
characteristics and their changes/degradation/aging are the results of a 
complex interaction of material components on different levels of 
structure hierarchy, and their interaction with the external actions or the 
environment. 

Drawing upon the complex material mechanics and a large number 
of variables, measurement or testing of durability in real life is a com
plex task besides being time-consuming, expensive, and difficult (Bide, 
2012). Therefore, instead of using real-life conditions, one way to un
derstand or predict the durability is approached by the standard me
chanical or chemical tests in laboratory conditions in which the prime 
focus is testing if the selected attributes meet certain pre-defined quality 
criteria(Thiry, 2004). This approach is, therefore, primarily emphasizes 
on conforming to the performance specification rather than looking into 
the degradation behavior. Another experimental approach that many 
studies have followed is iterative measurements of properties under the 
incremental cycles of actions or events in a laboratory or real-life con
ditions that lead to degradation. For example, Agarwal et al. (2011) 
investigate the degradation of a series of mechanical properties of 
knitted textiles with washing, where the testing or measurements were 
made at certain washing intervals to track the change in mechanical 
properties. Similarly, Schlich and Neuss (2019) have investigated the 
effect of up to 50 times of home washing and drying on degradation or 
change in various mechanical and visual properties of denim fabrics. In 
addition, often statistical models are used which primarily focus on 
learning the material behavior from experimental data to state the 
durability. For example, Slater (1986) models the degradation of a 
garment that follows declining power curves i.e. 
P = C1(1 − t/100)k1 +C2(1 − t/100)k2 +...+Cn(1 − t/100)kn where P is 
the instantaneous value of the residual property (that varies between 
0% − 100%), t is the elapsed garment lifetime (varies between 0% −

100%), and C1,⋯,Cn and k1,⋯, kn are the statistical fitting constants. 
Therefore, as t increases, the value of residual property P decreases. 
Mashaly and Hussein (2011) use factorial design to investigate the effect 
of structural and material parameters and subsequently develop a 
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predictive model for the performance of elastic bands in garments. 
However, another critical aspect of garment longevity that tran

scends such physical durability properties is related to its esthetic appeal 
which is largely influenced by the garment visual appearance - but as 
highlighted above is scantly explored in extant studies due to technical 
limitations, such as data insufficiency, lack of methods etc. For visual or 
esthetic changes, most of the existing studies have focused on changes in 
color or shade to express in certain numerical units e.g. percentage 
change in color (Sharma et al., 2012), average chroma change (Toscani 
et al., 2020; Agarwal et al., 2011) and, color shade change in terms of 
rating (Mondal and Khan, 2014). Measuring visual properties with a 
numerical measure – which can be subjective (e.g. panel assessment) or 
objective (e.g. chroma change) in nature – reduces the complexity to 
express the change and make it possible to use regression models for the 
prediction of degradation behavior. However, the main challenge is 
related to converting, connecting, or visualizing the adopted numerical 
scale into the real visual degradation without having an explicit refer
ence scale or examples. 

2.2. Artificial intelligence for visual predictions 

In recent times, a new stem of research in artificial has focused on the 
development of predictive systems for realistic visuals i.e. in the form of 
images, by the application of Generative Neural Networks or GANs 
based deep learning models(Creswell et al., 2018). A GAN, in general, 
comprises of two neural networks namely generator – which is trained 
for generating images, and discriminator – which is trained for classi
fying real images from synthetic or the generator produced images 
(ibid). The purpose of the discriminator is to provide feedback to the 
generator in the training process. Interestingly, GANs have been used to 
predict the human face visual changes with aging where the training was 
carried out by exposing the GANs to training image datasets of human 
faces that are tagged with age information which allows the system to 
learn the human face as a function of age (Antipov et al., 2017; Tang 
et al., 2018). Papadopoulos et al. (2021) have further presented a model 
for material aging by the application of GANs which maps the input 
materials to degraded material over a time axis. Within the field of 
textiles, GAN-based systems have been demonstrated for predicting and 
rendering a range of complex visual properties of textiles such as 
wrinkles, deformation, and virtual fitting (Han et al., 2018; Wu et al., 
2021; Yuan and Moghaddam, 2020; Lahner et al., 2018). These systems 
are trained by exposing them to the target dataset i.e. image labeled with 
input parameters or properties, while allowing the neural networks to 
adjust the internal parameters which allow the generator to produce the 
realistic images conditioned to the input labels. Further, a stem of 
research has focused on developing GAN-based systems (e.g. TailorGAN 
(Chen et al., 2020), ClothGAN (Wu et al., 2021)) that aim at assisting the 
designers by simulating realistic visuals of garments based on theoretical 
changes made in the design. While the GANs have found great popu
larity for simulating visuals in the field of textile and clothing, the 
investigation or development of predictive-system for garment visual 
degradation or aging has remained rather elusive. Most studies have 
focused on textile or garment visualization from design or dynamics 
perspective. This can be linked to the fact that training GANs require big 
datasets which require a lot of human effort (Nuha and Afiahayati, 
2018). There are existing image-based open databases available for 
textile and clothing (such as DeepFashion (Liu et al., 2016), 
Fashion-minst (Xiao et al., 2017)) which have been used for training 
GANs in many studies. However, to the best of authors’ knowledge, 
there is no database in the public domain that has garment images which 
show the time-scale-based visual degradation – which can be linked to 
the lack of studies on utilizing generative networks based deep learning 
models for investigating garment visual degradation. 

3. Materials and methods 

3.1. Materials 

In real-life situations, garment degradation is not uniform in all lo
cations. The expected degradation or visual changes can be broadly 
connected with parameters such as the location of the component and 
used material, and construction. The visual degradation varies with the 
location as the mechanical stress and abrasion connected with use 
condition are not uniform on all parts as some parts or locations (e.g. 
trousers part on or near to the knee) tend to have high stress because of 
interactions with wearer’s body parts or external objects or environment 
as compared to other parts or locations, resulting in a differential rate of 
visual or mechanical degradation (Toresson Grip and Gatzwiller, 2020). 
In addition, there is a range of sources which contribute to the degra
dation. For example, garment washing not only induces abrasion and 
mechanical stresses but also exposes the materials to chemicals (such as 
cleaning agents) and water that result in the visual and mechanical 
degradation of the garments. Similarly, textiles having different physical 
properties and construction parameters are joined together to construct 
various parts of garments, which degrade differently or at different rates 
during the use of a garment and result in visual changes on seams (Yıldız 
and Pamuk, 2021; Kamali et al., 2020). 

In this study, we focus on the visual degradation of the garment 
seams where garment washing is taken as a degradation simulating 
parameter. The selection of washing as degradation parameter is moti
vated by the fact that washing-induced color change is enlisted as one of 
the main causes of clothing disposal accounting to nearly 5% of the 
reasons for clothing disposal due to durability failure/faults (Bauer 
et al., 2018). Further, garment washing can be easily controlled in lab
oratory environment by controlling the washing conditions, treatment 
time and using the same washing machines for different washing cycles. 
Whereas other degradation drivers such as human body movement or 
degradation under real use conditions are either difficult to replicate in a 
laboratory environment or difficult to control if conducted in real-life 
scenario. Similarly, seam area is selected for study as garment seam 
appearance is not only considered as an important quality aspect for 
customer acceptance (Kamali et al., 2020), but also one of the most 
vulnerable positions in terms of visual changes when subjected to 
washing. 

For our study, 17 pairs of trousers (as experimental garment samples) 
were supplied by a Swedish outdoor retail brand from the same stock 
keeping unit that were produced from fabric from the same production 
lot (experimental fabric samples), in order to minimize the material 
variations and their impact on the outcome. These samples were 
exposed to a systematic plan of washing and hand drying to monitor the 
incremental degradation over time and progressive wash cycles, as 
explained in Section 3.2.1. We focus on three seam locations coded as 
AA, AB, and BA, as shown in Fig. 1(a). The coding assigned originated 
from the type of fabrics joined over the seams (A and B), where the first 
letter of the coding indicates on which fabric the double stitching is 
placed, this is also the fabric perceived as “on top”. For example AB 
indicates that the fabric A is joined with another fabric B where A is 
placed on the top of B. It should be noted that the fabric A is composed of 
65% polyester and 35% cotton with areal density of 194g/m2, whereas 
fabric B is composed of 63% polyamide, 26% polyester and 11% elas
tane with areal density of 237g/m2. The location of the seams is indi
cated is indicated in Fig. 1(a), where the white fabric indicates fabric A 
and gray fabric indicates fabric B. In addition, fabric samples were also 
developed by joining fabric having same characteristics as that of the 
garments in terms fabric, threads, seam stitch etc. 
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3.2. Methods 

3.2.1. Experimental setup 
The degradation simulation, i.e. garment washing and hang drying 

was carried out with certain modifications as per guidelines for home 
washing from Swedish Standard SS-EN ISO 6330:20121. The tempera
ture of each washing cycle was 40 C◦ and with a regular domestic 
detergent for color garments. Each wash load contains three trousers, 
three pieces of fabric, and enough ballast to make the load weigh 2.0 ±

0.1 kgs. A specific washing scheme was implemented to distribute the 
trousers and fabrics throughout the washing cycles, as shown in Table 1. 
Each column in Table 1 represents a wash-run that consists of five wash 

cycles and one overnight hang-drying cycle. In the washing process, we 
used two washing machines represented by W1 and W2 and the samples 
loading in washing machine are presented by ✓ and × for W1 and W2, 
respectively. It must be noted that samples t15, t16, f15 and f16 were 
introduced to make the load even for wash runs 18 and 19. 

3.2.2. Data acquisition 
According to the design of experiment, the fabric- and garment- 

sample images were captured in a room with controlled light condi
tions after each wash-run. The setup included a digital camera, a light 
panel with controllable light intensity fixed on a tripod stand facing 
vertically on the horizontal plane, as shown in Fig. 1(b). The samples 
were placed on the plane and the images were captured of all fabrics and 
garments sampled on selected position for zero (i.e. no wash) to 70 
washes on a regular interval of five washes. To ensure uniformity in 
imaging of the samples, the camera was fixed at the tripod and a 
reference scale template was used to calibrate the camera zooming. The 
light panel is every time calibrated to the same light intensity to ensure 
uniform brightness during the whole image acquisition process. 

3.2.3. Labeling 
In this step, the images acquired in Section 3.2.2 were tagged for 

seam positions. The tagging was carried out by an open-source appli
cation named LabelImg2. The images were first imported and then the 
seam area was tagged on the fabric samples and selected seam positions 
on garments, as shown in Fig. 1(c). Further, the tagged position of seam 
in the images was labeled for three parameters namely, sample type 
(fabric, garment), the seam joining fabric (AA, AB, BA), wash number 
(0 − 70) for which the images were captured. Further, a python program 
was developed to extract the images from random positions along the 
tagged seam line of required dimensions, which were subsequently used 
for visual feature mapping and machine learning purposes. For the 
model development, originally, image patches of dimensions 512 × 512 
pixels were extracted for multiple random positions along the seam line 
that resulted in a labeled dataset of ∼ 9000 image patches. The extracted 
images were further down-sampled to dimensions of 128 × 128 pixels 
for faster processing in the machine learning process. It must be noted 
that all image patches are not unique because when the random posi
tions of extraction are close to each other, it resulted in some image 
patches with the overlapping area. An example dataset of image patches 
is shown in Fig. 2. 

3.3. Model specification 

Generative Adversarial Networks or GANs, as aforementioned, con
sists of a combination of two deep neural networks, namely Generator 
(G) and Discriminator (D). The function of G is to generate a synthetic 
image based on given inputs. The input consists of two parts, namely 
random noise (R) and conditions (C), therefore the aim of G is to 
generate the images for given condition C. The discriminator D takes the 
synthetic images S and real images I input along with conditions C, 
identify some measure to calculate the difference between the real and 
synthetic images, and subsequently provides training feedback to G to 
improve the quality of synthetic images. In short, G trains with the help 
of D to generate synthetic images such that the latter cannot make a 
distinction between real images and synthetic images for given condi
tional inputs. At the same time, D trains separately to identify the dif
ference between real and synthetic images so that it can provide 
improvement feedback to G. It should be noted that the GANs with 
conditional inputs isare also known as conditional GANs. The GAN setup 
used in this research is shown in Fig. 3. 

The reader is directed to Fig. S1 and Fig. S2 in supplementary in
formation for the detailed structure for G and D respectively. C in our 

Fig. 1. Illustration of (a) the selected seam area on garments (b) experimental 
setup for image acquisition and (c) procedure for labeling the seam area. 

1 https://www.sis.se/produkter/textil–och-laderteknik-d5f82ac0/produkter- 
fran-textilindustrin/allmant/sseniso63302012/ 2 https://github.com/tzutalin/labelImg 
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research is a six bit parameter combining three conditions associated 
with labeled image i.e. sample type, seam joining fabrics, wash number. 
One-hot encoding is used for categorical conditions i.e. sample type 
(expressed as AA = [0, 0, 1], AB = [0,1, 0], BA = [1,0, 0]) and seam 
joining (expressed as ‘fabric’ or F = [0,1], ‘garment’ or G = [1, 0]), 
whereas wash number is a numerical value. Thus, a sample image 

labeled as AA on ‘fabric’ for wash number 35 is expressed as a six-bit 
parameter as [35,0, 0,1, 0, 1]. 

As aforementioned, the purpose of training D is to maximize the 
capacity to identify synthetic images from real images, the training of G 
is focused to produce synthetic images that look similar to the real im
ages. Therefore, G is focused on generating the synthetic images that can 

Table 1 
Experimental design for washing.   

Wash run  

Sample IDs 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Total washes 
t1, f1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓      70 
t2, f2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓       65 
t3, f3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓        60 
t4, f4 Х Х Х Х Х Х Х Х Х Х Х         55 
t5, f5 Х Х Х Х Х Х Х Х Х Х          50 
t6, f6 Х Х Х Х Х Х Х Х Х           45 
t7, f7          Х Х Х Х Х Х Х Х   40 
t8, f8           Х Х Х Х Х Х Х   35 
t9, f9            Х Х Х Х Х Х   30 
t10, f10             ✓ ✓ ✓ ✓ ✓   25 
t11, f11              ✓ ✓ ✓ ✓   20 
t12, f12               ✓ ✓ ✓   15 
t13, f13                  ✓ ✓ 10 
t14, f14                  ✓  5 
t15, f15                  ✓ ✓ 10 
t16, f16                   ✓ 5 
t17, f17                    0 
Total samples in W1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6  
Total samples in W2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 0 0   

Fig. 2. Example image patches for extracted form (a) fabric and (b) garment samples. For each wash number, three representative image patches are illustrate to 
distribution in visual features. 
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fool D. Accordingly the training process of a GAN involves maximal and 
minimal game problem, as shown below (Mirza and Osindero, 2014; 
Gulrajani et al., 2017), 

min
G

max
D

(D,G) = E
x∼Pr

[log(D(x) ) ] − E
x̃∼Pg

[log(1 − D(x̃) ) ]

where, Pr is the distribution of real data, whereas Pg is the distribution 
of generated data, which is implicitly defined ̃x = G(z) where z ∼ p(z) is 
the prior input noise. 

The above objective function is further extended to train D and G 
with conditional input parameter by feeding the conditional inputs y 
along with prior noise. In other words, the above-mentioned objective 
function is modified as (Mirza and Osindero, 2014), 

min
G

max
D

(D,G) = E
x∼Pr

[log(D(x|y) ) ] − E
x̃∼Pg

[log(1 − D(x̃|y) ) ]

However, it has been highlighted that the originally objective func
tion is equivalent to minimizing the Jensen-Shannon divergence be
tween the data and model distributions, which exhibits problems such as 
mode collapse and vanishing gradient (Arjovsky et al., 2017; Gulrajani 
et al., 2017). In order to improve the training process, Arjovsky et al. 
(2017) proposed using Wasserstein distance, also known as Earth-Mover 
distance reconstructed using the Kantorovich-Rubinstein duality, as a 
measuring parameter for D to identify the difference between the real 
and synthetic images. This solves the issues associated with 
Jensen-Shannon divergence (ibid). In addition, Gulrajani et al. (2017) 
proposed the use of gradient penalty with Wasserstein distance in the 
objective function, that helps in stabilizing the training process and 
further improve the quality of generated images. Therefore, Gulrajani 
et al. (2017) proposed an objective function for GANs with Wasserstein 
distance and gradient penalty, also known as Wasserstein Generative 
Adversarial Network with Gradient Penelty or WGAN-GP, as shown 
below, 

min
G

max
D∈D

(D,G) = E
x̃∼Pg

[D(x̃) ] − E
x∼Pr

[D(x̃) ]+ λ E
x̃∼P

̃
x̂

[(
||∇ x̂ D(x̂)||2 − 1

)2
]

where, D is the set of 1-Lipschitz functions, λ is the gradient penalty 
coefficient, x̂ is sampling along straight lines between the true data 
distribution Px̂ is the sampling along the straight line between Pg and 
Pr. 

In our study, we want to generate the visual degradation in garment 
images, where the generator also needs to take the certain input con
ditional parameters while generating the images. Therefore, we use the 
WGAN-GP that uses conditional parameters as additional information 
supplied with prior noise. Accordingly, we use the following objective 
function that incorporate conditional parameters (Zheng et al., 2020), 

min
G

max
D∈D

(D,G) = E
x̃∼Pg

[D(x̃|y) ] − E
x∼Pr

[D(x̃|y) ] + λ E
x̃∼P

̃
x̂

[(
||∇x̂ D(x̂|y)||2 − 1

)2
]

4. Results and analysis 

The effect of washing is noticeable for samples AA and AB for both 
fabric and garment samples, as there is a visible change with an increase 
in wash number as shown in Fig. 2. However, no significant change is 

observed for BA samples in both cases i.e. fabric and garment. This in
dicates that the degradation of a textile component not only depends on 
its inherent properties but also on the other connected components. 
Hence in order to develop a predictive system that can learn such var
iations, the GAN model (described in Section 3.3) is trained with the 
experimental data. 

The GAN model was trained with a batch-size of 64 images in each 
iteration. The training process was evaluated using Frechet Inception 
Distance (FID) proposed by Heusel et al. (2017). FID estimates the sim
ilarity of the synthetically generated images to the real images by using a 
pre-trained network that classifies each image for similarity with 1000 
known objects. The minimum FID score is zero for two image sets that 
are same, which further increases as the difference occurs among the 
image sets. In our study, we use the pretrained network inception_v33 

available with PyTorch4. Further, FID is calculated using the following 
equation (Borji, 2019), 

FID(r, g) = ||μr − μg||
2
+Tr

(
Σr +Σg − 2

(
ΣrΣg

)1/2
)

where (μr,Σr) and 
(

μg,Σg

)
are the mean and variance of real and 

generated image datasets. 
As mentioned, the calculation of FID involves both real images and 

correspondeing synthetic images that are required to be generated for 
same conditions or labels as that of real images. However, one may not 
expect a huge improvement in the image quality in one iteration of 
learning as it involves a limited image-set and the learning rate is 
controlled by the learning hyperparameter. Therefore, it is reasonable 
not to calculate FID score after every training iteration in order to save 
computation time. In the training process, the FID score was calculated 
after a gap of 200 training iterations starting from 100th training iter
ation. The variation of FID score with training iteration is shown in Fig. 4 
of each iteration consisting of 64 images. 

It is evident from the graph that the FID score drops suddenly in first 
1500 iteration to about 75 after which the marginal drop starts 
decreasing with increasing training iteration. The FID score after 25000 
training iterations becomes almost steady with the value approximately 
ranging between 13 and 19. The inset images in Fig. 4 show the evo
lution of generated images with the same input conditions and noise, 
where an improvement in the quality of images can be clearly observed. 
Considering the near saturation in improvement in FID score, the 
training was carried out until 33100 iterations. The comparison of real 
images with synthetic images generated on different training iterations 

Fig. 3. Schematic of conditional Generative Adversarial Network(GAN).  

Fig. 4. Variation of the FID score with training iteration.  

3 https://pytorch.org/hub/pytorch_vision_inception_v3/  
4 https://pytorch.org/ 
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is shown in Fig. S3 in supplementary information. 
In order to check the quality of prediction for different conditions, we 

calculated the FID score for different conditions: sample type and seam 
joining. In this analysis, a set of real images is taken first and then syn
thetic images were generated for all combinations related to sample type 
and seam joining while keeping the wash label sequence the same for set 
of images in order make the FID score comparable. The calculated FID 
score for different conditions is shown in Fig. 5. The FID score for same 
set of real and synthetic images varies between ~21 and ~45. When 
comparing the real image-sets with synthetic image-sets generated for 
different conditions, except for synthetic image set G − AB (i.e. sample 
type = AB and seam joining = G) and synthetic image set G − BA, 
minimum FID score has resulted for the synthetic image-set that is 
generated conditions that matches with the real image-set. This implies 
that the synthetic images are influenced by the provided conditions on 
the sample type and seam joining which are learned by the model to a 
certain extent. However, for the synthetic image set G − AB minimum 
FID is obtained with real image set G − AA (and similar for synthetic 
image set G − BA which has minimum FID with real image set F-BA), 
which implies that further improvements are required in the model for 
better prediction where the conditions are more clearly interpreted by 
the system. 

The visual degradation in the sample in comparison with the syn
thetic image set produced by the trained model is shown further shown 
in Fig. 6 and Fig. 7, for fabric and garment samples respectively. In the 
figures, R and S indicate the real images and synthetic or model- 
generated images respectively for different seam combinations namely 
AA, AB, and BA. In general, there is not much difference observed in the 
visual changes for fabric and garment samples, which indicates that the 
visual degradation follows the same pattern in both cases. In case of 
model prediction, there are certain visible differences between real and 
model generated images. For example, from simple visual inspection of 
the images, it can be inferred that the seam texture variations with 
washing for samples AA and AB are higher in real images as compared 
with the model-generated images. Nonetheless, the change in seam 
texture – i.e. increasing waviness in the seam area that indicates the 
visual changes – for model-generated images for AA and AB follows the 
pattern observed in the real images. On the other hand, there is no 
significant texture variation observed in the real images for BA samples, 
which indicates that no significant visual degradation has occurred in 

the samples for 70 wash cycles. Interestingly, the model-generated im
ages also follow the same pattern i.e. no significant change in seam 
texture is observed in the model-generated images, which indicates the 
trained model has learned about conditions. It must be noted that the 
above observations of seam texture change are based on simple visual 
analysis of Fig. 6 and Fig. 7. For further analysis of texture change that is 
linked to visual degradation of the samples, suitable quantitative mea
sures may be further required. 

5. Conclusions 

In this paper, we introduce a predictive system for garment visual 
degradation. The predictive system is based on the conditional GAN that 
is trained to predict or simulate the realistic visuals of garments seams 
based on three input parameters namely wash number, seam type, and 
seam location. The trained system is tested using the FID score to 
quantify the quality of simulated visuals. Further, the application of the 
trained system is shown with the help of the simulated garments visuals 
for different wash cycles that are compared against the actual visual 
changes in the garment and fabric samples. In general, from visual 
analysis, the predictive system appears to follow the visual degradation 
pattern for increasing wash as observed in the real images which in
dicates that the predictive system simulates the visual degradation 
similar to real degradation. Therefore, as a first step toward the devel
opment of a system prediction for generating data for garment visual 
degradation that can help in estimating the garment longevity is suc
cessfully demonstrated. 

However, there are certain limitations associated with the study that 
need to be addressed in order to implement or exploit such systems in 
real application scenarios. While the study demonstrates the application 
of conditional GAN for generating the data for visual degradation 
analysis, at this stage no garment visual degradation measure or scale is 
used that maps the garment longevity or measure the system perfor
mance. To improve the system or establish the quality of prediction 
performance of the system, it is important to use objective measures that 
quantify the garment visual degradation. Therefore, the current work is 
limited to the feasibility of deep learning based GAN in creating visual 
data that can be used to assess the garment degradation and longevity. In 
addition, no physical or structural parameter of the textile is considered 
in this study. In practice, textile materials are characterized for various 
mechanical and chemical properties that can be achieved by controlling 
different design, structural and/or manufacturing parameters. There
fore, for the implementation of conditional GANs based predictive sys
tem, it is important to consider textile material characterization 
parameters as input for predicting visual degradation. This will allow 
the practitioners to not only estimate but also tune the garment visual 
degradation by changing the impacting material or manufacturing pa
rameters. In addition, to develop a comprehensive system for longevity, 
it is important to combine visual degradation behavior with the degra
dation of mechanical and functional degradation of the garments as the 
end-of-life of a garment is not limited to the visual aspects. In this di
rection, further research is required that can first predict the functional 
degradation and then maps it with the visual degradation of the 
garment. In addition, to gauze the system performance, suitable objec
tive visual degradation measures need to be devised that can be used to 
check the quality of GAN predictions. 
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