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Abstract: In classical two-dimensional (2D) geodetic networks, reducing slope distances to horizontal ones is an important task for
engineers. These horizontal distances along with horizontal directions are used in 2D geodetic adjustment. The common practice for this
reduction is the use of vertical angles to reduce distances using trigonometric rules. However, one faces systematic effects when using vertical
angles. These effects are mainly due to refraction, deflection of the vertical (DOV), and the geometric effect of the reference surface (sphere or
ellipsoid). To mitigate refraction and DOVeffects, one can choose to observe the vertical angles reciprocally if the baseline points’ elevation
difference is small. This paper quantifies these effects and proposes a proper solution to eliminate the effects in small-scale geodetic networks
(where the longest distances are less than 5 km). The goal is to calculate slope distances into horizontal ones appropriately. For this purpose,
we used the SWEN17_RH2000 quasigeoid model (in Sweden) to study the impact of the DOVapplying different baseline lengths, azimuths,
and vertical angles. Finally, we propose an approach to study the impact of the geometric effect on vertical angles. We illustrate that the
DOVand the geometric effects on vertical angles measured reciprocally are significant if the height difference of the start point and endpoint
in the baseline is large. Geometric correction should be considered for the measured vertical angles to calculate horizontal distances
correctly if the network points are not on the same elevation, even if the vertical angles are measured reciprocally. DOI: 10.1061/
(ASCE)SU.1943-5428.0000407. This work is made available under the terms of the Creative Commons Attribution 4.0 International license,
https://creativecommons.org/licenses/by/4.0/.

Author keywords: Geodetic network; Deflections of the vertical (DOV); Geometric effects; Normal skewness; Refraction; Vertical angle.

Introduction

Establishing precise geodetic control networks (cf. Schaffrin 1985;
Grafarend and Sansò 2012) is one of the most important issues in
geodesy and land surveying engineering. It might be thought that
designating geodetic networks is a settled issue because of existing
space-based (e.g., GNSS) and nongeodetic sensors (e.g., strain-
gauge, tiltmeters) technologies, but this is not true in reality. In this
paper, we will show that challenges remain and that we need new
data processing approaches and precise measurement routines to
maintain geodetic control networks. For example, we are still using
classical geodetic measurements and methods to monitor dams,
landslides (especially in rough topography areas), and tunnels
where it is not practical or possible to collect global navigation

satellite systems (GNSS) observations. In addition, classical geo-
detic observations should be corrected due to error sources before
control network adjustment.

There are three main challenges that one should consider when
establishing geodetic networks are refraction error (cf. Ashkenazi
and Howard 1984; Brunner 1984; Dodson and Zaher 1985; Rapp
1993), physical effects (due to the deflection of the vertical;
Heiskanen and Moritz 1967, p. 312), and geometric effects.
Geometric correction on the reference sphere is called curvature
correction due to the sphere curvature and the curvature-skewness
problem on the reference ellipsoid (cf. Krakiwsky and Thomson
1974; Rapp 1991). In other words, there are two effects on the
reference ellipsoid: (1) geometric effects due to the surface curva-
ture; and (2) the skewness of the normals. It is well known that
curvature is constant on a spherical surface; thus, the skewness
error is zero.

The atmospheric refraction error is a particular problem in any
optical measurement. The air temperature gradient in the direction
perpendicular to the line of sight is the main factor to model the
refraction effect. To precisely compute the height differences and
reduce the slope distances to the horizontal counterparts, the mea-
sured vertical angles must be corrected for the refraction effect.
A usual way to overcome this error is to simultaneously observe
the vertical angles at the two endpoints of the line (cf. Vanicek and
Krakiwsky 1986, p. 380). In other words, we assume that the re-
fraction error is unknown and is the same (with opposite signs)
from both ends of the line. One can write the vertical angle obser-
vation equations for the two reciprocal observations. After sub-
tracting the observation equations, a new observation equation is
obtained in which the refraction error is eliminated. The obtained
observation equation can then be used in the geodetic control net-
work adjustment step by considering a weight based on the weights
of the initial reciprocal measurements (Rapp 1993).
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Definition of a proper coordinate system is one of the most
important problems in establishing a classical geodetic network.
The common practice is to establish either a local geodetic or
astronomic coordinate system (Vanicek and Krakiwsky 1986).
Physical and geometric problems occur when the up-component
directions (i.e., plumb line or normal direction) are different at the
start and endpoints of a baseline (because they are not coplanar
assuming actual earth shape and an ellipsoidal model).

Most conventional geodetic measurements refer to the plumb
line, that is, the direction of the gravity vector (Featherstone and
Rüeger 2000). Therefore, the angle between the gravity vector and
the ellipsoidal normal, which is called the deflection of the vertical
(DOV) or physical effect, should be considered in the geodetic
observation reduction step (see also Heiskanen and Moritz 1967,
pp. 174 and 312).

Finally, the geometric effect, that is, curvature correction on the
sphere or curvature-skewness problem on the reference ellipsoid,
should also be treated in the data reduction step. Therefore, errors
due to the refraction, DOV, and curvature-skewness problems in-
fluence the vertical angles, and one should seriously consider them,
especially if the height differences between baseline endpoints are
large. For example, a practical solution to reduce refraction error is
collecting geodetic measurements using the reciprocal technique
either simultaneously or at the same time of day such that refrac-
tion effects can be assumed to be the same (cf. Rapp 1993).
Nevertheless, turbulent flow in the atmosphere may occur on all
spatial and very short temporal scales. Even simultaneous recip-
rocal observations might not eliminate it. However, collecting
reciprocal observations is the only practical solution and is time
consuming, especially in rough topography areas (e.g., dam sites),
and increases the fieldwork and cost of projects. Cost and time
are important factors to establish optimum and precise geodetic net-
works (Kuang 1996).

As mentioned before, the physical and geometric effects mainly
influence the vertical angle that is an important observation to con-
vert slope distances to horizontal ones using the trigonometric
method (Schofield and Breach 2007). To the best of the authors’
knowledge, these problems are currently usually not clearly men-
tioned in guidelines and technical specifications. Hence, one of
our motivations is to quantify the previously mentioned effects.
Second, we highlight the methods one can avoid using vertical
angles to determine the horizontal distances, that is, the network-
aided method introduced by Shirazian et al. (2021). Therefore, the
geometric, physical, and refraction effects will no longer be a mat-
ter of concern. This paper aimed to study the reduction of classical
geodetic observations due to the geometric and physical effects
that directly influence measured vertical angles and indirectly in-
fluence distance measurements. In other words, our goal is to re-
duce slope distances into horizontal ones appropriately in geodetic
control networks.

In brief, this study consisted of the following steps. First,
the impact of DOV on slope distance reduction is presented in
the “Method’ section. To perform this investigation, we used the
Swedish precise SWEN17 quasigeoid model (Ågren et al. 2018)
as a basis to study the impact of the DOV on horizontal distances
in geodetic control networks. We also compared the obtained DOV
with the one obtained by the EGM2008 model (Pavlis et al. 2012)
and astronomical observations in Sweden. Finally, the estimated
DOV from the SWEN17 model was used to study the impact of
DOVon slope distance reduction. Second, we present the geometric
effect (curvature-skewness error) considering both ellipsoidal and
spherical Earth models. The impact of the geometric effect has
been presented only for horizontal directions in the classical geod-
esy literature, for example, in Krakiwsky and Thomson (1974),

Bomford (1971), and Rapp (1991). Here, we propose a new tech-
nique to quantify the geometric effect on vertical angles by per-
forming a simulation that can be relevant and useful for the
writing of surveying guidelines. We simulated the impact of the
curvature-skewness error on the slope distance reduction using
different baseline lengths and height differences. A comprehensive
discussion and presentation of the DOV and curvature-skewness
effect are given in the “Results” section.

Method

Deflection of the Vertical Effect on Geodetic
Observations

The deflection of the vertical at the geoid surface is usually defined
as a spatial angle (ε) between the normals to the geoid and ellip-
soid surface (Fig. 1). The DOV thus also shows the slope of the
geoid with respect to the Earth’s reference ellipsoid (Vanicek and
Krakiwsky 1986; Sjöberg and Bagherbandi 2017). The DOVangle
ε deviates from ε 0 elsewhere due to the local features of the Earth’s
gravity field and the curvature of the plumb line (cf. Vanicek and
Krakiwsky 1986, pp. 491–506). In Fig. 1, ε 0 denotes the DOVat the
Earth’s surface.

The well-known equations of DOV components in the meridian
and prime vertical directions at any point of interest on the geoid
surface can be found in Heiskanen and Moritz (1967, p. 312).
Corresponding equations can be written for the DOV components
at the Earth’s surface using the quasigeoid and Molodenskij’s
definition of the height anomaly (ς). Molodenskji et al. (1962)
discarded the geoid and defined a new surface, the quasigeoid,
in which geoidal undulation is replaced by height anomaly. The
north–south (ξ 0) and east–west (η 0) components of the DOV are
obtained by Heiskanen and Moritz (1967, p. 313)

ξ 0 ¼ − 1

R
∂ς
∂φ −Δg

γ
1

R
∂H
∂φ ð1aÞ

Fig. 1. Basic principle of the deflection of the verticals: ~g0: actual grav-
ity on the geoid, ~γ0: normal gravity on the reference ellipsoid, ~g: actual
gravity vector on the Earth’s surface, and ~γ: normal gravity vector on
the Earth’s surface; dN and ds are infinitesimal changes of geoid height
and distance, respectively.
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η 0 ¼ − 1

R cosφ
∂ς
∂λ −Δg

γ
1

R cosφ
∂H
∂λ ð1bÞ

where R = mean radius of the Earth (the radius of a sphere whose
volume equals that of the ellipsoid according to Moritz 2000); φ
and λ = latitude and longitude of the desired point, respectively;
γ = normal gravity on the earth’s surface; H = topographic height
(normal height in this case study because there is quasigeoid model
in Sweden); and Δg = gravity anomaly (Heiskanen and Moritz
1967, p. 83). Therefore, Eq. (1) provides us with the funda-
mental links between the Stokes and Molodenskij approaches,
which involve the topographical and curvature of plumb line effects
(Heiskanen and Moritz 1967, p. 312; Vanicek and Krakiwsky 1986,
p. 533). The formulae of determination of the DOV components
using an Earth gravitational model (e.g., the EGM2008 model)
are also presented in Supplemental Materials.

The curvature of the plumb line correction should be consid-
ered, especially in rough topography areas. This correction was pre-
sented by Vanicek and Krakiwsky (1986, p. 506) and Jekeli (1999).
They showed that it mainly affects the north–south component, that
is, ξ. In other words, the correction depends on the normal gravity
field that does not change in the east–west direction. Therefore,
the plumb line curvature does not affect the east–west component.
See more details in Vanicek and Krakiwsky (1986, p. 506) and
Jekeli (1999).

As already mentioned, conventional geodetic observations are
affected by the physical effect, that is, by the DOV components.
In other words, the gravity field corrections (i.e., corrections for the
effects of the DOVs and geoidal undulations) should be considered
before performing geodetic control network adjustment if vertical
angles (zenith angles) are used to convert the slope distances to
horizontal distances (cf. Shirazian et al. 2021).

After calculating ξ 0 and η 0, one can calculate the effect
of DOV on zenith angles (δZP

) at the Earth’s surface (Point P)
using the following equation [Heiskanen and Moritz 1967,
Eqs. (5)–(16)]:

δZP
¼ ξ 0

P cosðαPQÞ þ η 0
P sinðαPQÞ ð2Þ

where αPQ = geodetic azimuth from Point P to Point Q. Eq. (2)
shows the projection of the DOVonto the plane that goes through
Points P and Q and the center of the Earth (for a spherical earth
model but not for an ellipsoidal model) with geodetic azimuth
αPQ. The slope distance (SD) is converted to the horizontal dis-
tance (HD) using the following equation:

HD ¼ SD cosð90 − ZÞ ¼ SD sinZ ð3aÞ

where Z = observed vertical (zenith) angle. Finally, the effect of
δZP

on the horizontal distances can be determined by (i.e., consid-
ering with and without the DOV effect on the vertical angle)

δHD ¼ SD sinðZ þ δZP
Þ − SD sinðZÞ ð3bÞ

Geometric Effect on the Slope Distance Reduction

The geometric effect in question causes curvature-skewness and
curvature errors on the ellipsoid [Fig. 2(a)] and sphere [Fig. 2(b)],
respectively. In order to derive the geometric effect on slope dis-
tances, the Earth is considered first as an ellipsoid of revolution
and then as a sphere. This is illustrated in Figs. 2(c and d) with
more details. For example, the normals at two distinct points on the
ellipsoid do not generally lie in the same plane (they are skewed)
and never coincide (except if the azimuth is zero or 90°). In other

words, there is more than one definition of horizontal distance be-
tween Points P andQ. This means that the horizontal distance from
P toQ is not equal to the horizontal distance fromQ to P due to the
geometric effect (cf. Rollins and Meyer 2019). If we considered P
and Q points on different meridians, then the normals pass through
nP and nQ, respectively (nP and nQ are the intersection of normals
at P and Q with the Z-axis). Hence, assuming the ellipsoid model
[Figs. 2(a and c)], the effect of the curvature of the reference surface
is the difference between horizontal distance PQ (computed in the
horizontal plane of P using the zenith angle) and the ellipsoidal
distance P1Q1 (i.e., the geodesic length between P1 and Q1).
The effect of skewness problem is the difference between ellipsoi-
dal distances P1Q1 and P1Q 0

1. The skewness is quantified by the
angleQ1–Q–Q 0

1 (shown by angle θ) and the curvature-skewness by
angle β [assuming the spherical model, the angle between the nor-
mals is shown by β 0; see Fig. 2(d)]. This geometric property is
called the curvature-skewness angle and affects the horizontal and
vertical angles and distances indirectly (using the vertical angle to
reduce slope to horizontal distances). It is important to emphasize
that the angle β shows the nonparallelism of normals at Points P
and Q [because the normals at P and Q are not in the same plane;
see Fig. 2(a)]. In other words, as can be seen in Figs. 2(a and c), one
should not assume any angle between two normals at Points P and
Q because they are not at the same normal plane. In practice (for
simplicity), one can define an angle β that is the angle between the
normals at P and Q projected to the plane of the normal section
between P and Q (see also Fig. 3).

In the following, we present the impact of the curvature-
skewness problem on horizontal and vertical angles. The effect of
the curvature-skewness error on the horizontal angles is explained
in Rapp (1991). We call this effect δαPQ

for the two Points P andQ,
and it is

δαPQ
¼ Δh

N̂P

Ψ2
P

�
sinαPQ cosαPQ − sPQ

2N̂P

sinαPQ tanφP

�
ð4aÞ

where Δh = ellipsoidal height difference between the two points;
αPQ = azimuth from P1 to Q1; sPQ is the length of the geodesic
between P1 to Q1; φP is the latitude of P; and N̂P (radius of cur-
vature in the prime vertical at P) and Ψ2

P are as follows:

N̂P ¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2sin2φP

p ð4bÞ

Ψ2
P ¼ ðe 0Þ2cos2φP ð4cÞ

where e2 ¼ ða2 − b2Þ=a2; ðe 0Þ2 ¼ ða2 − b2Þ=b2; and a and b =
semimajor and semiminor axes of the ellipsoid. The reader should
be aware that Eq. (4a) is not useable if P is not at one of the poles:
αPQ ¼ 0, so sinαPQ ¼ 0 and δαPQ

¼ 0. For sPQ ¼ 2,000 m, φP ¼
αPQ ¼ 45°, and h ¼ 100 m on the GRS80 ellipsoid (Moritz 2000),
δαPQ

is about 0.005 (in arc seconds), which is negligible in small-
scale networks. As mentioned before, the curvature-skewness prob-
lem has been presented only for horizontal angles in the classical
geodesy literature (Krakiwsky and Thomson 1974; Rapp 1991).
Hence, we present a method to quantify this problem for vertical
angles, which is important for converting from slope to horizontal
distances. We will show that the effect of the curvature-skewness
error on vertical angles is significant and must be accounted for
when dealing with precise geodetic networks. A schematic illus-
tration of the geometric effect (corresponding to the curvature-
skewness problem, assuming the ellipsoidal model) on vertical
angles is shown in Fig. 3 (considering the horizontal plane passing
Point P). Here we assume that the angle β in Fig. 2(c) is the angle

© ASCE 04022014-3 J. Surv. Eng.
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between the normals at P and Q projected to the plane of the
normal section between P and Q.

As in Fig. 3, the slope angle at Point P is

VPQ ¼ V ¼ 90 − Z ð5aÞ

and this angle at Point Q is

VQP ¼ −V − β ð5bÞ

Thus, a unidirectional observing vertical angle will have an error
of β due to the curvature-skewness effect. If one measures the ver-
tical angle reciprocally and takes the average of the measurements
at the two endpoints of the line, then average reads

V̄ ¼ 1

2
ðVPQ − VQPÞ ¼ V þ β

2
ð5cÞ

This means that even in the reciprocal measurement of
the vertical angles, the effect of the curvature-skewness pro-
blem does not disappear, and half of that remains in the measure-
ment. This imposes an error in the slope distance reduction,
which is

δC−SHD ¼ SD cosðVÞ − SD cosðV̄Þ ¼ SD

�
cosðVÞ − cos

�
V þ β

2

��

ð6Þ

A method is proposed in this paper to compute the curvature-
skewness (C-S) error in Eq. (6) accurately. This method consists of
the following steps:

In the first step, we establish a local geodetic coordinate system
(east–north–up or enu system; see Fig. 4) at Point P and compute
the coordinate differences, that is, ΔePQ, ΔnPQ, and ΔuPQ. Then,
the slope angle from Point P to Point Q will be

Fig. 2. (a) Curvature-skewness effect (ellipsoidal model); (b) curvature effect (spherical model); (c) sectional view of geometric effect at Points P and
Q above an ellipsoid of revolution; and (d) sectional view of geometric effect at Points P and Q above a sphere.
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VPQ ¼ V ¼ tan−1

0
B@ ΔuPQffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δe2PQ þΔn2PQ
q

1
CA ð7aÞ

To determine the coordinates (at Points P and Q), one can
employ the Vincenty algorithm (Vincenty 1975) or the method
proposed by Bowring (1983). Using the Vincenty formula and as-
suming a reference ellipsoid (GRS80), we computed the endpoint
coordinates along with the backward azimuth with submillimeter
accuracy for our purpose, starting from the geodesic length be-
tween two points, forward azimuth, and coordinates of the starting
point (direct problem in Geodesy).

In the second step, similarly, we established another enu system
at Point Q and computed ΔeQP,ΔnQP, andΔuQP. Then, the slope
angle from Point Q to Point P will be

VQP ¼ V þ β ¼ tan−1

0
B@ ΔuQPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δe2QP þΔn2QP

q
1
CA ð7bÞ

Finally, one can compute the curvature-skewness effect on the
horizontal distances (δC−SHD ) according to Eqs. (5c) and (6).

Therefore, if we measure the vertical angles reciprocally, we
have to add δC−SHD from Eq. (6) to SD cosðVÞ to get the horizontal
distance in the horizontal plane of P. In practice, we have to choose
a common reference plane (or generally a surface) for all distances
in the network.

Assuming a spherical approximation of the ellipsoid, the curva-
ture effect on the slope distance reduction can be obtained by the
following steps. First, the average of the latitudes of Points P andQ
is considered to calculate the mean radius of curvature, that is,
Gaussian curvature (cf. Heiskanen and Moritz 1967)

Rm ¼ b
1 − e2sin2φ

ð8aÞ

Then, the angle between two normals (at Points P andQ) can be
obtained by [Fig. 2(d)]

β 0 ¼ sP1Q1

Rm
ð8bÞ

We denote the first point (i.e., P) as projected on the sphere sur-
face (hP ¼ 0); then, it will become P1. Thus, the slope distance
between Points P1 and Q is given by

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
m þ ðRm þ hQÞ2 − 2RmðRm þ hQÞ cos β 0

q
ð8cÞ

The slope angle on the sphere at Point P1 is obtained by [see the
planar triangle P1QQ1 in Fig. 2(d)]

Vspherical
P1Q

¼ arc sin

�
hQ sinω
SD

�
ð8dÞ

where ω ¼ ðπ þ β 0Þ=2. Finally, the curvature error on the slope
distance reduction is obtained by

δCurvatureHD ¼ SD cos

�
Vspherical
P1Q

þ β 0

2

�
− SD cosðVspherical

P1Q
Þ ð8eÞ

Results

This section briefly describes the input data acquisition and the
results obtained by applying methods for studying the reduction of
classical geodetic observations due to the geometric and physical
effects.

Data

The impact of the DOV (physical effect) should be assessed and
considered in geodetic control networks. To assess the effect of
the DOV on geodetic observations (e.g., vertical angles) in the
geodetic network, we need precise data. In this paper, we selected
Sweden as a study area because there are high-quality regional
gravity data, geoid, and photogrammetric digital elevation models
in that region. Our study area lies between latitudes 54.5°N and
69.5°N and longitudes 10.5°E and 24.5°E. According to Ågren et al.
(2018), the standard uncertainty of the SWEN17_RH2000 quasi-
geoid model has been estimated to be 8–10 mm except for a few

Fig. 4. The enu coordinate systems at Points P and Q.

Fig. 3. A schematic illustration of the geometric effect on the vertical
angles (V: slope angle, up-axis P: zenith direction at Point P, and
up-axis Q: zenith direction at Point Q).
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areas where the uncertainty is larger (up to 2–4 cm). Hence, we
studied the influence of the DOV using the Swedish national qua-
sigeoid model. Fig. 5 shows the Swedish national elevation model
available via the Lantmäteriet (Swedish Mapping, Cadastral and
Land Registration Authority) website. This model is stored in a
50-m grid format (Lantmäteriet 2020) and was produced during
2009–2017 using airborne laser scanning. The four triangles in
Fig. 5 show the locations of the stations that are used to study

the DOV effect on the slope distance reduction to the horizontal
distance. The resolutions of the quasigeoid in the latitude and lon-
gitude directions were 0.01° and 0.02°; thus, we resampled the
elevation to the same resolution as the quasigeoid model.

Deflection of Vertical Effect on Horizontal Distances

In this section, first, we present the determined DOV components
at the Earth’s surface obtained from the SWEN17_RH2000 quasi-
geoid model and Eqs. (1a) and (1b), and then the DOV impact on
the classical geodetic observations will be assessed. The north–
south (ξ) and east–west (η) components in Sweden are shown in
Fig. 6. We used the same abbreviation as the quasigeoid model
(i.e., SWEN17) for the obtained DOV components. Generally,
large values for the DOV components can be seen in Lappland
(northwest of Sweden), Västerbotten, Ångermanland, Medelpad
(northeast of Sweden), and Småland (south of Sweden).

The calculated DOV components can also be compared with
one determined using spherical harmonic coefficients, such as
the EGM2008 model (Pavlis et al. 2012), at the Earth’s surface
(see Supplemental Materials). The statistics of the DOVs obtained
from the EGM2008 and SWEN17 models in Sweden are presented
in Table 1. The EGM2008 and SWEN17 models show that the
DOVs are generally similar except for the rough topography areas
(especially in the northwest of Sweden) because the EGM2008
model has a lower resolution than SWEN17_RH2000 (see also
Fig. S1 in Supplemental Materials). Hence, we studied the impact
of the DOV on geodetic observations using only SWEN17 in
this paper.

Table 2 shows the magnitude of the north–south (ξ) and east–
west (η) components at the selected points in Kebnekaise, Umeå,
Mårtsbo, and Skövde. We selected these stations in different lati-
tudes (from the north to the south) to scrutinize the influence of the
DOVon geodetic observation in different regions. The Kebnekaise
station is located in the northwest part of Sweden that has the
highest mountains. The Umeå and Mårtsbo stations are close to
the shorelines, with close to minimum height anomaly values

Fig. 5. The Swedish photogrammetric digital elevation model.
Triangles show the locations of the selected points for this study,
Kebnekaise, Umeå, Mårtsbo, and Skövde, from north to south in
Sweden, respectively. Unit: m.

Fig. 6. The deflection of vertical components [(a) ξ; and (b) η] at the Earth’s surface with a grid resolution of 0.01° × 0.02° in latitude and longitude
directions in Sweden. Unit: arc second.
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(on the Swedish mainland). Finally, we selected the Skövde station
in the south of Sweden, representing a medium value of height
anomaly in the study area. We believe that this combination can be
a good sample to examine the effect of the DOV.

To evaluate the obtained DOV components, one can compare
them with those obtained from classic astronomical observations
or advanced zenith camera systems [e.g., see (Hirt and Seeber
2002)]. At the time of writing the present paper, we had access
only to the classic astronomical observations through Ekman and
Ågren’s (2010) report (see also Wargentin 1759; Cronstrand 1811;
Selander 1835). The comparison between the DOVs obtained by
the SWEN17 model and astronomical observations can be seen in
Table S1 in the Supplemental Materials.

We aim to show the effect of the DOV on the reduction of the
slope distances to the horizontal ones and conclude whether its

impact is significant (in the case of using vertical angles to convert
slope to horizontal distances). Using Eq. (3b), one can calculate the
impact of the DOVon the slope distance reduction by assuming a
value for the zenith angle. According to the surveying guidelines
and literature (e.g., USACE 2002, pp. 2–13; Krakiwsky and
Thomson 1974, p. 37), it has been recommended to design the geo-
detic control points so that the stations’ elevations are as similar as
possible in order to eliminate or reduce both physical and geometric
effects (i.e., the DOVand curvature-skewness problem). Therefore,
the zenith angles should usually be as close to 90° as possible and,
in practice, vary within 90°�5° to fulfil this criterion. However, this
assumption causes another problem, atmospheric refraction error,
because the observed zenith angles are very sensitive to the atmos-
pheric refraction if the zenith angle varies between 90° and 85°
(cf. Vanicek and Krakiwsky 1986, p. 366). Zenith angles close to
90° will, on the other hand, be an ideal case for the DOV and
curvature-skewness effects. However, we assumed 85° for the ze-
nith angle in our simulation. The results of the impact of the DOV
on horizontal distances can be seen in Figs. 7–10 in the selected
stations (i.e., Kebnekaise, Umeå, Mårtsbo, and Skövde). We plotted
the absolute values of δHD considering different baselines (varying
between 0.4 and 5 km) and azimuths (varying between 0° and
360° with 10° intervals). As we show in Tables S2–S5 in the
Supplemental Materials, the impact of the DOVon horizontal dis-
tances will be as large on the opposite side (i.e., 180° azimuth
difference). This is the reason for illustrating the absolute values
of δHD in Figs. 7–10. In addition, similar plots are presented in
Figs. S2–S5 (see Supplemental Materials) assuming 70° for zenith

Table 1. Statistics of deflection of the vertical using SWEN17 and
EGM2008 models and their differences (denoted by Δ) in Sweden.
Unit: arc second

DOV component Max Mean Min STD

ξEGM2008 18.9 −0.4 −14.7 3.9
ηEGM2008 25.8 6.2 −10.9 3.6
ξSWEN17 23.5 0.4 −18.6 3.8
ηSWEN17 27.1 6.2 −15.9 4.1
Δξ 12.9 0.0 −13.5 1.1
Δη 12.1 0.0 −11.7 1.1

Table 2. The magnitude of the deflection of vertical components at the selected points in Sweden

Location Latitude Longitude Height (m) ξ (arc second) η (arc second) δξ (arc second)

Kebnekaise 67.93°N 18.60°E 1,702.3 −10.0 5.0 0.20
Umeå 63.68°N 19.78°E 84.0 −11.1 11.6 0.01
Mårtsbo 60.595143°N 17.258525°E 32.1 −0.6 9.9 0.005
Skövde 57.95°N 14.50°E 262 7.4 5.1 0.04

Note: δξ = effect of the curvature of the plumb line on ξ (cf. Vanicek and Krakiwsky 1986, p. 506).

Fig. 7. (a and b) Impact of the DOVs on the horizontal distances considering zenith or vertical angle equal to 85°, different baseline lengths, and
azimuth angles using the SWEN17 model in Kebnekaise (the polar plots show max absolute value of jδHDj). Unit: mm.
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angle in the same stations. This extreme zenith angle value might
occur when establishing a control network around high towers
and landslide monitoring projects where target points are located
above or under the horizontal plane with a large zenith angle value
such as 70°.

The statistics of the impact of the DOVon horizontal distances
(δHD) can be seen in Tables S2–S5 in the Supplemental Materials
assuming different baseline lengths (between 0.4 and 5 km), azi-
muths (between 0° and 360°), and two zenith angles (70° and 85°).
For instance, considering 400 m baseline length, the absolute val-
ues of the DOV effect on the horizontal distance observation were
10.7 (for Z ¼ 70°) and 2.7 mm (for Z ¼ 85°) in Umeå. Similarly,
these values were 6.6 (for Z ¼ 70°) and 1.7 mm (for Z ¼ 85°) in

Mårtsbo. These values increase rapidly with the length of the slope
distance. The values show that the influence of the DOV is signifi-
cant and considerable. Moreover, studying the specifications of
many brands of precise geodetic instruments suitable for control
networks [e.g., Leica TM50 (Bern, Switzerland) total station and
similar instruments] shows that the distance nominal accuracy is
0.6 mmþ 1 ppm (using a round prism). Therefore, any systematic
error larger than instrument nominal accuracy should be taken into
account before geodetic control network adjustment if the vertical
angles are not measured reciprocally.

In addition, the results confirm that the effect of the DOV is also
significant in specific directions (azimuths). In other words, the azi-
muth of the baseline is an influential parameter. With a closer look,

Fig. 8. (a and b) Impact of the DOVs on the horizontal distances considering zenith or vertical angle equal to 85°, different baseline lengths, and
azimuth angles using the SWEN17 model in Umeå (the polar plots show max absolute value of jδHDj). Unit: mm.

Fig. 9. (a and b) Impact of the DOVs on the horizontal distances considering zenith or vertical angle equal to 85°, different baseline lengths, and
azimuth angles using the SWEN17 model in Mårtsbo (the polar plots show max absolute value of jδHDj). Unit: mm.
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the DOV effect will reach its maximum value (approximately) in
azimuth equal to 150° and 140° in Kebnekaise and Umeå, respec-
tively, for the applied baselines (Figs. 7 and 8). Similarly, the maxi-
mum effects can be seen (approximately) in azimuths equal to 100°
and 40° in Mårtsbo and Skövde, respectively (Figs. 9 and 10).
Moreover, the DOV impact depends on the azimuth of the base-
lines. The need for vertical angle measurements to establish geo-
detic networks, which suffer from the DOV effect and vertical
refraction (or their simultaneous reciprocal measurements, which
significantly increase the fieldwork and costs of the network cam-
paign), is avoided by using the proposed solution by Shirazian et al.
(2021) with the so-called network-aided reductions of slope dis-
tance observations. They presented an approach that considered a
special geodetic observation strategy to significantly reduce the
volume of operations of a precise geodetic network by omitting
all measured vertical angles in the network. It changed the design
concept for such geodetic networks because the network-aided
method decreases data collection time and cost while keeping or
even increasing the quality of control networks because it avoids
the DOV problem in question (Shirazian et al. 2021). Otherwise,
one should use the gravity field corrections (i.e., corrections for the
effects of the DOV and geoidal undulations), which need a precise
geoid model and gravity and elevation data. We emphasize again
that DOV correction must be applied if one uses vertical angles for
the reduction of slope distances.

Fig. 11 compares the forward and backward effects of the DOV,
considering different distances and assuming a vertical angle equal
to 85° in the selected stations. The figure shows the maximum ab-
solute value of δHD assuming azimuths 150°, 140°, 100°, and 30° for
Kebneise, Umeå, Mårtsbo, and Skövde, respectively (in the direc-
tions that the maximum DOV effects occur). The impact of the
DOVon the forward and backward measurements (reciprocal read-
ing) is almost the same if the height difference between the start
points and endpoints are small. It confirms that reciprocal reading
can be a solution to eliminate the DOV effect when the height dif-
ference in the baseline is not large. However, simultaneously, recip-
rocal reading will increase the fieldwork and costs of the projects
(as already mentioned), and it is not recommended. The results
show that the differences are ignorable up to 3,000 m baseline

length if both points are in the same elevation. For example, the
differences are more significant in Kebnekaise stations due to the
large height difference between the start points and endpoints;
see more details in Tables S6–S9 in the Supplemental Materials.
For example, Table S6 shows the positions of the Kebnekaise
station and the endpoints. The position of the baselines’ endpoints
(varying between 0.4 and 5 km) was calculated using the Vincenty
algorithm. Using the obtained position of the endpoints, one can
calculate the DOV effect on the assumed vertical angle from the
endpoint toward the Kebnekaise station (backward) and finally δHD.
The last column in Tables S6–S9 compares the forward and back-
ward values.

Geometric Effect on Zenith Angles

The geometric effect on the zenith (vertical) angles and conse-
quently on the slope distance reduction is assessed in this section.
First, we present the results based on the ellipsoidal Earth model,
and finally, the results will be compared with those derived from the
spherical assumption. Using Eq. (6), one can calculate the impact
of this error by determining forward and backward slope angles
from Eqs. (7a) and (7b). We simulated the impact of this error by
assuming a point at latitude 60° and longitude 15° and different
baseline lengths (100 to 5,000 m) and height differences, varying
between 0 and 500 m in Sweden. The geodetic latitude, longitude,
and height are first converted into the Cartesian coordinates X, Y,
and Z and then into the enu system (see equations in Hofmann-
Wellenhof et al. 2007, pp. 280–282, for the coordinate transforma-
tion). The GRS80 reference ellipsoid (Moritz 2000) was considered
for this simulation. Using the obtained coordinates in the enu
local geodetic coordinate system, one can calculate the reciprocal
slope angles and finally δC−SHD , as explained already. Fig. 12 shows
the angles between normals for different baseline lengths. The re-
sults show that the curvature-skewness error is significant, and it
should be considered for the baselines in the geodetic control net-
works (see the effect of this error on the slope distance reduction in
Table 3 and Fig. S6). It varies between 3.2 00 (for 100 m baseline
length) and 161.6 00 (for 5,000 m baseline length). According to
guidelines (e.g., USACE 2002), geodetic network designers always

Fig. 10. (a and b) Impact of the DOVs on the horizontal distances considering zenith or vertical angle equal to 85°, different baseline lengths, and
azimuth angles using the SWEN17 model in Skövde (the polar plots show max absolute value of jδHDj). Unit: mm.
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try to design network stations at the same elevation. Therefore, the
curvature-skewness effect on the slope distance reduction will be
eliminated by designing a proper geodetic network following the
guidelines. However, it is not easy to follow the recommendations
because of the study areas’ situations (e.g., existing rough topog-
raphy). The curvature-skewness problem does not depend on the

azimuth, and its effect is ignorable (<0.01 mm) for short baselines
(see Fig. S7 in Supplemental Materials). We mean to quantify the
systematic effects affecting the slope distance reduction to the hori-
zontal distance. For this purpose, we have to create enu coordinate
systems at the endpoints of the baselines. Through a simulation, we
created baselines for which all the station coordinates (geodetic

Fig. 11. Forward and backward DOV effect on the horizontal distances assuming different baseline lengths and considering zenith or vertical
angle 85°.

Fig. 12. Angle between normals (β) assuming different baseline lengths and 100 m height difference.
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XYZ or BLH) were computed accurately with the exact (simulated)
geodesic lengths and azimuths between the start points and
endpoints. However, in real practice, we propose the method by
Shirazian et al., which establishes a single enu system at one
of the network points (the closest to the center of the network),
measuring its accurate BLH coordinates (by GNSS receiver, for
instance).

Table 3 shows the curvature-skewness effect (δC−SHD ) on the slope
distance reduction in reciprocal measurements for different base-
line lengths and height differences. It can be seen from the table
that the curvature-skewness effect is below 0.4 mm (assuming
1 km baseline length) if the geodetic network stations are almost
at the same level (for ΔH ≤ 5 m). This correction will be notable
when one uses a very precise electronic distance meter (EDM),
such as a Kern ME500 Mekometer with 0.2 mm� 0.2 mm=km
range accuracy (Bell 1992), and for large height differences. In
other words, the effect of the skewness error is small for zero height
differences. Thus, the use of the proposed method is recommended
in the case of using highly accurate instruments and avoiding the
spherical approximation in the computations.

Fig. S6 visualizes Table 3 and shows the correction for different
lengths and height differences. From Fig. S6 and Table 3, one can
infer that the correction δC−SHD increases as the height difference and
baseline lengths increase. However, for specific baseline length,
larger height differences amplify the effect of the curvature-
skewness on the slope distance reduction. Hence, the curvature-
skewness correction should be considered for the measured vertical
angles to covert the slope to horizontal distances correctly (for large
height differences), even if one measures the vertical angles recip-
rocally. Therefore, the obtained results show that both physical and
geometric effects (i.e., the DOV and curvature-skewness problem)
will be eliminated by designing the geodetic control points so that
the stations are all nearly at the same heights. However, it will gen-
erate two further problems. First, as we mentioned already, the re-
fraction error will increase by designing the network at the same
elevation. The vertical angles will be very sensitive to atmospheric
refraction for vertical angles equal to 90° (Vanicek and Krakiwsky
1986, p. 366). Therefore, there is a recommendation to observe
the vertical angles under stable atmosphere conditions: at night or
during the winter when there is a thermal inversion. Second, the
normal matrix in a three-dimensional (3D) multilateration network
becomes ill conditioned if the stations are all nearly at the same
heights, which is possible for a geodetic control network. The ill-
conditioned problem for the 3D multilateration network was em-
phasized by Meyer and Elaksher (2021). Therefore, both problems
due to designing the geodetic network at the same elevation

highlight the study done by Shirazian et al. (2021). Their proposed
method is independent of vertical angles for reducing the slope to
horizontal distances.

Furthermore, we compared the curvature-skewness error (using
an ellipsoidal model) with the curvature error (spherical model) in
this study. Similar results were obtained based on using the spheri-
cal assumption [Eq. (8e)]. For example, the geometric errors on
the slope distance reduction were 38.8 (ellipsoidal model) and
39.5 mm (spherical model), assuming a 5-km baseline length and
100-m height difference (the difference between the two models
was 0.7 mm). We presented both spherical and ellipsoidal models
in this study. These can be useful, especially for applying rigorous
formulas and avoiding using the spherical approximation. The re-
sults show that the spherical assumption is sufficient in all practi-
cal cases.

Remark: As can be seen in the results, the geometric effect
in the slope distance reduction increases with baseline length
(see Fig. S6 and Table 3), whereas the DOVeffect does not change
so much (Fig. 11). In other words, the forward and backward DOV
effects on the horizontal distances (Fig. 11) are approximately
equal, but there is a curvature-skewness error on normals. This
means that the verticals (perpendicular lines to the geoid) must also
be skewed (to keep an equal DOV effect in forward and backward
stations), and their angles are close to the one on the reference
ellipsoid, that is, the curvature-skewness angle. This issue will
be important when one establishes a local astronomy coordinate
system. Some nonexperts believe that considering a local coordi-
nate system can overcome physical and geometric errors. This as-
sumption is incorrect because the plumb lines at adjacent points are
not parallel. To verify this issue, we conducted a test on real data,
and the results and description are presented in the next section.

Curvature-Skewness of the Verticals Effects on Slope
Distance Reduction

Quite like normals, verticals (to the geoid) might not coincide at a
point and then be skewed. The angles between the verticals must be
accounted for when using vertical angles to reduce the slope dis-
tances to horizontal ones. One needs to have an accurate geoid
model to compute the vertical curvature-skewness angle and its cor-
responding correction on the vertical angles to attain accurate hori-
zontal distances from slope distances. To show this, we selected
four areas in Sweden (Kebnekaise, Umeå, Skövde, and Mårtsbo)
and computed the geoid heights (N) for 0.01° × 0.02° grids
(Δφ ¼ 0.01°, Δλ ¼ 0.02°) from the SWEN17 model at each grid
point in each area. The reader can find the data of the test areas in
the Supplemental Materials (see Fig. S8 and Table S10). Then, we

Table 3. The curvature-skewness effect on slope distance reduction in reciprocal measurements. Unit: mm

Height
difference (m)

Distances (m)

100 300 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.4 0.4
5 0.0 0.1 0.2 0.4 0.6 0.8 1.0 1.1 1.3 1.4 1.5 1.6
10 0.1 0.2 0.4 0.8 1.2 1.5 1.9 2.3 2.6 2.9 3.2 3.5
50 0.4 1.2 1.9 3.9 5.9 7.8 9.4 11.7 13.6 15.5 17.3 19.2
100 0.8 2.4 3.9 7.8 11.7 15.6 19.5 23.4 27.3 31.1 34.9 38.8
150 1.2 3.5 5.9 11.8 17.6 23.5 29.3 35.2 41.0 46.8 52.6 58.4
200 1.6 4.7 7.8 15.7 23.5 31.3 39.1 46.9 54.7 62.5 70.2 77.9
250 2.0 5.9 9.8 19.5 29.4 39.1 48.9 58.7 68.4 78.1 87.8 97.5
300 — — 11.7 23.5 35.2 47.0 58.7 70.4 82.1 93.8 105.5 117.1
400 — — 15.7 31.3 47.0 62.6 78.3 93.9 109.5 125.1 140.7 156.3
500 — — 19.6 39.2 58.7 78.3 97.9 117.4 136.9 156.4 175.9 195.4

Note: “—” mean that the height differences are unrealistic for the assumed short baselines.
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fitted a surface to the 3D grid in each area. According to our results,
the best-fitting surface was a triaxial ellipsoid for all areas. There
were 35 grid points in each area, of which 30 points were used for
surface fitting, and the rest were used to validate the fitted surface.
A geoid height at a GNSS levelling point (at which both geodetic
height h ¼ 211.9217 m and orthometric height H ¼ 180.2623 m
were available) in the Skövde area (φ ¼ 57.97749308°, λ ¼
14.43111579°) was also used for this validation. The maximum
discrepancy between the fitted surfaces and the validation points
was about 2 × 10−8 [i.e., the misclosure error of Eq. (9)], which
shows the goodness of fit. In Table 4, the fitted ellipsoid specifi-
cations are listed.

As known from geometry, the equation of a triaxial ellip-
soid reads

fðx; y; zÞ ¼ x2

a2
þ y2

b2
þ z2

c2
− 1 ¼ 0 ð9Þ

and the normal line to the ellipsoid at an arbitrary point Pðx0;
y0; z0Þ can be found from

~X ¼ ~∇fðx0; y0; z0Þ ¼
�
2x
a2

;
2y
b2

;
2z
c2

�����
x0;y0;z0

ð10Þ

It is well known in the literature that the normal line to the geoid
is called a vertical. Then, we call the curvature-skewness angles of
these lines the vertical skewness. This angle between the verticals at
Points P1 and P2 then reads

α ¼ cos−1
�

~x1 · ~x2

k~x1k · k~x2k
�

ð11Þ

In Table 5, the curvature-skewness angles between some points
in Kebnekaise are listed (for the rest of the areas, please see the
Supplemental Materials, Tables S11–S13).

It is clear from Table 5 that it is not possible to ignore the effect
of the curvature-skewness angle (even if the vertical angles are ob-
served reciprocally). This means that the plumb lines at adjacent

points are not parallel, even in small-scale geodetic networks.
Therefore, one should always be aware of not relying upon the ver-
tical axis of a theodolite to establish a valid up-component of the
coordinate system everywhere in the network. This issue is more
complex because a local geoid takes sharp changes. Therefore, ver-
tical angle observation is best avoided, and methods like that pro-
posed by Shirazian et al. (2021) should be used as the observation
and planning strategy.

Conclusions

We studied the physical and geometric impact on the vertical angle,
which is an important observation to convert slope distances to
horizontal ones in geodetic networks. The deflection of the verti-
cal and geometric correction should be treated in the data reduc-
tion step correctly. One practical solution (according to surveying
guidelines) to eliminate these problems is collecting the vertical
angles reciprocally and designing geodetic networks so that the
station elevations are as much at the same level as possible. Never-
theless, following the guidelines is sometimes difficult because of
project circumstances (e.g., establishing a geodetic network for
monitoring high towers and structures) and configuration of the
geodetic control network due to existing rough topography. There-
fore, designing a geodetic network with all stations at the same
elevation is not always possible.

The reduction of slope distances requires information about
the DOVand the curvature-skewness angle for proper reduction of
the baselines in geodetic control networks. Ignoring these effects
may lead to significant errors, especially if the height differences
between the points are large. Our results show that the DOV and
geometric effects on the measured vertical angles are significant
even if one measures the vertical angles reciprocally. The DOV ef-
fect depends on different factors such as baseline length, azimuth,
and height difference in the baselines. We tested the DOV effect
in Sweden, specifically at four points (i.e., Kebnekaise, Umeå,
Mårtsbo, and Skövde). For example, the results show that the maxi-
mum DOV impact on the horizontal distances varied between 1.9
(for 400 m baseline length) and 23.6 mm (for 5,000 m baseline
length) considering an 85° zenith angle in Kebnekaise. Similar re-
sults were obtained in Umeå, 2.7 and 34.1 mm. However, these
values will be enlarged by increasing the length of the slope dis-
tances quickly. In addition, the results show that the geometric ef-
fect on horizontal distances increases as the height difference and
baseline lengths increase. For example, assuming a 10-m height
difference in the baseline, the geometric errors obtained were 0.8
(for 1,000 m baseline length) and 2.3 mm (for 3,000 m baseline
length), which are larger than the geodetic instruments’ distance
nominal accuracy. An almost analogous effect exists when a local-
astronomy coordinate system (of which the up-component is
perpendicular to the geoid) is established in a network. One prac-
tical solution to avoid these mentioned problems is applying the
method (Shirazian et al. 2021) of the so-called network-aided re-
duction of slope distance observations so that one can eliminate
measuring the vertical angle in geodetic networks.

Data Availability Statement

Some or all data, models, or code that support the findings of this
study are available from the corresponding author upon reasonable
request. The available data are: (1) the deflection of vertical (DOV)
components in Sweden and (2) MATLAB code for calculating the
curvature-skewness problem.

Table 4. Semiaxes of the fitted ellipsoids

Area

Ellipsoid semiaxes (in meters)

a b c

Kebnekaise 6,378,079.181 6,377,108.551 6,356,815.258
Umeå 6,377,953.394 6,376,673.306 6,356,860.952
Skövde 6,378,384.921 6,377,859.304 6,356,711.342
Mårtsbo 6,378,232.578 6,377,126.821 6,356,784.871

Table 5. The curvature-skewness angle in Kebnekaise

Baseline length (m) Vertical skewness (d°, m 0, s 00)

837.88 0, 0, 27.03
1,115.36 0, 0, 36.00
1,675.76 0, 0, 54.05
2,013.30 0, 1, 04.96
2,513.64 0, 1, 21.08
2,790.46 0, 1, 30.06
3,346.07 0, 1, 48.01
3,532.92 0, 1, 53.97
4,027.21 0, 2, 09.94
4,539.55 0, 2, 26.53
5,121.86 0, 2, 45.31

© ASCE 04022014-12 J. Surv. Eng.
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