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Patchworking the Log-critical locus of
planar curves

By Lionel Lang at Gävle and Arthur Renaudineau at Lille

Abstract. We establish a patchworking theorem à la Viro for the Log-critical locus of
algebraic curves in .C�/2. As an application, we prove the existence of projective curves of
arbitrary degree with smooth connected Log-critical locus. To prove our patchworking theo-
rem, we study the behaviour of Log-inflection points along families of curves defined by Viro
polynomials. In particular, we prove a generalisation of a theorem of Mikhalkin and the second
author on the tropical limit of Log-inflection points.

1. Introduction

A fundamental problem in real algebraic geometry is the topological classification of pro-
jective non-singular varieties of a fixed degree. For plane curves RC � RP 2, the topological
classification is known since the work of Harnack ([5]), but the ambient classification, that is
the classification of topological pairs .RC;RP 2/, is still open from degree 8.

A different but related classification problem is the one introduced in [7]: for a given
degree d , classify the topological pairs .C; cr.C //, where C � CP 2 is a curve of degree d
and cr.C / � C is the Log-critical locus. Recall that the Log-critical locus is the closure in C
of the critical locus of the map

Log W C \ .C�/2 !R2;

.z; w/ 7!.log jzj; log jwj/:

Alternatively, the set cr.C / � C is the critical locus of the restriction to C of the moment map
� W X ! �d , where �d is the standard d -simplex. Important related objects are the amoeba
�.C/ and its contour �.cr.C //.

In analogy to the real locus of a real algebraic curve, the set cr.C / is a smooth manifold
of dimension 1, that is a disjoint union of ovals in the Riemann surface C , provided that C is
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generic. More precisely, the set of curves C for which cr.C / is singular is a semi-algebraic sub-
set of real codimension 1 in the set of all complex curves of degree d , see [7]. The complement
to this discriminantal set turns out to be disconnected for d > 2, allowing distinct topological
pairs .C; cr.C // for a given degree.

There exist strong connections between the ambient classification problem in real alge-
braic geometry and the classification of Log-critical loci. Indeed, it was observed by Mikhalkin
in [10] that for a real curve C , the real part RC � C is a subset of cr.C /. The inclusion
RC � cr.C / taking place in C gives valuable information on the inclusion RC � RP 2.
A striking example is given by the simple Harnack curves introduced in [10]: if the inclu-
sion RC � cr.C / is an equality, then the topological pair .RC;RP 2/ is uniquely determined
by the degree. We also refer to [6] for further results in this direction.

Up to now, not much is known on the classification of pairs .C; cr.C // for a given
degree d . As observed in [10], the set cr.C / is the pullback of RP 1 under the logarithmic
Gauss map  W C ! CP 1. This implies that the number of connected components of cr.C /
satisfies

1 6 b0.cr.C // 6 d2;

where d2 is the degree of  . There are very few general constructions of curves C with pre-
scribed values of b0.cr.C //. The first example comes from the simple Harnack curves of [10]:
for such curves, the set cr.C / has

�
d�1
2

�
C 1 connected components. In [7], it was shown that

b0.cr.C // can achieve all values between
�
dC1
2

�
and d2. Besides the latter results, there is no

general construction of pairs .C; cr.C //. In particular, there was no evidence up to now of the
existence of a curve C with smooth Log-critical locus satisfying b0.cr.C // 6

�
d�1
2

�
.

Coming back to the classification of real algebraic curves, the most powerful tool to con-
struct pairs .RC;RP 2/ is the Patchworking Theorem introduced by O. Viro, see [14]. In its full
generality, this theorem allows one to construct real algebraic hypersurfaces of a given degree
in toric varieties by gluing a collection of hypersurfaces of smaller degrees using so-called Viro
polynomials, see for instance the appendix of [4] or [12].

The main goal of the present paper is to prove an analogue of Viro’s Patchworking Theo-
rem for Log-critical loci and study its applications to the associated classification problem.
We obtain a patchworking theorem in the name of Theorem A that we use to construct curves
whose Log-critical locus has a small number of connected components, see Theorem B. In
particular, we show that for any degree d > 2, there exists a smooth curve C such that cr.C /
is smooth and connected. In particular, we disprove [7, Conjecture 1].

The statement of Theorem A requires some technicalities and is therefore postponed to
Section 3. In the meantime, let us illustrate the latter results with some examples. To begin with,
let us consider the patchworking of the real algebraic curves C1 and C2 defined respectively by
the polynomials

f1.z; w/ D w.z C 2:6/C .z C 2:5/.z C 1/ and f2.z; w/ D w.z C 2:6/C w
2:

Here, we denote�j the Newton polygon of polynomials fj and �j the corresponding moment
map, j D 1; 2. The real part RCj can be represented in 4 symmetric copies of �j , one copy
per quadrant of .R�/2. This representation, usually referred to as a chart of the curve, can be
achieved by using an unfolding of �j that remember the signs of each quadrant, see Figure 1.
Since the polynomials f1 and f2 agree with each other on the common edge �1 \�2, the



Lang and Renaudineau, Patchworking the Log-critical locus of planar curves 117

�1

�2 �

�1.C1/

�2.C2/

�.C /

Figure 1. The charts of RC1 (left), RC2 (middle) and RC (right).

Patchworking Theorem states that there exists a curve C with Newton polygon �1 [�2 and
whose chart is isotopic to the gluing of the charts of C1 and C2, see again Figure 1. Moreover,
the curve C can be defined as the zero set of the Viro polynomial

ft .z; w/ D w.z C 2:6/C .z C 2:5/.z C 1/C tw
2

for t > 0 small enough.
There is no direct generalisation of the charts of Figure 1 if we perturb the polynomials

f1 and f2 in a complex direction since the real parts of C1 and C2 cease to exist. To fix this, we
can first fold the 4 copies of each Newton polygon to a single one, considering the set �j .RCj /
instead of the chart of Cj , see Figure 2. Secondly, we can trade the set �j .RCj / for its superset
�j .cr.Cj //, that is the contour of Cj . We can use such kind of representations for an arbitrary
patchwork. This provides an indirect picture on how the Log-critical loci of the various curves
involved in the patchwork eventually glue together along the families of curves defined by the
underlying Viro polynomial.

�1

�

�1.RC1/

�.RC/

�2
�2.RC2/

�1

�2

�1.RC1/

�2.RC2/

Figure 2. The amoeba of RC (right) obtained as the patchwork of the amoebas of RC1 (left) and
RC2 (middle).

Instead of the polynomials f1, f2 and ft used above, consider now

zf1.z; w/ D w.z C 2:6C 0:5i/C .z C 2:5C 0:5i/.z C 1C 0:5i/;

zf2.z; w/ D w.z C 2:6C 0:5i/C w
2

and the Viro polynomial

zft .z; w/ D w.z C 2:6C 0:5i/C .z C 2:5C 0:5i/.z C 1C 0:5i/C tw
2

and add a tilde to every piece of notation. Then Theorem A describe the set cr. zC/ for a generic
choice of the complex parameter t , provided that jt j is small. In Figure 3, we picture the patch-
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�1

�2

�

�1. zC1/

�2. zC2/

�. zC/

Log. zC/

Log.cr. zC//

Figure 3. The contour of zC (middle) obtained as the patchwork of the contours of zC1 and zC2 (left).
On the right, we represent the non-compact amoeba Log. zC/ together with its contour.

working procedure at the level of contour as well as the amoeba Log. zC/ for the parameter
t D 0:003. In the present case, Theorem A implies that b0.cr. zC// D 2, a fact that can be read
from Figure 3. To our knowledge, this is the first instance of a curve whose Newton polygon is
the 2-simplex and such that its critical locus is smooth and has exactly 2 connected components.
An additional patchwork using the latter curve leads to a cubic curve bC whose Log-critical
locus is smooth and connected. Concretely, if zf is the defining polynomial of zC , then the
curve bC can be defined by the polynomial yf D z zf � 8 � 10�7.w C 1/.w C 10/.w C 100/,
see Figure 4.

�1.C1/

�2.C2/

Figure 4. The amoeba (yellow) and the contour (blue) of the curvebC .

The efficiency of Theorem A for constructing curves with prescribed Log-critical locus
relies on the variety of building blocks that are already at our disposal. In Section 5, we provide
a collection of such building blocks that we use later on to prove Theorem B. Those blocks are
curves in the Hirzebruch surface†1. If we denote .z; w/ the coordinates of .C�/2 � †1, these
curves intersect the divisor z D 0 exactly once. More importantly, they have the remarkable
property that each intersection point with the divisorw D1 is contained in a single component
of the Log-critical locus. The latter phenomenon can be observed in Figure 5 where the contour
of such curves is depicted. There, we can observe the “birth” of each of the tentacles going
upwards, involving exactly one component of the Log-critical locus.

To obtain Theorem A, we study the behaviour of Log-inflection points along families of
curves defined by Viro polynomials. Recall that a Log-inflection point is a ramification point for
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Figure 5. The amoeba (yellow) and the contour (blue) ofw.zC17�5i/C.zC15�5i/.zC10�5i/
(left) and w.zC37�5i/.zC17�5i/C .zC35�5i/.zC15�5i/.zC10�5i/ (right).

the Logarithmic Gauss map  . The relative position with RP 1 of the corresponding branching
points in CP 1 governs the topology of the pair .C; cr.C // since cr.C / D �1.RP 1/. While
patchworking a collection of curves C1; : : : ; Ck , the 1-parameter family of curves defined by
the underlying Viro polynomial can be compactified with the reducible curve C1 [ � � � [ Ck
at t D 0, using an appropriate toric 3-fold. When t tends to 0, some of the Log-inflection
points of the generic curve concentrate at the nodal points of the central curve C1 [ � � � [ Ck .
We describe the asymptotic of these points in Theorem D, see Section 4. The latter result is
the cornerstone of the proof of Theorem A. It also leads to a generalisation of a theorem of
Mikhalkin and the second author (see [11]) in the name of Theorem C. The latter theorem
describes the tropical limit of the Log-inflection points along families of curves defined by
generic Viro polynomials. The original statement [11, Theorem 3] asserts that Log-inflection
points accumulate by pairs at the midpoint of every bounded edge of a tropical curve, if the
tropical curve is non-singular. We prove that the same phenomenon occurs for families of
curves defined by generic Viro polynomials associated to arbitrary subdivisions. In particular,
the limiting tropical curve may be singular in this context. Eventually, we show in the appendix
that the genericity assumption on the Viro polynomial is necessary. To do so, we exhibit Viro
polynomials for which the tropical limit of some Log-inflection points is located at 1=3 of
a bounded edge of the tropical limit.

2. Setting

2.1. Viro polynomial. Throughout this text, the symbol � refers to a lattice polygon,
that is the convex hull in R2 of a finite set of points in Z2. We denote by New.f / the Newton
polyhedron of any Laurent polynomial f . We denote by .X�;L�/ the polarised toric sur-
face associated to �, see [3, Chapter 5]. The monomial embedding (1.2) of the latter reference
allows to identify the space of section jL�j with the projectivisation of the space of Laurent
polynomials whose Newton polygon is contained in �. The toric surface X� provides a com-
pactification of .C�/2 with a chain of toric divisors. Each such divisor is isomorphic to CP 1

and correspond to an edge of � via the moment map.
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Definition 2.1. A subdivision of a lattice polygon� is a set of lattice polygons ¹�kºk2I
such that:

�

S
k2I �k D �,

� if k; l 2 I , then the intersection �k \�l is a common face to �k and �l .

A subdivision ¹�kºk2I of � is said to be convex if there exists a convex piecewise-linear
function � W �! R whose domains of linearity coincide with the polygons �k . If such a
function exists, then it can be taken in such a way that �.� \ Z2/ � Z2. We call such a function
Z-convex.

For any Z-convex function � W �! R and any Laurent polynomial

f .z; w/ D
X

.i;j /2�\Z2

ai;j z
iwj ;

we define the associated Viro polynomial to be the Laurent polynomial

ft .z; w/ WD ft;�.z; w/ WD
X

.i;j /2�\Z2

ai;j t
�.i;j /ziwj :

For any k 2 I , we denote by f �k WD
P
.i;j /2�k\Z2 ai;j z

iwj the truncation of f to �k . The
Viro polynomial ft is said to be non-degenerate if for any k 2 I , the curve Z.f �k / is smooth
and transverse to every toric divisor of X�k .

Recall that the function � induces a toric compactification of .C�/3 in which all the
curves Z.ft / WD ¹ft D 0º � .C�/2 coexist. Indeed, consider the lattice polyhedron

�� WD ¹.j1; j2; j3/ 2 R3 W .j1; j2/ 2 �; �.j1; j2/ 6 j3 6 max �º

and the corresponding toric 3-fold X�� � .C
�/3 with coordinates .z; w; t/. The closure of

each horizontal section ¹t D constantº in X�� is isomorphic to X� except for the section
¹t D 0º which is a reducible toric surface

S
k2I X�k , where ¹�kºk2I is the subdivision of �

induced by �.
For a Viro polynomial ft associated to � and a fixed constant s 2 C�, the curve

Cs WD Z.fs/ � X�

can be seen as the compactification of the intersection of the surface ¹ft D 0º � .C�/3 with
¹t D sº in X�� . The family Cs � X�� admits a limit C0: this is the reducible curve in the setS
k2I X�k whose intersection with X�k is defined by the truncation f �kt .

2.2. Logarithmic Gauss map. Let f be a Laurent polynomial with Newton polygon�
and denote by C � X� the compactification ofZ.f / � .C�/2. Provided that C is smooth, we
can define the logarithmic Gauss map by

f W C ! CP 1;

.z; w/ 7! Œz � àzf .z; w/ W w � àwf .z; w/�;

where .z; w/ are the coordinates on .C�/2. Locally, the map  is the composition of any branch
of the coordinate-wise logarithm with the usual Gauss map that associates the normal direction
to an hypersurface at a smooth point. If a local parametrisation s 7! .z.s/; w.s// of C is given,
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the composition of  with the latter is

(2.1) s 7!

�
�
d

ds
log.w.s// W

d

ds
log.z.s//

�
:

The degree of f is 2 vol.�/, where vol is the Euclidean area, provided that C is trans-
verse to every toric divisor. Following [11], we refer to the ramification points of f as the
Log-inflection points of C .

Let now ft be a Viro polynomial associated to a Z-convex function � W �! R and
¹Ctºt2C the corresponding family of curves defined in Section 2.1. For " > 0 small enough
and any non-zero t such that jt j < ", the curve Ct is smooth and the corresponding logarithmic
Gauss map t WD ft is well defined. The family of maps ¹tºjt j<"; t¤0 extends to a map 0
on C0. To see this, observe that if � D 0 on one of the polygons �k of the subdivision induced
by �, then the family of maps

t .z; w/ D Œz � àzft .z; w/ W w � àwft .z; w/�

converges to
0.z; w/ D Œz � àzf0.z; w/ W w � àwf0.z; w/�

which is the logarithmic Gauss map of the curve Z.f0/ � X�k . By applying a toric change
of coordinates of the form .z; w; t/ 7! .z; w; tzawb/, we can make any of the faces �k � ��
horizontal. It amounts to replace � with � � `, where ` is the linear function that coincide
with � on �k . Therefore, we can apply the above reasoning to any element �k of the subdi-
vision of �. This proves the claim. A different viewpoint on the above computation is that the
coordinates .z; w; t/ induce well defined coordinates .z; w/ on the torus .C�/2 of each divisors
X�k � X�� . These coordinates allow us to define compatible logarithmic Gauss maps on each
of the irreducible components of C0.

If the Viro polynomial ft is non-degenerate in the sense of Section 2.1, then the map 0
has degree 2 vol.�/. Since the degree is lower semicontinuous and 2 vol.�/ is the maximal
possible value for t , it follows that 2 vol.�/ is also the degree of t for jt j small.

2.3. Log-critical locus. Recall that for any lattice polygon �, the moment map

� W X� ! �

is the quotient map of the action of .S1/2 on X�. After applying a diffeomorphism on int.�/,
the restriction of � to the torus .C�/2 � X� is given by

Log W .C�/2 ! R2;

.z; w/ 7! .log jzj; log jwj/:

For a smooth algebraic curve C � X� given by a Laurent polynomial f , the Log-critical
locus cr.C / � C (denoted alternatively cr.f /) refers to the critical locus of the restriction
� W C ! �. It was observed in [10] that

cr.f / D �1f .RP 1/:

It was shown in [7] that cr.f / is smooth for a generic polynomial f within the linear sys-
tem jL�j. We fix once and for all an orientation on RP 1 so that cr.f / inherits an orientation
from RP 1 whenever it is smooth.
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Let ft be a Viro polynomial and let Ct , t 2 C, be defined as in the previous section. We
define

cr.C0/ WD �10 .RP 1/:

Equivalently, the locus cr.C0/ is the Hausdorff limit of the family of Log-critical loci cr.Ct /.
Observe that for any curve C � X�, the set cr.C / always contains the intersection points

of C with the toric divisors of X�, see for instance [6, Lemma 1.10]. As a consequence, the
set of nodes of C0 is always a subset of cr.C0/.

We say that the Viro polynomial ft is Log non-degenerate if it is non-degenerate and if
the intersection of cr.C0/ with any irreducible component of C0 is smooth. In particular, every
such piece of cr.C0/ inherits an orientation from RP 1. As observed in Section 2.2, the maps
t have degree 2 vol.�/ for jt j small, included for t D 0.

When ft is Log non-degenerate, any deformation .Ct ; cr.Ct // of .C0; cr.C0//, for t with
0 < jt j < " arbitrarily small, is simple in a sense that we now describe. To do so, let us consider
a small neighbourhood U of the set of nodes of C0 in the family of curves

C WD
[
t2C

Ct � X�� :

We require that the intersection of U with Ct is a disjoint union of cylinders, one per node
of C0, and that àU is transverse to Ct and cr.Ct /. We refer to the beginning of Section 4
for the existence of such a neighbourhood U. In particular, each connected component of the
topological pair .C0 \U; cr.C0/ \U/ is as pictured in Figure 6 (c). By the assumption on ft
and the construction of U, the pair .C0 nU; cr.C0/ nU/ is a pair of smooth manifolds with
boundary. Thus, the topological pairs .Ct nU; cr.Ct / nU/ for jt j < " are identical to each
other. This is the first property characterising simple deformations. The second and last prop-
erty is as follows. For any connected component C of Ct \U, that is C is a cylinder, every
connected component of cr.Ct / \ C intersects the boundary of C and cr.Ct / \ àC consists of
four points. To see this, observe that any compact connected component of cr.Ct / \ C would
cover the full RP 1 at least once under t . This is not possible since there exist points in RP 1

whose fiber is contained in Ct nU and consists of the maximal number of points, namely
2 vol.�/. The cardinality of cr.Ct / \ àC is constant in t by transversality, it is 4 for t D 0,
therefore it is 4 for jt j < ".

Next, we say that the deformation .Ct ; cr.Ct // of .C0; cr.C0// is smooth if both Ct and
cr.Ct // are smooth manifolds. At the topological level, there are exactly two simple smooth
deformations .Ct ; cr.Ct // of .C0; cr.C0// that are compatible with the orientation of cr.C0/,
see Figure 6 (a) and (b). The deformation pictured in Figure 6 (b) will be referred to as the con-
nected deformation. Our interest in this specific deformation will be motivated in Theorem A.
Similarly, there are several simple deformations that are not smooth. There will be only one
such deformation that will be of interest to us. This deformation is pictured in Figure 6 (d) and
will be referred to as the singular deformation.

2.4. Tropical limit of Viro polynomials. Let � be a Z-convex function on the lattice
polygon � and let ¹�kºk2I be the associated subdivision. Let

f .z; w/ D
X

.i;j /2�\Z2

ai;j z
iwj ;

be a Laurent polynomial and let ft be the Viro polynomial associated to f and �, see Sec-
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F D 0

F > 0

F < 0

F D �G

F > �G

F < �G

F D �G

F > �G

F < �G

Ct C0

cr.Ct / cr.C0/

p

Ct

cr.Ct /

Ct C0 Ct

cr.Ct / cr.C0/ cr.Ct /

p

Ct

cr.Ct /

Ct C0 Ct

cr.Ct / cr.C0/ cr.Ct /

p

Ct

cr.Ct /

Ct

cr.Ct /

(a) (b) (c) (d)

Figure 6. The simple smooth deformations (a) and (b) and the singular deformation (d) of the pair
.C0; cr.C0// near a node (c).

tion 2.1. Then the image of Z.ft / under the map

Logt W .C
�/2 ! R2;

.z; w/ 7!

�
� log jzj

log.t/
;
� log jwj

log.t/

�
admits a limit � in the Hausdorff sense when t goes to 0. This limit is usually referred to as
the tropical limit of ¹Z.ft /ºt2C . The set � � R2 is a tropical curve, a rectilinear graph which
is dual to the subdivision ¹�kºk2I of �, see for instance [2]. Moreover, any edge e of � is
equipped with a positive integer weight given by the integer length of the edge dual to e in the
subdivision ¹�kºk2I .

If p 2 � , we say that a sequence of points zt 2 Ct tropically converges to p (or admits p
as tropical limit) if limt!0 Logt .zt / D p. It is a classical fact that any sequence zt 2 Ct that
converges to a smooth point of C0 tropically converges to a vertex of � . It can be checked by
hand, using appropriate coordinate systems.

Eventually, we say that � is non-singular if each �k , k 2 I , is a triangle with area 1
2

. In
particular, � is a trivalent graph with edges of weight 1. Again, we refer to [2] for further details.

2.5. Newton–Puiseux theorem. The material of this section will be used exclusively
to prove Theorem D. The reader may skip this section at her/his own convenience. Below, we
state a simple version of the Newton–Puiseux theorem for space curves as in [9, Theorem,
Section 3]. In order to do so, we need to recall some terminology from the latter reference.

Let v D .v1; v2; v3/ 2 .Z>0/
3 be non-zero. A polynomial g.z; w; t/ is homogeneous

of v-order d if g.sv1 ; sv2 ; sv3/ is a monomial of degree d in the variable s. Every polynomial
g.z; w; t/ can be uniquely written as g WD

P
j2Z>0 gj , where gj is homogeneous of v-order j .

We refer to d WD min¹j 2 Z>0 W gj ¤ 0º as the initial v-order of g and define the v-initial
form of g by inv g WD gd . By extension, we define the v-initial form of an ideal I 2 CŒz; w; t �
by inv I WD .¹inv g W g 2 I º/. A tropism of an ideal I is a primitive vector v 2 .Z>0/

3 such
that inv I does not contain any monomial. Geometrically, this is equivalent to require that �v
belongs to the 1-skeleton of the dual fan of the Newton polyhedron New.g/ for any g 2 I .

Example 1. Let g.z; w; t/ D 1CzCwCt . Then in.2;1;1/ g D 1 and in.0;1;1/ g D 1Cz.
In fact, .0;�1;�1/ belongs to the face of the dual fan generated by .�1;�1;�1/ and .1; 0; 0/,
and .�2;�1;�1/ does not belong to the dual fan.
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The statement below is a simpler version of the Newton–Puiseux theorem as stated
in [9, Theorem, Section 3].

Theorem 2.2. Let f1.z; w; t/ and f2.z; w; t/ be two polynomials such that

X WD ¹f1 D f2 D 0º � C3

is one-dimensional. Then any irreducible component of the reduction of X that passes through
0 2 C3 and that is not contained in a coordinate hyperplane can be parametrised as follows:

z D ˛sv1 C o.sv1/;

w D ˇsv2 C o.sv2/;

t D sv3 C o.sv3/;

where .˛; ˇ/ 2 .C�/2 and .v1; v2; v3/ is a tropism of the ideal .f1; f2/.

3. Main results

The following theorem is a patchworking theorem for the Log-critical locus of curves
¹Ctºt2C defined by a Viro polynomial ft as defined in Section 2.1. Recall that we only consider
Viro polynomials ft .z; w/ that are polynomial in t , according to Definition 2.1.

Theorem A. Let ft be a Log non-degenerate Viro polynomial, see Section 2.3. Then
there exist " > 0 and a dense open subset U � ¹t 2 C� W jt j < "º such that for any t 2 U , the
topological pair .Ct ; cr.Ct // is obtained from .C0; cr.C0// by replacing the neighbourhood of
every node of C0 with the connected deformation of Figure 6. In particular, the locus cr.Ct / is
smooth for any t 2 U .

Remark 3.1. For t … U , there is at least one node of C0 whose neighbourhood is
replaced by the singular deformation pictured in Figure 6. In general, it follows from the asymp-
totic formula (4.8) that the connected and the singular deformations are the only deformations
possible for a Log non-degenerate Viro polynomial. If the latter polynomials is real, it follows
again from (4.8) that at any given node of C0, one of the deformations appears for t > 0 and
the other deformation appears for t < 0.

Using the above theorem, we are able to construct projective curves C of any degree such
that the Log-critical locus cr.C / is smooth and has a small number of connected components.
Below, we denote by �d the standard d -simplex, that is

�d WD conv
�
.0; 0/; .d; 0/; .0; d/

�
:

Theorem B. For any integer d > 3 and any integer 1 6 b 6
�
d�1
2

�
C 1, there exists

a smooth Laurent polynomial f with Newton polygon �d such that the Log-critical locus
cr.f / is smooth and has exactly b connected components.

Remark 3.2. The above theorem disproves [7, Conjecture 1] and points out a missing
assumption in [7, Proposition 6.3]: using the notations of [7], we should assume that A restricts
to an immersion on the Log-critical locus S.f / for the statement to hold.
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In order to prove Theorem A, we need to study the asymptotic behaviour of Log-inflec-
tion points along families of curves defined by Viro polynomials. Theorem A relies principally
on Theorem D, stated and proven in Section 4. As a byproduct of the latter study, we obtain the
theorem below which generalises [11, Theorem 3].

Theorem C. Let ft be a Log non-degenerate Viro polynomial and let � � R2 be the
tropical limit of ¹Ctºt2C . Then, for any bounded edge e � � with multiplicity m > 1 and
midpoint p 2 e, there are exactly 2m ramification point for t in Ct whose tropical limit is p.
The tropical limit of the remaining ramification points are distributed among the vertices of � .

Remark 3.3. The applications of the asymptotic formulas obtained in Section 4 reach
further than the above statement. Indeed, it allows us to determine the phase-tropical limit of
the Log-inflection points. A detailed treatment of this aspect would lead us too far from the
main subject here. Let us at least mention the following. Assume that � is non-singular (and
therefore m D 1 for any bounded edge) and that we consider a continuous path of parameters
t 2 C ending at 0. Then we can define the phase-tropical limit �C � .C

�/2 of Ct along this
path, see for instance [8] for some background on phase-tropical curves. The phase-tropical
limit �C � .C

�/2 is mapped to � under Log and the fiber in �C over any non-vertex point in
� is a geodesic in the argument torus .S1/2. Then it follows from the asymptotic formula (4.6)
that the two Log-inflection points tropically converging to the midpoint p of a given edge e 2 �
also converge phase-tropically. Moreover, the two limit points in .C�/2 are equi-distributed on
the geodesic fiber over p. Eventually, let us point out that the computation carried in the proof
of Theorem D could be extended to non-generic Viro polynomials and lead to a generalisation
of Theorem C, as illustrated in the appendix.

4. Proofs of Theorems A and C

In this section, we assume that ft .z; w/ is a Log non-degenerate Viro polynomial con-
structed from a Z-convex function � W �! R, see Sections 2.1 and 2.3. For

U" WD ¹t 2 C W jt j < "º;

we denote by C ! U" the family of curve whose fiber over t 2 U" is Ct WD Z.ft / � X�� ,
see Section 2.1. The parameter " > 0 is assumed to be arbitrarily small. In particular, the curve
Ct is smooth for any non-zero t 2 U".

Under the above assumptions, the Log-Gauss map t WD ft W Ct ! CP 1 has constant
degree 2 vol.�/ for any t 2 U", see Section 2.2. Moreover, the collection of maps t , t 2 U",
induces a globally defined algebraic map � W C ! CP 1. We now claim that for any node
p 2 C0, there exists a small neighbourhood V WD V.p/ � C of p which is onto U" and such
that Ct \ V contains exactly two ramification points of t for any t ¤ 0. Indeed, since ft is
Log non-degenerate, the set cr.C0/ does not contain any Log-inflection point. Thus, for any
small open ball U � CP 1 centered at 0.p/, the connected component of �10 .U/ containing
p does not contain any Log-inflection point. Define V � C to be the connected component
of ��1.U/ that contains p. By the construction of V and by the Log non-degeneracy of ft ,
the set C0 \ V is the union of two discs intersecting at p and each of them maps bijectively
onto U. In particular, the restriction 0 W C0 \ V ! U has degree 2 and, consequently, so
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does t W Ct \ V ! U for t 2 U". Since Ct \ V is smooth, it is necessarily a cylinder, by
the Riemann–Hurwitz formula. Accordingly, it contains exactly two Log-inflection points that
collide at the node p when t tends to 0.

Before moving on, let us observe that the open set U WD
S
p V.p/, where the union runs

over all the nodes p of C0, satisfies all the properties required in Section 2.3.
The main ingredient in the proofs of Theorems A and C is the following.

Theorem D. Let ft be a Log non-degenerate Viro polynomial, see Section 2.3. For any
node p 2 C0, there exist � 2 C� and an integer � such that the image under t of each of the
two Log-inflection points in Ct \ V is equal to

˙�t�=2 C o.t�=2/

in the appropriate affine chart of CP 1.

In the above statement, the integer � can be either even or odd. In the odd case, the choice
of the determination of t�=2 is irrelevant.

In order to prove the above theorem, we will compute a parametrisation of the curve
described by the position of the Log-inflection points in Ct \ V when t varies in U". It follows
from the method of Lagrange multipliers that, for a fixed t , the Log-inflection points in Ct are
exactly the solutions of the system ¹ft .z; w/ D P.z;w; t/ D 0º, where

P.z;w; t/ WD det

 
àzft àzt
àwft àwt

!
:

Since t is a rational function, so is P . If we denote by N the numerator of P , then the system
¹ft D P D 0º is locally equivalent to the system ¹ft D N D 0º provided that the denomina-
tor of P does not vanish. This will be the case in the application below. We will obtain the
parametrisation of the position of the Log-inflection points by applying the Newton–Puiseux
theorem to the system ¹ft .z; w/ D N.z;w; t/ D 0º.

For the sake of computation, we first proceed to some changes of coordinates. The node
p 2 C0 lies on the intersection of two irreducible components of the section ¹t D 0º in X�� .
The latter intersection corresponds to an edge e D �j \�k , where�j and�k are polygons of
the subdivision of� induced by �. Using a toric change of coordinates, we can assume without
loss of generality that e is directed by .0; 1/ and that � D 0 on the polygon of the subdivision
of � to the right of e, say �k . We denote by ` the integer such that e lies in ¹j1 D `º (recall
that .j1; j2; j3/ are the coordinates on the lattice of monomials Z3). The restriction of � to
�j is of the form ��j1 C `�, where � 2 N�. Furthermore, we can multiply ft by a monomial
z˛wˇ to ensure that �� lies in the positive octant, that is ft is an honest polynomial in z; w; t ,
and furthermore that ` > 2.

Applying a toric translation w 7! ˛w, where ˛ ¤ 0, if necessary, we can ensure that any
sequence of points in Ct that converges to p 2 X�� when t tends to 0 converges to .0; 1; 0/ in
the naive partial compactification C3 � .C�/3. Therefore, we will work with the coordinates
.z; zw; t/, where zw D w � 1 on C3.

We now define the polynomial

zft .z; zw/ WD ft .z; zw C 1/ D ft .z; w/
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in the variable .z; zw; t/ and denote by z� the Newton polyhedron of zft . By a slight abuse
of notation, we denote again by .j1; j2; j3/ the coordinates on the space of monomials Z3

associated to .z; zw; t/. In the proof of Theorem D, we will use the Newton–Puiseux theorem
on a pair of polynomials, one of which is zft . Therefore, we need to gather some information
on the polyhedron z�. Below, we denote

H1 WD ¹j3 > ��j1 C `�º; q0 WD .`; 0; 0/ D àH1 \ àH2 \ àH3;
H2 WD ¹j2 > 0º; q1 WD .`; 1; 0/;

H3 WD ¹j3 > 0º; q2 WD .`C 1; 0; 0/;

q3 WD .` � 1; �; 0/:

Lemma 4.1. The polyhedron z� has the following properties:

(a) z� is contained in each of the half spaces H1, H2 and H3,

(b) z� contains the lattice point q1 but not the lattice point q0,

(c) z� contains the lattice points q2 and q3.

In particular, the only facets of z� whose outer normal vector lies in .R<0/3 are contained in
conv.q0; q1; q2; q3/ and there are at most two of them.

Proof. (a) Since z� is obtained from the Newton polyhedron New.ft / after the change
of variable zw D w � 1, it suffices to show that New.ft / is contained in each of the half spaces
H1, H2 and H3. This is clear for H2 and H3 since ft is a polynomial. The facet of New.ft /
over�j lies inH1 according to the above choice of coordinates. It follows from convexity that
New.ft / is contained in H1.

(b) By hypothesis, the truncation of ft to e has a simple zero at w D 1. Equivalently,
the truncation of zft to the line ¹j1 D `; j3 D 0º has a simple zero at zw D 0. In turn, this is
equivalent to say that z� contains q1 but not q0.

(c) Let us first show that there exists a point q D .`Cm; 0; 0/, m > 1, in z�. Assume
towards the contradiction that the intersection of z� with the first coordinate axis is empty.
Thus, the truncation of ft to the facet �k is divisible by .w � 1/, that is the component of
C0 lying in X�k is reducible and contains the curve ¹w D 1º as an irreducible component.
It contradicts the fact that ft is non-degenerate. Therefore, the point q exists. Take now m as
small as possible. Our aim is to show that m D 1. To do so, observe that in a neighbourhood
of p, the curve C0 \X�k can be parametrised in the coordinate .z; w/ by

s 7! .s C o.s/; 1C asm C o.sm//

with a 2 C�. By (2.1), the composition of 0 with the latter parametrisation is

s 7!

�
�
d

ds
log.1C asm C o.sm// W

d

ds
log.s C o.s//

�
D

�
�
amsm�1 C o.sm�1/

1C asm C o.sm/
W

1

s C o.s/

�
D

�
�
amsm C o.sm/

1C asm C o.sm/
W 1

�
:

The latter map has a critical point at s D 0 if and only if m > 1. Equivalently, the point p is
a ramification point of the restriction of 0 to C0 \X�k if and only if m > 1. The point p
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cannot be such a ramification point since ft is Log non-degenerate. We conclude that m D 1
and that q D q2. Since�k and�j play a symmetric role, the same arguments apply to q3.

We now define the polynomial

zN.z; zw; t/ WD N.z; zw C 1; t/ D N.z;w; t/

in the variable .z; zw; t/. Since we aim to apply the Newton–Puiseux theorem to the system
¹ zft .z; zw/ D zN.z; zw; t/ D 0º, we need now to gather some information on zN . Below, we
denote by a, b and c the coefficients such that az`C1, bz` zw and cz`�1t� are monomials of
zft . Since those monomials correspond respectively to the lattice point q2, q1 and q3, we know

by Lemma 4.1 that abc 2 C�. Furthermore, denote

ı WD min
²
�

2
;

²
d 2 N W

à`Cd

àz`àtd
zft .0; 0; 0/ ¤ 0

³³
:

Then the polyhedron z� has exactly two facets whose outer normal vector lies in .R<0/3 if and
only if ı < �

2
. If

ı D

²
d 2 N W

à`Cd

àz`àtd
zft .0; 0; 0/ ¤ 0

³
;

we denote by d the coefficient of the monomial z`tı of zft and declare d D 0 otherwise. In
particular, we have d D 0 if ı D �

2
and � is odd. We refer to Figure 7.

j1

j2j3

.`; 0; 0/ .`; 0; 0/

H1

H2

H3

Figure 7. The polyhedron z� for � D 3 with ı D 3
2 (left) and ı D 1 (right).

Recall the terminology of Section 2.5. We say that a polynomial g 2 CŒz; zw; t� is ov.d/
if its initial v-order is strictly larger than d . Plainly, we have the properties

ov.d1/C ov.d2/ D ov.min¹d1; d2º/ and g � ov.d/ D ov.d C d
0/;

where d 0 is the initial v-order of g.

Lemma 4.2. Assume that ft is as in Theorem D and define v WD .�; 2ı; 2/. Then there
exists a non-zero polynomial h such that

(4.1) z � zN C h � zft D �.cz
`�1t� C az`C1/b2z2` C ov.�.3`C 1//:

Moreover, the polynomial zN contains the monomial `2b3z3`�1 zw and contains additionally the
monomial `2b2dz3`�1tı if d is non-zero.
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Proof. Recall that in the affine chart Œu W v� 7! u
v

of CP 1, the map t is given by

t .z; w/ D
z � àzft .z; w/
w � àwft .z; w/

:

Denote �z and �w the respective numerators of the rational functions àzt and àwt , that is

�z WD àz.zàzft / � wàwft � zàzft � àz.wàwft /

and
�w WD àw.zàzft / � wàwft � zàzft � àw.wàwft /:

In turn, we have that the numerator N of P is given by

N D àzft � �w � àwft � �z :

If we rewrite �z and �w in the variables .z; zw; t/ as we did for N , that is

z�z.z; zw; t/ WD �z.z; zw C 1; t/ and z�w.z; zw; t/ WD �w.z; zw C 1; t/;

then we obtain the formulas
z�z WD àz.zàz zft / � . zw C 1/àzw zft � zàz zft � àz

�
. zw C 1/àzw zft

�
;

z�w WD àzw.zàz zft / � . zw C 1/àzw zft � zàz zft � àzw
�
. zw C 1/àzw zft

�
and

zN WD àz zft � z�w � àzw zft � z�z :

Below, we will compute z � zN modulo zft . To do so, let us first observe that we can write

zft D cz
`�1t� CQ. zw; t/z` C az`C1 C ov.�.`C 1//

where Q 2 CŒ zw; t�. This is a consequence of Lemma 4.1. Recall that ` > 2 by assumption.
Then we have that

zàz zft D c.` � 1/z`�1t� C `Q. zw; t/z` C a.`C 1/z`C1 C ov.�.`C 1//(4.2)

� �cz`�1t� C az`C1 C ov.�.`C 1// mod zft ;

that

zàz.zàz zft / � c.1 � 2`/z`�1t� C a.2`C 1/z`C1 C ov.�.`C 1// mod zft ;(4.3)

àzw.zàz zft / D `àzw zft C ov.�.`C 1/ � 2ı/(4.4)

and eventually that

(4.5) zàz.. zw C 1/àzw zft / D `. zw C 1/àzw zft C ov.�.`C 1/ � 2ı/:

In order to compute z � zN , we compute separately zàz zft � z�w and zàzw zft � z�z . Using (4.2)
and (4.4), we obtain

zàz zft � z�w D zàz zft
�
àzw.zàz zft / � . zwC1/àzw zft � zàz zft � àzw

�
. zwC1/àzw zft

��
�
�
�cz`�1t�Caz`C1Cov.�.`C1//

�
�
�
.`àzw zftCov.�.`C1/ � 2ı//. zwC1/àzw zft
�
�
�cz`�1t�Caz`C1Cov.�.`C1//

�
àzw
�
. zwC1/àzw zft

��
� .�cz`�1t�Caz`C1/`. zwC1/.àzw zft /2Cov.�.3`C1// mod zft :
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Observe that the product of the orange term with zàz zft has initial v-order �.3`C 2/ at least.
Hence, it is ov.�.3`C 1// and does not contribute to the last formula obtained above. Using
(4.2), (4.3) and (4.5), we obtain

zàzw zft � z�z D àzw zft
�
zàz.zàz zft / � . zwC1/àzw zft �zàz zft � zàz

�
. zwC1/àzw zft

��
� àzw zft

�
.c.1�2`/z`�1t�Ca.2`C1/z`C1Cov.�.`C1/// � . zwC1/àzw zft

� .�cz �̀1t�Caz`C1Cov.�.`C1///

� .`. zwC1/àzw zftCov.�.`C1/�2ı//
�

� .c.1�`/z`�1t�Ca.`C1/z`C1/`. zwC1/.àzw zft /2Cov.�.3`C1// mod zft :

Eventually, since àzw zft D bz` C ov.�`/ D . zw C 1/.àzw zft /, we conclude that

z � zN � �.cz`�1t� C az`C1/. zw C 1/.àzw zft /2 C ov.�.3`C 1// mod zft

� �.cz`�1t� C az`C1/b2z2` C ov.�.3`C 1// mod zft :

For the second part of the statement, we compute zN up to ov0.�.3` � 1/C 1/ with
v0 WD .�; 1; 2/. Since 2ı > 1, we have

àz zft D `bz`�1 zw C ov0.�.` � 1/C 1/ and àzw zft D bz`�1 C ov0.�.` � 1//:

In turn, we obtain that

zN D `bz`�1 zw
�
.`bz`/.bz`/ � .`bz` zw/àzw.. zw C 1/àzw zft /

�
� bz`

�
.`2bz`�1 zw/.bz`/ � .`bz` zw/.`bz`�1/

�
C ov0.�.3` � 1/C 1/

D `2b3z3`�1 zw C ov0.�.3` � 1/C 1/;

where the last equality comes from the fact that the terms in orange cancel each other and that
the final contribution of the green term is ov0.�.3` � 1/C 1/. This implies that zN contains the
monomial `2b3z3`�1 zw and in turn that z�1 � h contains the monomial `2b2z2`�1. In particu-
lar, the polynomial h is non-zero. The multiplication of `2b2z2`�1 with the monomial dz`tı

of zft leads to the monomial `2b2z3`�1tı of zN .

Corollary 4.3. The polyhedron zN is contained in the translation by .2` � 1; 0; 0/ of
each of the half spaces H1, H2 and H3. The only facets of zN whose outer normal vector lies
in .R<0/3 are obtained by translation by .2` � 1; 0; 0/ from the facets of z� having the same
property.

Proof. This follows from Lemmas 4.1 and 4.2 and the fact that z�1 � h contains the
monomial `2b2z2`�1.

Proof of Theorem D. In order to prove the theorem, we will find a parametrisation of
the branches of the curve C WD ¹ zft D zN D 0º that pass through 0 2 C3.

Let us first consider the case when ı < �
2

, that is there exists an extra vertex q4 of z�
in conv.q0; q2; q3/. According to Lemma 4.1, the polyhedron z� has exactly two facets whose
outer normal vector lies in .R<0/3, namely F1 WD conv.q1; q2; q4/ and F2 WD conv.q1; q3; q4/
with respective normal vectors �.ı; ı; 1/ and �.� � ı; ı; 1/. By Corollary 4.3, the polyhedron
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New. zN/ contains the facets F 01 WD F1 C .2` � 1; 0; 0/ and F 02 WD F2 C .2` � 1; 0; 0/. Con-
sider now the partial toric compactificationXD � .C�/3 given by the non-compact polyhedron
D that is the positive cone over q0 of the facets F1 and F2. The latter are the only compact
facets of D and the remaining three facets are supported on H1, H2 and H3. Therefore, the
branches of C that pass through 0 2 C3 are exactly the branches whose closure inXD intersects
the union of toric divisors XF1 [XF2 � XD .

The intersection of C with XF1 (respectively XF2) is given by S1 WD ¹ zf
F1
t D zNF 01º

(respectively S2 WD ¹ zf
F2
t D zNF 02º). By the Bernstein–Kushnirenko Theorem, both S1 and S2

consists of a single point. By Lemma 4.2, we have

zf
F1\F2
t D b2`2z2`�1 � zNF 01\F

0
2 :

Therefore, we have S1 D S2 WD S and S 2 XF1 \XF2 .
By the Newton–Puiseux theorem [9, Theorem, Section 3], we can parametrise each

branch of C passing through S by an auxiliary parameter s as follows:

(4.6) s 7!
�
˛sv1 C o.sv1/; ˇsv2 C o.sv2/; sv3

�
;

where ˛; ˇ 2 C� and .v1; v2; v3/ 2 N3 is primitive. We claim that there are exactly two such
branches with .v1; v2; v3/ D .�2 ; ı; 1/ if � is even and that there is exactly one such branch with
.v1; v2; v3/ D .�; 2ı; 2/ if � is odd. To see this, let us perturb slightly C into a curve C 0 such
that the corresponding points S 01 and S 02 becomes distinct points living in the respective tori
.C�/2 of XF1 and XF2 . In this case, each of S 01 and S 02 corresponds to a single branch of C 0

parametrised respectively by�
˛1s

ı
C o.sı/; ˇ1s

ı
C o.sı/; s

�
and

�
˛2s

��ı
C o.s��ı/; ˇ2s

ı
C o.sı/; s

�
;

where the vectors of exponents are the inner normal to the corresponding facets, see for instance
[13, Section 2]. Thus, the sum of vector of exponents of over all the branches of C passing
through S should be equal to the sum of the above vectors of exponents, namely .�; 2ı; 2/.
Indeed, each coordinate of the sum is the total intersection number of C with a given coordinate
hyperplane in a neighbourhood of 0 2 C3 and is therefore invariant by small perturbation of C .
Since the vector of exponent of a single branch of C has to be primitive, there is a single branch
with exponent vector .�; 2ı; 2/ if � is odd and two branches with exponent vector .�

2
; ı; 1/

otherwise. The claim follows.
Whether � is odd or even, the composition of the parametrisation (4.6) with zft has to

be identically zero as a power series in the variable s. This applies to the coefficient of the
monomial with lowest degree, coming from bz` zw C dtı , that is ˛`.bˇ C 1/. We deduce that
ˇ D � 1

d
. Applying the same reasoning to the polynomial z � zN C h � zft of Lemma 4.2, we

deduce that

(4.7) c C a˛2 D 0:

We now compute the composition of

t .z; w/ D t .z; zw C 1// D
zàz zft .z; zw/

. zw C 1/àzw zft .z; zw/

with the parametrisation (4.6). Below, we use (4.2) in the first equality together with the fact
that the composition of (4.6) with zft is identically 0, then we use (4.7) in the third equality
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to obtain

t .z.s/; zw.s/C 1//(4.8)

D
c.` � 1/.˛sv1/`�1.sv3/� C a.`C 1/.˛sv1/`C1 C o.s.`C1/v1/

.1C ˇsv2 C o.sv2//.b.˛sv1/` C o.s`v1//

D sv1
c.` � 1/˛�1 C a.`C 1/˛

b
C o.sv1/ D sv1

2a˛

b
C o.sv1/

D sv1
2
p
ac

b
C o.sv1/ D t�=2

2
p
ac

b
C o.t�=2/:

When � is even, the two determinations of
p
ac gives the two branches. When � is odd, the

two determinations of
p
ac are compensated by the determinations of t�=2 and gives only one

branch, as expected. The result follows.
It remains to prove the statement when ı D �

2
. In that case, it follows from Corollary 4.3

that F WD conv.q1; q2; q3/ is the only facet of z� whose outer normal vector lies in .R<0/3

and that F C .2` � 1; 0; 0/ is a facet of New. zN/. As above, we can consider the partial toric
compactification of .C�/3 given by the cone D of F over q0. It follows now from (4.1) that
the system ¹ zf Ft D zN

F º has two distinct solutions inside the torus .C�/2 � XD . We deduce
as before that the branches of C passing through these solution are parametrised as in (4.6)
with .v1; v2; v3/ D .�2 ; ı; 1/ if � is even and .v1; v2; v3/ D .�; 2ı; 2/ if � is odd. The rest of
the proof is identical to the one of the previous case.

As in Section 2.1, we denote by jL�j the linear system of curves given by a Laurent
polynomial with Newton polygon included in�. Before we prove Theorem A, let us recall that
the space D � jL�j of Laurent polynomial f such that cr.f / is singular is a semi-algebraic
set of real codimension 1, see [7, Theorem 1]. Recall also that the locus D corresponds to
those curves having at least one Log-inflection point p such that .p/ 2 RP 1, see [7, Propo-
sition 1.1].

Proof of Theorem A. In order to prove the theorem, we will study the pullback to U"
of D under the map F W U" ! jL�j sending t to ft .

For any node p 2 C0, denote by `` W U" ! Sym2.CP
1/ the map that associates to any

t the image under t of the two Log-inflection points in Ct \ V . In turn, define

Dp WD ``
�1.Sym2.RP

1// � U":

We claim that F�1.D/ D
S
p Dp, where the union runs over all the nodes p 2 C0. To

see this, observe first that we have the obvious inclusion F�1.D/ �
S
p Dp. The fact that the

latter inclusion is an equality relies on the assumption that ft is Log non-degenerate. Indeed,
all the ramification points of t that do not converge to a node of C0 are away from �1t .RP 1/
for all t 2 U". Therefore, the only branches of F�1.D/ come from Dp for some node p 2 C0.

By Theorem D, the set Dp is diffeomorphic to ¹t 2 U" W arg.t�/ D 1º, for " small enough.
This implies that the complement of F�1.D/ D

S
p Dp is an open dense subset.

According to Section 2.3, the deformation .Ct ; cr.Ct // of .C0; cr.C0// is simple for
any non-zero t 2 U". It is also smooth for any t outside F�1.D/. In order to conclude the
proof, it remains to show that for any such t and any node p 2 C0, the topological pair
.Ct\V ; cr.Ct /\V/ is the connected deformation of .C0\V ; cr.C0/\V/, where V WD V.p/.
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To see this, observe that the asymptotic formula of Theorem D implies that for any t 2 U" nDp,
the two branching points ``.t/ are on distinct hemispheres of CP 1 nRP 1. Therefore, the map
t restricts to a degree 2 ramified covering from the cylinder Ct \ V to a disc in CP 1 that
is cut into two pieces by RP 1, each piece containing a simple branching point. The latter
cylinder together with the pullback of RP 1 is therefore the connected deformation pictured in
Figure 6 (b). The result follows.

Remark 4.4. Observe in the above proof that if the two branching points ``.t/ had been
on the same hemisphere of CP 1 nRP 1, then the deformation .Ct \ V ; cr.Ct / \ V/ would
have been the one pictured in Figure 6 (a).

Proof of Theorem C. Let p 2 C0, e D �k \�j , U" and V be as above. We still work
with the coordinate system introduced at the beginning of this section. In particular, the edge e
is directed by .0; 1/. Then the extremities of the bounded edge e? � � dual to e have coordi-
nates .0; 0/ and .0;��/. This is a classical fact from tropical geometry: it follows from the
duality between � and the subdivision of � and from [2, Theorem 2.12]. According to the
proof of Theorem D, the two ramification points in Ct \ V have coordinates�p

�ac � t�=2 C o.t�=2/; 1C o.1/; t
�

in .C�/3. It follows that the tropical limit of any of these two points is .��
2
; 0/ 2 R2, that is the

midpoint of e?. Since ft is non-degenerate, the multiplicitym of e? coincides with the number
of nodes of C0 on the toric divisor corresponding to e, by duality between � and ¹�kºk2I .
Thus, there are 2m ramification points tropically converging to the midpoint of e?. To see that
there are exactly 2m ramification points tropically converging to the midpoint of e?, observe
that all ramification points of t converge either to a node of C0 or to a ramification point of 0.
Eventually, recall that any family of point pt 2 Ct that converges to a point in C0 that is not
a node tropically converges to a vertex of � .

To conclude the proof, it remains to see that the above computation does not depend on
the choice of coordinates made at the beginning of this section. This follows from the following
observations. First, we applied a toric change of coordinates on .z; w/ to make the edge e
vertical in the .j1; j2/-plane. This results in an integer affine transformation of the tropical
plane R2. Then we applied a transformation of the form .z; w; t/ 7! .tˇz; w; t/ to make the
face of �� over �k horizontal in the .j1; j2; j3/-space. This results in a translation along
the first coordinate axis in the tropical plane. It is now clear that the conclusion of the above
computations is not affected by the latter changes of coordinates. The result follows.

5. Curves with prescribed Log-critical locus

We aim to describe the Log-critical locus of curves defined by polynomials of the form

(5.1) f .z; w/ WD w �

dY
jD1

.z � bj /C

dC1Y
jD1

.z � aj / DW w � q.z/C p.z/

for specific choices of the parameters a1; : : : ; adC1 and b1; : : : ; bd . The corresponding curve
Z.f / � .C�/2 can be naturally compactified in the Hirzebruch surface †1. The projection
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onto the first coordinate gives the rational parametrisation % W z 7! .z;�p.z/
q.z/

/ of Z.f /. Recall
that the Log-critical locus cr.f / is given by cr.f / D �1

f
.RP 1/, where f is the logarithmic

Gauss map

f .z; w/ D Œz � àzf .z; w/ W w � àwf .z; w/� D Œz � .p0.z/C w � q0.z// W w � q.z/�:

Denote by zf the composition of f with the parametrisation %. In the affine chart Œu W v� 7! u
v

of CP 1, the map zf is given by

zf .z/ D z �

�
q0.z/

q.z/
�
p0.z/

p.z/

�
D

�z

z � adC1
C

dX
jD1

z

z � bj
�

z

z � aj
(5.2)

D �1 �
adC1

z � adC1
C

dX
jD1

bj

z � bj
�

aj

z � aj
:

By definition, the pullback of cr.f / under % is the set z�1
f
.RP 1/. In particular, the latter set

contains the points a1; : : : ; adC1; b1; : : : ; bd ; 0 and1 since

zf .¹a1; : : : ; adC1; b1; : : : ; bd º/ D ¹1º; zf .0/ D 0 and zf .1/ D �1:

From now on, we take the coefficients a1; : : : ; adC1; b1; : : : ; bd to be real and satisfying

(5.3) b1 < a1 < b2 < a2 < � � � < bd < ad < adC1 < 0:

Below, we describe z�1
f
.RP 1/ (see Proposition 5.3) and study how the latter set is

affected by the change of variable z 7! z C �i (see Proposition 5.5). For convenience, let us
introduce the following notations for any 1 6 j 6 d

j̀ .z/ WD
z

z � bj
�

z

z � aj
; `.z/ WD

�z

z � adC1
; cj WD

aj C bj

2
;

"j WD aj � bj ; " WD max
16j6k

"j :

Proposition 5.1. The restriction of zf to RP 1 has 2d C 1 zeroes and 2d simple criti-
cal points, provided that " is small enough. Moreover, the value of zf at each real critical point
is strictly negative.

The graph of zf is represented in Figure 8, for d D 3.

Proof. Let us first show that zf has 2d C 1 real zeroes. Since the limit of zf on both
extremities of each interval .aj ; bjC1/ isC1 for 1 6 j < d , the inequality

zf

�
aj C bjC1

2

�
< 0

implies the existence of two real zeroes on each such interval. To ensure that these inequalities
hold, observe that

j̀ .z/ D
bj

z � bj
�

aj

z � aj
D

.bj � aj /z

.z � bj /.z � aj /
D

�"j � z

.z � bj /.z � aj /
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and consequently that for any 1 6 j; q 6 d , we have

lim
"q!0

`q

�
aj C bjC1

2

�
D 0:

For 1 6 j < d , it implies that

lim
"!0
zf

�
aj C bjC1

2

�
D `

�
aj C bjC1

2

�
< 0:

and in turn that the value zf .
ajCbjC1

2
/ satisfies the sought inequality, for " small enough.

This provides us with 2.d � 1/ many real zeroes. Each of the intervals .�1; b1/ and
.ad ; adC1/ contains a zero since

lim
z!�1

zf .z/ D �1; lim
z!b�1

zf .z/ D C1;

lim
z!a

C

d

zf .z/ D C1; lim
z!a�

dC1

zf .z/ D �1:

The remaining zero is at 0. In total, it provides us with 2d C 1 real zeroes.
Let us now prove that zf has 2d real simple critical points. First, we claim that the

restriction of zf to each of the 2d intervals of

.�1; ad / n ¹b1; a1; b2; a2; : : : ; bd�1; ad�1; bd º

has a global extreme value which is strictly negative. For .�1; b1/, the claim follows from the
fact that

lim
z!�1

zf .z/ D 1
� and lim

z!b�1

zf .z/ D C1:

For each remaining interval .s; t/, the claim follows from the fact that

lim
z!sC

zf .z/ D lim
z!t�

zf .z/ 2 ¹�1;C1º

and the location of the real zeroes determined above.
It remains to show that each such extreme point is simple and that zf has no other real

critical point, for " small enough. To see this, recall that by the Riemann–Hurwitz formula,
exactly four critical points of zf collapse at cj when "j tends to 0, for 1 6 j 6 k. Indeed, the
degree of zf drops by 2 since exactly two poles disappear, namely aj and bj , and the degree of
the ramification divisor of zf drops therefore by 4. We claim that for " small enough, exactly
two of these ramification points are among the real critical points of zf exhibited above and
the remaining two are complex conjugated. Moreover, there is no other real critical point since
the function zf is 1-to-1 when " D 0.

In order to prove the above claim, it suffices to let all the "q , with q ¤ j , tend to 0
and study the distribution of the four remaining critical points. In other words, it amounts to
consider the case d D 1, in particular "1 D ". Then we have

z 0f .z/ D
.a1 � b1/.z

2 � a1b1/

.z � a1/2.z � b1/2
C `0.z/

D
"
�
h2 C 2c1h �

"2

4

�
C
�
h2 � "2

4

�2
� `0.z/�

h2 � "2

4

�2 ;
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Figure 8. The graph of zf for d D 2, b1 D �58, a1 D �48, b2 D �12, a2 D �8 and a3 D �1.

where we substituted z D hC c1. In order to study the behaviour of the four ramification points
of zf converging to c1 when " tends to 0, we need to analyse the singularity of the numerator
of zf in the variables .h; "/ at .0; 0/. Since ˛ WD `0.c1/ is a strictly negative number, we deduce
that the latter singularity has Newton diagram with vertices .4; 0/, .1; 1/ and .0; 3/ and corre-
sponding truncation ˛h4 � 2c1h" � "3

4
. By the Newton–Puiseux theorem, we deduce that the

singularity consists of two real branches parametrised respectively by " 7! .� 1
8c1
"2Co."2/; "/

and h 7! .h; ˛
2c1
h3 C o.h3//. For t > 0 and arbitrarily small, the line " D t intersects the first

branch in one real point and the second branch in one real point and two complex conjugated
points. The result follows.

Remark 5.2. As we have seen in the above proof, there are exactly two real critical
points of zf in an arbitrarily small neighbourhood of each point cj for 1 6 j 6 d . Moreover,
those two critical points, let us say pj and qj , are such that pj < bj < qj < aj , see Figure 8.

Proposition 5.3. The preimage of RP 1 under zf is the union of RP 1 with d pairwise
disjoint smoothly embedded circles in CP 1, provided that " is small enough. Each such circle
intersects RP 1 at the two real critical points pj and qj of zf near cj , for some 1 6 j 6 d .

Lemma 5.4. Let g W †! CP 1 be a real meromorphic function on a compact Riemann
surface †. Then the preimage g�1.RP 1/ � † is a union of smoothly immersed circles such
that each circle (respectively two circles) self-intersects (respectively intersect) at worst trans-
versely. Moreover, the set g�1.RP 1/ cannot contain a smooth open arc ˛ such that ˛ n ˛ is
a single point which is critical for g.

Proof. Fix an arbitrarily chosen Riemannian metric on † and denote by UT † the uni-
tary tangent bundle with respect to the latter metric. Fix on orientation on RP 1. Then the 1-fold
g�1.RP 1/ � † inherits an orientation on its smooth locus and therefore lifts to UT †. Since
the local model of g�1.RP 1/ at singular points is ¹jzj < 1 W zn 2 Rº, the closure C of this
lift is a smooth compact oriented 1-fold covering RP 1. Thus, the set C is a disjoint union
of smoothly embedded circles in UT †. The restriction of the projection UT †! † from
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C to g�1.RP 1/ is a smooth immersion. The transversality property follows from the local
models ¹jzj < 1 W zn 2 Rº.

For the second part of the statement, the function g is monotone on each smooth arc
˛ � g�1.RP 1/. In particular, the image under g of the two extremities of ˛ are necessarily
distinct points in RP 1. It prevents the existence of an arc ˛ as in the statement.

Proof of Proposition 5.3. For any small ı > 0, we can choose " small enough such that
z�1
f
.RP 1/ nRP 1 is contained in

B WD
[

16j6d

¹z 2 C W jz � cj j < ıº:

Indeed, for any point z 2 CP 1 nB, the image zf .z/ depends continuously on the parame-
ters "j . When "j D 0 for all 1 6 j 6 d , the function zf .z/ satisfies z�1

f
.RP 1/ D RP 1 as we

have seen above. This proves the claim.
By the Riemann–Hurwitz formula, we could show above that we can also guarantee

that there are exactly four simple critical points of the function zf in each neighbourhood
Bj WD ¹z 2C W jz�cj j< ıº, 1 6 j 6 d , taking " small enough. Moreover, exactly two simple
critical points are located on RP 1 \Bj and the rest of the ramification consists of two simple
critical points that are complex conjugate.

By Lemma 5.4, the set z�1
f
.RP 1/ consists of a union of smoothly immersed circles.

Since there are exactly two real simple critical points in Bj , there is exactly one circle of
z�1
f
.RP 1/ in Bj that intersects RP 1. This circle cannot pass through the remaining critical

points in Bj , otherwise it would contain the kind of smooth arc ˛ prohibited by Lemma 5.4.
It follows that this circle is smoothly embedded. Eventually, we claim that there are no extra
circles in z�1

f
.RP 1/. Indeed, any extra circle should be contained in one of the halves of

Bj nRP 1 for some 1 6 j 6 d . By Lemma 5.4, it cannot pass through the only critical point
of zf in this half, otherwise it would contain an arc ˛. It is therefore smooth and cover RP 1 at
least once via zf . This is in contradiction with the fact that zf has only real zeroes.

For a given parameter � 2 R, define g.z; w/ WD f .z C �i; w/, that is

(5.4) g.z; w/ WD w �

dY
jD1

.z � .bj � �i//C

dC1Y
jD1

.z � .aj � �i//;

where the real parameters a1; : : : ; adC1; b1; : : : ; bd are as in (5.3). The curve Z.g/ can be
parametrised by

%� W t 7!

�
t � �i;�

p.t/

q.t/

�
and the logarithmic Gauss map g is given by

g.z; w/ D
�
z �
�
p0.z C �i/C w � q0.z C �i/

�
W w � q.z C �i/

�
:

Let zg be the composition of g with the parametrisation %�. In the affine chart Œu W 1� of CP 1,
the map zg is given by

zg.t/ D .t � �i/ �

�
q0.t/

q.t/
�
p0.t/

p.t/

�
D
t � �i

t
� zf .t/ D

�
1 �

�i

t

�
� zf .t/:
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F D 0

F > 0

F < 0

F D �G

F > �G

F < �G

F D �G

F > �G

F < �G

Figure 9. The locus F D 0 (on the left) and its deformations F D �G forG positive (in the middle)
and G negative (on the right) and � > 0.

Proposition 5.5. For j�j > 0 and " > 0 small enough, the preimage z�1g .RP 1/ is
smooth and has d C 1 connected components: one of the connected components contains the
points

�i; a1; : : : ; adC1;1:

Each of the k remaining components contains exactly one of the points b1; : : : ; bd .

Before proving the above statement, let us recall some basic facts from Morse theory. Let
F;G W R2 ! R be real analytic functions and let .x0; y0/ be a non-degenerate Morse critical
point of index 1 of F such that F.x0; y0/ D 0. In particular, the zero locus of F at .x0; y0/
consists of two branches intersecting transversely. Assume now that G.x0; y0/ ¤ 0. Then it
follows from the Morse Lemma with parameters that, for any arbitrarily small � > 0, the zero
locus of F � � �G is smooth at .x0; y0/. The local deformation .F � � �G/�1.0/ of F�1.0/
depends on the sign of G.x0; y0/, see Figure 9.

Recall as well that the imaginary part of a holomorphic function h.z/ has non-degenerate
Morse critical point of index 1 at any simple critical point of h. Indeed, up to an appropriate
change of coordinate on the source, we can assume that the critical point under consideration
is 0 and that h is given by h.z/ D ˛ C z2 C o.z2/whose Hessian in the coordinate x WD Re.z/,
y WD Im.z/ is

�
0 2
2 0

�
.

Proof. First, observe that every aj and bj is a pole of zg , that zg.i�/ D 0 and that
zg.1/ D zf .1/ D �1. Therefore, each of these points belongs to z�1g .RP 1/.

Write t DW x C iy, where x; y 2 R. Then the locus �1g .RP 1/ is a real algebraic curve
in the .x; y/-plane that depends algebraically on the parameter �. Indeed, the latter locus is
the zero set of Im.zf .t/ � zf .t// 2 RŒx; y�. For � D 0, that is g D f , the real algebraic curve
�1g .RP 1/ in the .x; y/-plane consists of the union of the line y D 0 with d mutually dis-
joint smooth ovals, by Proposition 5.3. Each oval intersects y D 0 in exactly two points and
is symmetric with respect to y D 0. By Remark 5.2, we can localise the latter pair of points
for each oval. In particular, the locus Im.zf / D 0 is as pictured on the top of Figure 10. More-
over, we have that the imaginary part of zf is negative on the complement component of
Im.zf / D 0 that contains i since z 0

f
.0/ < 0. Therefore, the sign of Im.zf / is as pictured on

top of Figure 10.
If we denote F WD Im.zf .x C iy// and G WD Im. i

xCiy
zf .x C iy//, we have

zg.x C iy/ D .F � �G/.x; y/:

On the x-axis, the function zf is real valued so that G.x; 0/ D x�1zf .x/. Since zf is strictly
negative at its real critical points, that these critical points are located on ¹x < 0º, by Propo-
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b1 a1 bd ad adC1 0

b1 a1 bd ad adC1 i�

Im.zf / D 0

Im.zg/ D 0

Im.zf / > 0

Im.zf / < 0

Im.zg/ > 0

Im.zg/ < 0

Figure 10. The locus Im.zf / D 0 (on top) in the .x; y/-plane and its deformation Im.zg / D 0 (on
the bottom) for small � > 0.

sition 5.1, then G is strictly positive at the critical points of zf . Therefore, we can determine
which of the two possible deformations of Figure 9 applies at each critical point of zf to obtain
the locus Im.zg/ D 0. The latter locus is picture on the bottom of Figure 10 for � > 0. The case
� < 0 is obtained by flipping the latter picture upside down. The result follows.

6. Proof of Theorem B

Lemma 6.1. For any choice of real parameters a1; : : : ; adC1; b1; : : : ; bd as in (5.3)
and � 2 R with small enough absolute value, the polynomial

(6.1) h.z; w/ WD w �

dY
jD1

.z � .�bj � �i//C

dC1Y
jD1

.z � .aj � �i//

is such that cr.h/ is connected.

Proof. For � D 0, the curveZ.h/ is a simple Harnack curve. To see this, observe that the
coordinate z gives a parametrisation of Z.h/ and that the points of intersection of the closure
ofZ.h/ in†1 with the toric divisors are parametrised by a1; : : : ; adC1; 0;�b1; : : : ;�bd ;�1.
In particular, these points are in maximal cyclical position according to [10, Definition 2] and
Z.h/ is therefore a simple Harnack curve. As a consequence, the Log-critical locus cr.h/ is
smooth and connected since Z.h/ is rational. Eventually, the set cr.h/ remains smooth and
connected for small j�j.

Proof of Theorem B. In order to prove the statement, we will apply Theorem A to a spe-
cific Viro polynomial ft constructed from a degree d polynomial f and a Z-convex function
� W �d ! R. We choose � in such a way that the induced subdivision of �d is the one
pictured in Figure 11. The latter subdivision consists of d � 1 sub-polygons T1; : : : ; Td�1
defined as Tj WD conv¹.1; j � 1/; .1; j /; .d � j C 1; j � 1/; .d � j; j /º and d sub-polygons
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T1

T2

T`

Tr

S1

S2

S`

Sr

�d

.0; 0/ .1; 0/ .d; 0/

.0; d/

Figure 11. A convex subdivision of �d .

S1; : : : ; Sd defined as Sj WD conv¹.0; j � 1/; .0; j /; .1; j � 1/; .1; j /º for 1 6 j 6 d � 1 and
Sd WD conv¹.0; d � 1/; .0; d/; .1; d � 1/º. This is clear that such a function � exists.

We will now construct the polynomial f , up to an irrelevant multiplicative constant.
To do so, it suffices to describe for each P 2 ¹T1; : : : ; Td�1; S1; : : : ; Sd º the algebraic curve
in XP defined by the truncation f P .

We fix an given integer 1 6 b 6
�
d�1
2

�
C 1 as in the statement. Let k denote the integer

such that
�
k�1
2

�
C 1 < b �

�
k
2

�
C 1 , ` D d � 1 � k and r D `C

��
k�1
2

�
C 1 � b

�
.

We now start the construction on f . If ` > 1, we fix CT1 to be the curve defined by any
equation g1 of degree d � 1 as in (5.4). If ` > 2, we fix CT2 to be the curve defined by an
equation g2 of degree d � 2, where g2 is as in (5.4). To ensure the compatibility of CT1 with
CT2 along the edge T1 \ T2, we need to take the parameters aj of g2 to be the parameters bj
of g1. We keep on with the same procedure up to T` included.

It should be clear by now that we can inductively define the curves CTi , i > `, using
a polynomial as in either (5.4) or (6.1), adjusting the parameters aj of this curve to the parame-
ters bj of the curve beneath it, using a change of variable z 7! �z if necessary. Then we define
any curve CTi , i ¤ r , using a polynomial as in (6.1) and CTr , if r > `, using a polynomial as
in (5.4).

For the curves CSi , 1 6 i 6 d � 1, we use toric translations .z; w/ 7! .˛z; ˇw/ of the
simple Harnack curve H WD ¹1C z C zw � w D 0º. We first choose CS1 to be a toric trans-
lation of H compatible with CT1 along S1 \ T1 (there is a C�-family of such). Next, we
choose CS2 to be the unique toric translation of H compatible with both CS1 and CT2 . We
keep on with the same procedure up to CSd�1 . Eventually, we pick CSd to be any line compat-
ible with CSd�1 . Since the curve CP is smooth with smooth Log-critical locus cr.CP / for any
P 2 ¹T1; : : : ; Td�1; S1; : : : ; Sd º, the corresponding Viro polynomial ft is Log non-degenerate.

We now define C WD Z.ft / � CP 2 for t 2 U, where U is the open set provided by
Theorem A. We claim that b0.cr.C // D b. First, consider the patchwork obtained by throw-
ing away the sub-polygons Sj . For any 1 6 j 6 `, the Log-critical locus cr.CTj / consists of
one component intersecting the divisor ¹z D 0º and d � j components intersecting ¹w D1º,
according to Lemma 5.5. After patchworking, each of the d � j components connects to the
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component of cr.CTjC1/ intersecting ¹z D 0º, j D ` included. We obtain ` components this
way. The patchwork of the loci cr.CTj /, ` < j 6 r , provides us with a single component inter-
secting ¹z D 0º and as many compact components in .C�/2 as there are lattice points in the
interior of T`C1 [ � � � [ Tr . Similarly the patchwork of the of the loci cr.CTj /, r < j 6 d � 1,
provides us with a single component intersecting ¹z D 0º and as many compact components
in .C�/2 as there are lattice points in the interior of TrC1 [ � � � [ Td�1. In total, we obtain as
many compact components as the number of lattice points in the interior of T`C1 [ � � � [ Td�1
minus the number of lattice points in the interior of the segment Tr \ TrC1, that is 

d � ` � 2

2

!
C 1 � .d � 1 � r/ D

 
k � 1

2

!
C 1 � .d � 1 � r/ D b C 1 � d C `:

To conclude, we reintroduce the polygons S1; : : : ; Sd in the patchwork. All the previous com-
ponents intersecting ¹z D 0º are now connected to each other and form a single connected
component of cr.C /. There are d � 2 � ` new compact components in .C�/2. In total, we
obtain 1C .b C 1 � d C `/C .d � 2 � `/ D b components.

A. Appendix

In this last section, we illustrate the necessity of the assumption of Theorem C. Namely,
we provide an example of Viro polynomial that is Log degenerate and show that the tropical
limit of some Log-inflection points is not as predicted by the latter theorem. Below, we use the
notations of Section 4.

Consider the Viro polynomial

ft .z; w/ D ct C z
�
.w � 1/.w � 1C b/C dz.w � 1/C az2

�
whose coefficients depends on the complex parameters a, b, c and d . Consider for a moment
the polynomial

h.z; w/ D .w � 1/.w � 1C b/C dz.w � 1/C az2:

Since .w � 1/ is a factor of the truncations of h to ¹j1 D 0º and ¹j1 D 1º respectively, the
point .0; 1/ 2 V.h/ \ ¹z D 0º is a singular point of the Log-critical locus cr.h/, as hinted in
the proof of Lemma 4.1 (c). In particular, the latter point is a Log-inflection point. Therefore,
the Viro polynomial ft is Log degenerate. However, it is non-degenerate for a generic choice
of the coefficients a, b, c and d .

The Riemann–Hurwitz formula implies that there are exactly three Log-inflection points
in Ct \ V for small values of t . Repeating similar computations as in Section 4, we can provide
a parametrisation for the latter points.

The polynomial zft .z; zw/ is given by

zft .z; w/ D ct C z
�
zw. zw C b/C dz zw C az2

�
with Newton polygon z� D conv..0; 0; 1/; .1; 1; 0/; .1; 2; 0/; .3; 0; 0//. Plainly, the numerator
zN does not depend on t since t itself does not depend on t . Its Newton polyhedron is therefore

contained in the .j1; j2/-plane and is actually given by conv..2; 0/; .5; 0/; .1; 4/; .0; 4/; .0; 1//.
The truncation of zN to the edge conv..2; 0/; .0; 1// is b3w � 3ab2z2. It follows that .1; 2; 3/



142 Lang and Renaudineau, Patchworking the Log-critical locus of planar curves

is a tropism of the ideal . zft ; zN/ since it is orthogonal to the edge conv..1; 1; 0/; .0; 0; 1// of z�
and the edge conv..2; 0; 0/; .0; 1; 0// of New. zN/. The corresponding solutions of the system
¹ zft D zN D 0º, which are Log-inflection points of the curve Ct , are parametrised by

(A.1)
�
˛s C o.s/; ˇs2 C o.s2/; s3 C o.s3/

�
in the .z; zw; t/-coordinates. The composition of this parametrisation with each of zft and zN
is identically zero. This leads to two equations on the coefficients ˛ and ˇ that are eventually
equivalent to

˛ D �
c

a.3b C 1/
and ˇ D

3au2

b
:

Using the substitution t D s3 in the solutions (A.1) and switching back to the coordinates
.z; w; t/ gives the following parametrisation for the Log-inflection points:�

˛t1=3 C o.t1=3/; 1C ˇt2=3 C o.t2=3/; t C o.t/
�
:

Thus, the tropical limit of the three corresponding Log-inflection points is .�1
3
; 0/, lying on the

edge conv..�1; 0/; .0; 0// of the tropical limit.
Observe that further computations lead to the formula

t .z.t/; w.t// D
6a

b

�
�c

a.3b C 1/
t
�2=3
C o.t2=3/:

In turn, this formula allows to describe the Log-critical locus of Ct in terms of the Log-critical
loci of ct C z.w � 1/.w � 1C b/ and z..w � 1/.w � 1C b/C dz.w � 1/C az2/ for t small
and generic.
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