
Adaptive Finite Horizon Degradation-Aware
Regulator

Amirhossein Hosseinzadeh Dadash and Niclas Björsell

Abstract Predicting the failure and estimating the machine’s state of health is infor-
mation that supports the production planning and maintenance management systems
to increase productivity and reduce maintenance and downtime costs. However, con-
trolling the degradation in the machines will improve the system’s reliability and
resilience and make high-level decisions more accurate and reliable. To control the
degradation in the machines, time should be included in the cost function as a vari-
able, which alters the markovian properties of the system dynamic. In this article,
we include the degradation cost in the quadratic cost function of the infinite hori-
zon controller and calculate the optimal feedback according to the dynamics of the
degradation using dynamic programming. It will be shown that the infinite horizon
control will convert to the finite horizon, and the controller will be able to control
the degradation according to the desired degradation at the desired time. In the end,
with the help of simulation, we show that the degradation controller can control the
degradation in the MIMO systems.

1 Introduction

In the era of Industry 4.0, the horizons of the definition of ”optimal control” can
include more variables than its classical definition. Keeping the system output close to
the desired output, which was the optimal control’s primary goal, is now among many
other goals that must be achieved simultaneously. For instance, the Linear Quadratic
Regulator (LQR) is considered an optimal controller when the only parameters to
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control are the input and output, but being optimal in controlling the degradation
simultaneously needs some new information from the system and modifications to
the method [1, 2].

Fault-tolerant controllers have been the subject of research [3]. However, degra-
dation tolerant controllers, which are more helpful in long-term production planning
and maintenance management systems [4, 5], have not been discussed much. For
instance, one of the methods for reducing the maintenance cost is to synchronize
the machines’ degradation so they can reach the maintenance time simultaneously.
This simultaneity is achieved in [6] using advanced high-level controllers and has
the limitation that it is only applicable to systems with similar machines working on
the same process.

To reduce the calculation and data storage cost and make the degradation control
applicable to machines that are not identical and do not work on the same process,
the degradation controller should be integrated with the controller or work on its side
without a need to exchange much information with high-level controller (production
management) [7, 8]. For doing this integration, the degradation model should be
identified. This identification should be in a way that the model can be related to
the system dynamics. This identification can be made using process-aware neural
networks [9, 10] or sparse regressions [11, 12]. In both cases, the identification of the
degradation might not be as accurate as model identification without the limitation
of considering the process parameters, but it can be used for control purposes which
have their own benefits.

Assuming that the machine and degradation models are known, it is possible to
control the degradation in two ways: including the degradation as the system’s state
or including it in the feedback loop. The traditional way of including degradation
inside the model has been tested successfully [13, 14], but having a closed form
of including the degradation in the feedback loop will be helpful in the future and
can change the controller design process. Also, an adaptive feedback loop can be
configured faster with the degradation model change than the adaptive controller.

This paper will introduce the adaptive feedback loop for controlling the degrada-
tion at the same time as the output. In the first section, the method for calculating
different parts of this feedback loop will be shown, and in the second section, the
method will be validated using a simulation model.

2 Method

The method for calculating the adaptive degradation-aware feedback comprises two
parts, the formulation of the feedback, which is explained first, and mapping from
the recorded degradation into the system’s states.
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2.1 Formulation

The state-space model of the system can be written as follows:{
𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝑀𝑣1 (𝑡)
𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝑣2 (𝑡)

Ω =

[
𝑣1
𝑣2

]
, (1)

where 𝑥(𝑡) includes system state(s) at time 𝑡, 𝑢(𝑡) is system input(s) at time 𝑡. 𝐴 and
𝐵 represent the physical system parameters, and 𝐶 defines the relationship between
the output(s) and state(s) of the system. 𝑣1 and 𝑣2 are the input and sensor noise,
respectively.

The quadratic cost that the LQ controller minimizes for the infinite horizon is
[15]

𝐽 =∥ 𝑒 ∥2
𝑄1

+ ∥ 𝑢 ∥2
𝑄2
, (2)

where 𝑒 = 𝑥 − 𝑟 and 𝑟 is the reference signal, and 𝑒 is the error; and 𝑄1 and 𝑄2
are penalty matrices for the error and input signal, respectively. However, adding the
third term for controlling the degradation converts (2) to

𝐽 (𝑡 = 1 : 𝑇) = 𝐸

{
𝑁∑︁
𝑘=0

∥ 𝑒𝑘 ∥2
𝑄1

+
𝑁−1∑︁
𝑘=0

∥ 𝑢𝑘 ∥2
𝑄2

+
𝑁∑︁
𝑘=0

∥ 𝐺𝑥 𝑓 ,𝑢 𝑓 (𝑡) ∥2
𝑄3

}
, (3)

𝐺𝑥 𝑓 ,𝑢 𝑓 (𝑡) = 𝐷𝑥 𝑓 ,𝑢 𝑓 − 𝐷𝑑 (𝑡), (4)

where 𝑥 𝑓 , 𝑢 𝑓 are feature of 𝑥 and feature of 𝑢 respectively, 𝐷𝑥 𝑓 ,𝑢 𝑓 is the degradation
at state 𝑥 𝑓 with the input 𝑢 𝑓 , and 𝐷𝑑 (𝑡) is the desired degradation at time 𝑡. To better
understand 𝑥 𝑓 and 𝑢 𝑓 , some explanation is needed. First, the working cycle should
be defined as the interval where the machine starts from its standby state and settles
on the desired output (usually the step response of the machine till it fully settles).
For example, a working cycle of a wood-cutting saw starts when it starts rotating
from the stop position until it reaches the desired speed (full load working). Second,
in reality, the degradation rate is lower than the rate of change in the system state (the
degradation happens over tens or hundreds, or even thousands of cycles of operation
while the controller works on the scale of a fraction of a second). So, in order to
be able to detect the degradation from the recorded signal, a fixed point (in time)
or a feature from one machine’s working cycle (for each state and input) should be
recorded for different cycles. This way, the degradation trend can be detected and
mapped to the system state. These recorded features are defined to be 𝑥 𝑓 and 𝑢 𝑓 .
Fig.1 shows this process more clearly. Finally, as the features are the variables that
are going to be used in the last part of (3), 𝑡 will be defined as a cycle; this means
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Fig. 1 Relation of the features per cycle and recorded signal (red circles are the features e.g., 𝑥 𝑓

or 𝑢 𝑓 that are recorded at each cycle, and their trend is used to map the degradation to the system
states)

that 𝑡 is not an instance and instead is a time duration. However, as only one feature
from each recorded signal during each cycle is recorded in (3), it can be considered
a time instance.

After these adaptations of the cost function with the limitation of the function
estimation methods, the whole optimization becomes a finite horizon optimization
that tries to control the degradation of the machine. Hence, it reaches the maintenance
condition (𝑥𝑁 ) at the desired time (𝑇). Note that the degradation of the machine is not
time-dependent (Markovian). However, the desired degradation is only the function
of the time (because the optimization goal is to make the machine reach the desired
maintenance time while keeping the output within acceptable limits).

Applying the dynamic programming for this optimization, we have

𝐽𝑁 (𝑇) = 𝑒𝑁 (𝑇)′ 𝑄1 𝑒𝑁 (𝑇) (5)

𝐽𝑘=1:𝑁−1 (𝑡 = 1 : 𝑇) = 𝑚𝑖𝑛
𝑢𝑘

𝐸

{
𝑒′𝑄1𝑒 + 𝑢′𝑄2𝑢 + 𝐺′𝑄3𝐺 + 𝐽𝑘+1 (𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑣1𝑘

)
}
,

(6)

where 𝐽𝑘 is the cost-to-go from state 𝑥𝑘 at time 𝑡 to 𝑥𝑁 at time 𝑇 .
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Now for calculating the best trajectory, the cost function should be calculated
backward from 𝑥𝑁 at time 𝑇 to 𝑥1 at time 0 [16]. For now, we assume that the
degradation of the machine can be identified as a function of the machine’s states
and inputs. In this case, we have

𝐷𝑥,𝑢 =
[
𝑊𝑥 𝑊𝑢

] [𝑥𝑘
𝑢𝑘

]
. (7)

Now expanding (6) gives

𝐽𝑘 (𝑡) = 𝑒′𝑄1𝑒+

𝑚𝑖𝑛
𝑢𝑘

𝐸

{
𝑢′𝑄2𝑢 + 𝐺′𝑄3𝐺 + (𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑤𝑘)′𝑄1 (𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑤𝑘)

}
. (8)

Expanding this statement and differentiating it in order to find the 𝑢∗
𝑘

(optimal input)
and assuming that 𝐸{𝑣1} = 0 will result in

𝑢𝑥 (𝑡)∗ = −(𝑄2 + 𝐵′𝑄1𝐵)−1 (𝐵′𝑄1𝐴𝑥𝑘 + (𝑊 ′
𝑥𝑥𝑘 (𝑡 − 1)+

𝑊 ′
𝑢𝑢𝑘 (𝑡 − 1) − 𝐷𝑑 (𝑡 − 1))𝑊𝑢𝑄3). (9)

This equation is composed of two parts, the first part

𝑢∗𝑥 = −(𝑄2 + 𝐵′𝑄1𝐵)−1 (𝐵′𝑄1𝐴𝑥𝑘), (10)

which is the infinite horizon optimal feedback, and only depends on 𝑥𝑘 , and second
part

𝑢(𝑡)∗ = −(𝑄2 + 𝐵′𝑄1𝐵)−1 (𝑊 ′
𝑥𝑥𝑘 (𝑡 − 1) +𝑊 ′

𝑢𝑢𝑘 (𝑡 − 1) − 𝐷𝑑 (𝑡))𝑊𝑢𝑄3, (11)

which depends on 𝑡, 𝑥 and 𝑢 and is the adaptive degradation compensation feedback.

2.2 Relevance Vector Machine

In (7), it was assumed that the degradation of the system could be calculated as a
function of the system’s state and input. There are many methods to do this mapping.
One of these methods used for this research is the Relevance Vector Machine (RVM).
The relevance vector machine (RVM) was first introduced in [17]. The RVM structure
is very similar to the support vector machine, which is given as follows:

�̂�(𝑥) =
𝐿∑︁

ℓ=1
𝑤ℓ 𝑘 (x, xℓ) + 𝑐, (12)
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Fig. 2 Mass and Spring Model

where 𝑤ℓ is a coefficient in w, which is the vector of coefficients, 𝑘 (·, ·) is the kernel
function, and 𝑐 is the bias parameter. RVM defines the conditional distribution for
the target value y given the vector of covariates x, prediction outcome ŷ, regression
coefficients w, and a precision parameter called 𝜓 as

𝑝(𝑦ℓ |xℓ ,w, 𝜓) = N(𝑦ℓ | �̂�(xℓ), 𝜓−1), (13)

ŷ = Φ(X)w, (14)

Φ(X) = [𝜙(x1), 𝜙(x2), ..., 𝜙(x𝐿)]𝑇 , (15)

𝜙(xℓ) = [1, 𝑘 (xℓ , x1), 𝑘 (xℓ , x2), ..., 𝑘 (xℓ , x𝐿)] . (16)

The likelihood function for y can be written as

𝑝(y|X,w, 𝜓) =
𝐿∏

ℓ=1
𝑝(𝑡ℓ |xℓ ,w, 𝜓−1). (17)

RVM introduces a prior distribution for each 𝑤 in w as a hyperparameter 𝛼

𝑝(w|𝛼) =
𝑀∏
𝑖=1

N(𝑤𝑖 | 0, 𝛼−1
𝑖 ), (18)

where 𝑀 is the number of covariates (bias included). The hyperparameter𝛼measures
the precision of each𝑤𝑖 . Following Bayesian inference, the distribution of the weights
becomes Gaussian and takes the following form:

𝑝(w|y,X,𝜶, 𝜓) = L(w| 𝑚, Σ), (19)

in which
m = 𝜓ΣΦ𝑇y, (20)

Σ = (Δ𝛼 + 𝜓Φ𝑇Φ)−1, (21)

and Δ𝛼 = 𝑑𝑖𝑎𝑔(𝛼𝑖).
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2.2.1 Results

For this proof of idea, the model used is the simple mass and spring model with
two inputs. The reason for considering two inputs is that, for SISO systems, with a
correct configuration of 𝑄s, the optimal input of the degradation controller would
be the same as the optimal input calculated by solving the Ricatti equation for LQR
because the only parameter available to control both output and degradation would
be a single input which prioritizing the output quality will make the system a regular
controller, not a degradation controller. However, having more than one input will
make the controller capable of controlling two outputs (the system’s output and
system degradation).

The model used for this simulation is shown in Fig.2, and its respective state-space
is shown in (22) and (23) [18].

¤𝑧1
¥𝑧1
¤𝑧2

 =


0 1 0
𝑘2−𝑘1

𝑚
0 − 𝑘1

𝑚
𝑘1
𝑏

0 − 𝑘1
𝑏

 .

𝑧1
¤𝑧1
𝑧2

 +


0 0
1
𝑚

0
0 1

𝑏

 .
[
𝑓1
𝑓2

]
, (22)

𝑦 = 𝐼𝑥, (23)

where 𝑧1 and 𝑧2 are displacements shown in Fig.2, 𝑚 is the mass, 𝑘1 and 𝑘2 are
respective spring constants, 𝑏 is the damping ratio and 𝑓1 and 𝑓2are respective input
forces. The parameter to control or the desired output for this simulation is 𝑧1,
which is the position of the mass. Although, according to different conditions, the
degradation might differ in real situations, to reduce the complexity of the result and
be able to focus on the research idea, the degradation parameter chosen to be 𝑘1. The
degradation model for 𝑘1 considered to be exponential [19]:

𝑘1 (𝑡 + 1) = 𝑘1 (𝑡) + 2 × 10−5 × exp(𝑡 ∗ 5 ∗ 10−5). (24)

Two failure thresholds were defined for this simulation:

|𝑧1 (𝑡) − 𝑧1 (𝑡) | > 0.01, (25)

𝑘1 > 0.02, (26)

where 𝑧1 (𝑡) is defined as the desired output at time 𝑡, and 𝑧1 (𝑡) is the system output
at time 𝑡, and the system is considered as failed (from the maintenance point of view)
when the difference between actual output and desired output passes this threshold.
The closed-loop step response of the system is shown in Fig.3. It can be seen that the
controller is controlling the system according to the desired output. Fig.4 shows the
same controller under degradation explained in (24) and failure threshold defined
in (25) and (26). The left part of the figure shows the normal controller and on the
right is the response of the degradation controller. Note that the x-axis of the Fig.4
is in cycles, which means that only features of the output (in this case, maximum)
are recorded from each cycle and plotted in the figure, so each point in the figure is a
feature recorded from a whole cycle as shown in Fig.1). The degradation coefficients
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Fig. 3 Closed-loop step response of the infinite horizon controller

𝑊𝑥 and 𝑊𝑢 are calculated according to recorded data shown in the left part of Fig.4.
It can be seen that the regular controller loses control, the system output deviates

from the desired output by an amount more than the failure threshold, and the system
is considered as failed after around 90 cycles. However, the degradation controller
keeps the output inside the acceptable threshold for around 500 cycles. In the end,
the simulation finishes not because of the output deviation but because of the failure
threshold mentioned in (26)..

3 Discussion

Controlling the degradation at the same time as the output will impact the industry and
reduce the maintenance cost. Unlike most existing control methods, the degradation
control will depend upon machine learning methods because identifying the physical
laws governing the degradation is costly and environment-dependent. Although
machine learning methods are considered the best solutions for solving modern
control problems, adapting them to existing methods will be challenging. This article
proved that with the correct choice of machine learning method, it is possible to adapt
the traditional control method with machine learning. The stability of the closed loop
is among the most critical questions that answering it is outside the scope of this
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Fig. 4 Controller without degradation awareness (left) vs. degradation controller (right)

article. However, the short answer is that another cost function can be used to find
the optimal point if the feedback makes the system unstable.

4 Conclusion

In this article, the degradation-aware adaptive feedback loop was introduced. First,
the formulation of the quadratic cost function of the infinite horizon controller was
updated, and the third term for penalizing the controller was introduced. Then using
dynamic programming, the optimal feedback was calculated, which is a combina-
tion of the infinite horizon optimal feedback and time, state, and output dependent
function. Then the limitation of identifying the degradation was considered in the
formulation and adapted to the limitations, and RVM was used as the machine learn-
ing method compatible with the formulation and limitations. Finally, with the help
of simulation, the functionality of the degradation-aware feedback loop was proved.
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