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Abstract
The capability of estimating future maintenance needs in advance and in a timely manner is a prerequisite for reliable
manufacturing with high availability in a production unit. Additionally, conducting planned maintenance efforts regularly
and prematurely increases the service lifetimes and utilization rates of parts, which leads to more sustainable production. The
benefits of predictive maintenance are obvious, but introducing it into a facility poses various challenges. In this study, digital
twins of well-functioning machines are used for predictive maintenance. The discrepancies between each physical unit and
its digital twin are used to detect the maintenance needs. A thorough evaluation of the method over a period of 18 months
by comparing digital twin detection results with maintenance and control system logs shows promising results. The method
is successful in detecting discrepancies, and the paper describes the techniques that are used. However, not all discrepancies
are related to the maintenance needs, and the evaluation identifies and discusses the most common sources of error. These are
often the results of human interaction, such as parameter changes, maintenance activities and component replacement.

Keywords Decision support systems ·Digital twin ·Data processing · Predictive maintenance · Industrial process ·Remaining
useful life · Anomaly detection

Introduction

The digital twin (DT) approach has shown promising results
in different industrial case studies (Mattsson et al., 2019). DT
is defined as an integrated multiphysics, multiscale, proba-
bilistic simulation of an asset that can reflect the life of its
corresponding twin using physical models and data (Glaess-
gen&Stargel, 2012). It is a virtualmodel of a physical system
in digital space for simulating its behavior (Fei, 2018). For
modern production equipment, there is a basis in the form
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of drawings and calculation models to create digital twins
during the development of the machine.

Conventional industrial machines were classically man-
ufactured decades ago, and typically, detailed parameter
information is not available. Most small-, medium-, and
even large-scale industries have deep roots and expertise in
their fields using conventional industrial machinery. This is a
resource to consider and take advantage of (Lin et al., 2016).
Most of those industries are in transition from their current
standards to Industry 4.0 (Tolkachev et al., 2020). These tran-
sitions are performed phase wise in a planned way either by
digitalizing a small area of a production unit or by attach-
ing necessary sensors to capture the uncertainties of critical
machines (Hennig, et al., 2019). Industry 4.0 has emerged
as a possible solution for extending manufacturing processes
(Xu et al., 2018) and enables us to observe process distur-
bances and detect process anomalies at an early stage. The
remaining useful life (RUL) also contributes to this solution
and is used to estimate the remainingusable timeof amachine
or its assets based on health information and supplementary
conditions (Si et al., 2011). Data play a crucial role; they are
considered the lifeblood of Industry 4.0 and lead it toward

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10845-023-02078-4&domain=pdf
http://orcid.org/0000-0002-5683-4819
http://orcid.org/0000-0001-5429-7223


876 Journal of Intelligent Manufacturing (2024) 35:875–884

Fig. 1 A 5D digital twin model

smart manufacturing (Kusiak, 2017). The gathered data are
available mostly in raw form and processed further in the
data processing phase (). For analysis, an eminent method
is the analysis of a physical equipment with a DT model to
inspect its fluctuations with the power of a cyber-physical
system (CPS).

Estimating the RUL and detecting anomalies are exciting
areas of research. New algorithms and methods are being
developed at a rapid pace with, for example, neural networks
and statistical methods. Our evaluation is independent of the
method used. What is not as well researched, however, is
whether these methods can be applied in an industrial envi-
ronment and which methods interact with the knowledge and
experience that operators, process developers and mainte-
nance personnel possess.

A five-dimensional DT (5D-DT) (QinglinQia et al., 2019)
approach is used in this research to analyze the performance
and maintenance need of various industrial machines and
tools, known as physical entities (see Fig. 1).

The DT used in this research is designed for cyclic pro-
duction and dedicated to specific machines and tools. Due to
the age of the machines, inadequate system information, and
frequent modifications of the process parameters, physics-
based or white-box digital twins were not designed, where
the design parameters were constructed from physical laws
and well-established relationships (Rasheed et al., 2020).
Therefore, we had to use a gray-box data-driven digital twin
approach, which fits well in our (conventional industrial)
scenario. The model structure is based on general physical
equations, and the parameter values are estimated frommea-
sured data using system identification algorithms. We have
applied DT methods to various processes, machinery, and
tools in the steel industry. The pilot-phase results demon-
strate that the DT faithfully represents the physical system in
industrial applications. Depending upon need, it can be used

for several industrial applications, such as process improve-
ment, predictive maintenance, and RUL estimation. These
industrial applications are denoted “Services” in Fig. 1.

Numerous scientific contributions are accessible con-
comitant to DT and its positiveness (Errandonea et al.,
2020). However, in regard to practical implementation on
live systems, various problems have been encountered, such
as decision-making with complex processes and dynamic
changes in system properties due to external activities. These
problems were commonly neglected due to limited accessi-
bility of data by considering only the ideal scenario (Garrido
& Saez, 2019) or due to intense interest in highlighting only
satisfactory results (Errandonea et al., 2020). The methods
used for DT can give false alarm and missed opportunities.
Even by developing an advanced model, similar problems
could be encountered, as the production process is influenced
by manual operator changes and external parameters.

Recent studies have shown that typical decision-making
methods are moving from experience-based to data- and
analysis-based methods (Qinglin Qi & Fei Tao, 2018). How-
ever, these problems are still considered critical in most
industrial scenarios, as false alarms generated by the algo-
rithms can not only cause emergency stops but also waste
resources. In addition, they create a lack of trust among oper-
ators.

This study highlights and addresses the practical problems
of DT analysis that are encountered in industrial implemen-
tation. We do not claim to have used the best algorithms in
every part when developing our digital twin. Our target group
was professionals in the steel industry; this applies to process
developers, maintenance staff and operators.We have chosen
methods that should be easily accessible to this target group
and studied which questions arise during a practical imple-
mentation. Our ambition is that the results are generally valid
for other methods and algorithms as well. The contribution
of the paper is to highlight general problems, based on expe-
rience, of introducing digital twins in the process industry
and to propose solutions to avoid these problems.

Digital twins were developed and analyzed in real pro-
cesses. For 18 months, we evaluated this approach by
comparison with other administrative systems and identi-
fied success factors and causes of false alarms and missed
opportunities.

The remainder of the paper is organized as follows.
Section “Theory” describes the underlying theory of digital
twins and predictive maintenance. Then, DT development
and evaluation are described in Sect. “Methods”. The results
section, namely, Sect. “Results”, describes the detection of
various types of maintenance needs, along with unwanted
detections. The following section (Sect. “Discussion”) dis-
cusses how unwanted detections can be avoided and presents
the conclusions of this study.
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Theory

In an industrial environment, data that are obtained from
physical assets help DTs provide high-fidelity reflection
throughout their service life. DTs can help increase produc-
tion visibility, maintain optimal operation, and reduce energy
consumption and maintenance costs. In this section, a frame-
work for DTs is defined and used.

Digital twin frameworks

Various frameworks have been designed for DTs. However,
the three-dimensional digital twin is widely accepted and
can be considered the origin of DTs (Grieves, 2014). It con-
sists of three major components: a physical space, a virtual
space, and a connection between them. The physical space
is a combination of a physical system, sensors, actuators,
and related entities. The virtual space, which is also known
as the digital or cyber space, is a probabilistic simulation
model that analyzes and aggregates data to determine the
condition of physical assets. To ensure seamless connec-
tion between the physical and virtual spaces, connections
play a key role in exchanging information and commands
between the spaces (Wanasinghe, et al., 2020). At the ini-
tial stage, three-dimensional DT research focused mainly on
aerospace engineering for military products and restricted
internet access (Tao, Zhang, & Nee, New requirements on
Digital Twin, 2019).

In recent years, DTs have been introduced into various
applications and have been utilized in daily use products.
This has increased their characteristic requirements in terms
of technology, application, modeling objects, and model-
ing methods. Therefore, the framework architecture of a
three-component DT has been extended to a five-component
framework architecture, which is also known as 5D-DT.
Compared to the three-dimensional DT model, it provides
broader prospects and higher efficiency. The 5D digital twin
model contains five components: a physical object/entity, a
digital model/entity, services, digital data, and connections
between the components (Qinglin Qia et al., 2019). The two
additional components, namely, digital data and services,
enable various features and functions. Digital data can be
other related software or databases. This model provides
more accurate and comprehensive data processing. The 5D-
DT digital model is illustrated in Fig. 1.

The physical object is the root of the digital model, which
is a collection of physical entities (Wanasinghe, et al., 2020).
In general, a physical object can be represented by a fluffy
cloud due to its complexity, dependency, and influence on
external parameters. Its main purpose is to perform specified
tasks and produce output. Sensor data are the heart of a 5D-
DT; they sense the physical object and use it to train and drive
the DT model.

Fig. 2 Digital twin analysis

The physical object can be categorized into a unit-level,
system-level, or systemof system-level object. The unit-level
physical object of a 5D-DT can be a device, a product, or a
systemcomponent. It is classified as a small systemwith indi-
vidual independence and cannot be further divided. Digital
objects consist of digital model designs to reflect the physical
properties, geometry, behavior, and similar characteristics.

The unit-level DTs are combined with a relationship to
form a system-level DT, which includes data interopera-
tion of units and common control, among other components.
Unit-level DTs combine to form system-level DTs, systems
of systems (SoSs) or organizational-level DTs in a similar
manner by the combination of system-level DTs. Such enti-
ties offer higher performance and better functionality than
a simple sum of constituent systems (Tao, Zhang, & Nee,
Application-oriented three-level digital twins, 2019). This
paper is mainly based on system-level DTs.

A SoS-level DT is characterized by precise decision-
making, depth analysis, global optimization, and model
interoperation. The digital data represent both physical and
digital aspects, and connections connect components at each
level to sync them together. The services in a 5D-DT typi-
cally consist of construction, calibration, and test services.
System-level services focus mainly on providing services
between physical objects and digital objects, such as mon-
itoring and maintenance services for an essential machine
unit. The services and data aremore abundant at the SoS level
due to high dependencies and increasingly complex physical
and digital models, relationships, and interactions.

Predictive maintenance using digital twins

The basic idea is to study how a unit’s behavior deviates from
an idealized behavior. Idealization refers to the behavior of
a new unit without failure and wear. The digital twin is used
in this case to generate the idealized behavior, as shown in
Fig. 2.

The idealized behavior is determined by studying the
physical system. The purpose of any physical system is to
transform the input into the desired output, for example, an
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industrial robot. Physical systems vary among applications,
such as manufacturing and medical applications. The nature
of an application could vary, and a system can be a simple
system or a complex system that includes continuous and
discrete processes (Engell et al., 2000). A complex system
is typically a combination of nonlinear and interconnected
functional units and structures (Xiang et al., 2018). An indus-
trial system is usually designed for continuous processes, in
which it performs designed tasks repetitively. It also assesses
the input requirements through its controller, namely, through
feedback calculation of interconnected process units to gen-
erate the desired control signal, which may vary from cycle
to cycle (Pandit & Buchheit, 1999). In addition, the physical
system is exposed to disturbances (e.g., material quality and
ambient temperature). It is common for the DT to contain
simplifications and delimitations in complexity. This is also
why the physical entity in Fig. 1 is a cloud, while the digital
equivalent is a box.

The data that are generated in the physical space are
usually considered raw data, which barely provide useful
information until they are processed further (Hashem, et al.,
2015). In thefirst step, data are collected byvariousmeasures,
and the physical system is sensed by a sensor application pro-
gramming interface (PLC) and recorded by a data acquisition
system. We use the iba system (ibaAg) for data acquisition,
and it provides services up to the SoS level. Due to the charac-
teristics of noise and other disturbances that are generated by
multisource and multiscale manufacturing, most of the data
must be cleaned before being processed further. The clean
data are integrated and stored at a common central base for
exchange and delivery to other dimensional levels. Based on
the central storage data, the real-time and off-line data are
analyzed and excavated through advanced analysis methods
and tools, such as prediction models, classification, and fea-
ture extraction. The valuable information that is extracted
from the ambiguous data is fed to the analyzer block to make
suitable decisions for predictive maintenance.

The decision-makingmethods may vary depending on the
application. It can be deviations from a reference cycle in a
time domain or the study of health indicators. The health
indicators can be properties in the time domain (such as max
and min values or statistical parameters) or in the frequency
domain (e.g., harmonics).

Modes in the Production Cycle

Aproduction cycle has various operatingmodes or states, and
the most frequent are start-up, operation, maintenance, and
idle. Figure 3 shows different stages of the process, which
depend on the production nature, maintenance need, operator
influence, emergency stop, and other parameters. Since the
behavior of the units is affected by the mode the machine is
in, it is important to know which mode the machine is in.

Fig. 3 Different stages of machines and tools during production

This applies both when the DT is created/designed/trained
and when the result is evaluated. Sometimes, the measurable
signals indicate the operating mode, whereas at other times,
it is necessary to estimate the operating mode, which can be
described with, e.g., a hidden Markov model.

Methods

To experimentally evaluate the problem of implementing
DTs in industry, various machines and tools were studied.
The DTs were designed according to the 5D-DT standard
and driven using processed sensor data. Analyses were per-
formed, and deviant behaviors were recorded. Then, the DT
results were compared with a maintenance log. Data from 18
consecutive months were evaluated.

The testbed consisted of the process machinery and
tools in the steel industry, in which various processes were
upgraded to the Industry 4.0 standard. Most of the processes
were complex, in which several small processes and tools
synced together and formed a desired standard product. They
involved nonlinear combinations and couplings of units. Var-
ious system behaviors were analyzed in the project. The
complex processes were controlled by the PLC.

The health, performance, and efficiency of the system
depended directly on the usage and maintenance. Planned
maintenance activities were performed periodically, which
mostly reduced the unplanned downtime but did not ensure
the avoidance of emergency stops or forced maintenance.
To improve the reliability, safety, and prevention of unde-
siredmaintenance, sensorswere attached to themachines and
tools, which sensed and recorded the system’s environmental
changes. A time synchronized data acquisition system was
used by the iba system service provider, and it was adopted to
record in-process measurements. The recorded raw signals
were processed, and a data cleaning phase was conducted to
remove data from when the machines or tools were in the
calibration, waiting, or test mode. We did not have access to
other data sources.

The central goal of the application of theDTswas to reflect
the machine behavior, capture internal damage, and identify
critical components that would lead to system failure.
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Digital twin design

The systems under observation were machinery in the cur-
rent industries, for which the entities did not have detailed
information, such as datasheets or explanations. However,
they were frequently maintained by experienced teams and
operated by professional operators. These entities processed
material and produced initial products, whichwere processed
further to producefinal products. The overall process thatwas
shaped by the relatedmachines and toolswas driven by a con-
trolled input signal that was manipulated by the PLC along
with adjustable instructions that were given by the operator.
The machinery and tools were usually affected by external
stimuli such as disturbances, which were divided into two
categories: 1) directly measured disturbances, e.g., distur-
bances in the temperature of the material, and 2) glitches
that were observed through experience and product inspec-
tion, e.g., unusual tool behavior, and influenced the final
product. The productionwas divided into several procedures,
which were combinations of linear and nonlinear techniques.
Nonlinearities have generally been approximated with linear
behaviors within a specified work area, which can be justi-
fied by the observations that the control algorithms limit the
work area and linear models reduce the number of calcula-
tions (Zawadzki & Różowicz, 2015).

Due to a lack of system information and frequent modifi-
cations of the systemparameters, physics-based orwhite-box
digital twins were not easily designed, where the design
parameters were constructed from physical laws and well-
established relationships (Rasheed et al., 2020). Therefore,
we had to use a data-driven digital twin approach, as it
fits well with our scenario. In the data-driven approach, the
selectedmode of the processwas used to identify the physical
system; for example, when a process operated in an optimum
mode and produced satisfactory products, it also fulfilled
the properties of the LTI system and postulated the model
class when parametrized by limited but unknown parame-
ter values. Process data were extracted for various purposes,
such as performance estimation, equipment degradation or
wear detection, RUL estimation, and maintenance predic-
tion. The observed data were collected by constant sampling,
thereby enabling us to choose a system representation in dis-
crete form. In data-driven DT, pragmatic forecasting of the
output was achieved by analyzing previous observations of
measured data. The approach was to select or identify the
unknown parameters to measure the output with less error.
We used the regression method by considering previously
recorded values. An autoregression with exogenous variable
(ARx) model is an example of this approach.

The three basic entities that we used to construct the dig-
ital model were as follows: 1) A dataset was used to record
production data from the process, where the measured sig-
nal was limited to the standard production, and calibration

and bad production data were not included in the dataset. 2)
The structure of the model was considered. Since the sys-
tem could be identified from the collection of models, we
considered the model by injecting process knowledge such
as specified starting and stopping positions in combination
with the formal properties of the twin model. Most of the
entities were combinations of subsystems or SoSs. A split-up
approach was used, in which subsystems were chosen. The
DT of each subsystemwas designed to analyze the dynamics.
These subsystem DTs could be joined later mathematically
to form a digital model of the whole system. 3) We identified
the most suitable model based on performance when guided
by the data in reproducing the measured data. Model valida-
tionwas also included as a checkpoint, which ensured that the
twin model was valid for the specified purposes. The model
behavior with respect to its intended use and prior system
knowledge that ensured the validity of the twin model built
confidence in its reliability. The DTmathematical model was
designed for use as a support tool for simulation and fore-
casting.

Evaluation

The machinery and tools under observation were maintained
frequently by periodic and/or emergency maintenance, and
some of the activities were related to quality inspection,
component replacement, troubleshooting of faults, and emer-
gency tool replacement. These activities were recorded in the
maintenance log. For the studied production units, data from
the maintenance log were saved separately and compared
with the detections from the DT. The corresponding cases
were successful cases. Cases in which the DT did not detect
an event that was in the maintenance log were classified as
missedopportunities; cases inwhich theDTdetected an event
that was not in the log were classified as false alarms.

Since the purpose is to gather experience of implementa-
tion in real industrial processes, we have chosen to classify
the results based on the following three different classes.

Parameter settings

In most industries, production depends upon consumer
demand and precise design. System parameters are com-
monly altered due to manual changes and natural wear.
Based on expertise, the process operator or maintenance
team realizes that changing certain parameters, e.g., speed
limitations, could result in better production. In addition,
with respect to process improvement, process engineers may
apply process constraints and change parameter settings, e.g.,
restrict energy consumption through a logic controller to limit
additional resource utilization and produce cost-efficient sus-
tainable products. These parameter settings directly and/or
indirectly modify the physical system dynamics. The twin
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models of such a system detect the parameter change activi-
ties either bymanual changes or natural wear. It continuously
analyzes data gathered from the data collection system and
monitors system parameters in its analysis block.

Component replacement

The production process is a combination of several com-
ponents, and the overall system performance and efficiency
depend upon the health of each component. Re-equipping
of the component can influence the performance of the
overall system. In addition, misalignment and incorrect
replacement can introduce contamination that affects sys-
tem performance. These activities are part of periodic and/or
emergency maintenance (when a component breaks and
requires immediate action to continue the process). The twin
model processes and extracts essential information from the
collected data and identifies the characteristics and behav-
ior of the new or re-equipped component. It points out the
performance of the replaced component by comparing the
DT model with its physical entity and indicates that either
the component improves the process performance or it intro-
duces impurities in the process.

Degradation

The lifespan of machines and tools is examined by observing
from their initial deterioration stage to complete break-
down. When a machine or its essential component breaks,
it not only reduces the process performance but also causes
undefined production stoppage. In most of the observations,
machines or their essential components experienced several
degradation stages before failure. These stages are observed
and calculated in the performance analysis block stationed
between the DT and the physical system. The DT analyzes
and aggregates data to determine the condition of the physical
entities; it captures most of the external and internal fluctua-
tions acting on the physical system.

Results

To test the effectiveness of the designed digital twin models,
the analysis block in the digital domain was used to compare
the performance of each individual physical system with its
corresponding twin model. We collected information from
themaintenance logs anddetections from theDTs. In total, 47
observations were obtained. Successful detection occurred
when a DT found a deviation that could subsequently be
linked to a real deviation. This occurred in 33 cases, while 13
cases were missed detections, and one false alarm occurred.
One false alarm is one too many, but since several hundreds

Table 1 Maintenance activities and DT responses

Digital Twin

Detected Missed

Log

Activity 33 13

No activity 1

Fig. 4 Machine performance analysis via its twin model when the oper-
ator change system parameter settings at various occasions

of units were examined during the period, one false alarm
may be acceptable (Table 1).

However, false alarms can also include DT detection of
deviations that do not correspond to maintenance needs.
These can be parameter settings from the operator, main-
tenance efforts and planned replacement of components.

Parameter Settings

Several parameters were involved in the overall experimental
process, and their changes could affect the performance. An
example of such parameter changes is shown in Fig. 4.

The process operator changed three parameters that were
considered essential in production, and their deviation could
cause unsatisfactory production if they varied by themselves.
The DT analysis reflects the process behavior with different
deviation levels when the first two parameters were changed
on April 04. The deviation between the twin and physical
system increased and climbed to level 1. Later, the operator
changed the third parameter, which was the initial process
constraint. The system responded with a rapid jump, and the
performance difference between the twin and the process
increased to level 2. The high deviation fell later to level 1
when the operator reverted the third parameter to its original
setting. In the end, the operator changed the first two param-
eters to their initial values. In response, the corresponding
deviation returned to the original level.
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Fig. 5 Analysis of a machine’s component, which showed how it
affected the overall performance during its lifespan

A deeper analysis shows that settings by the operator (that
did not negatively affect the process) were detected on 10
occasions. According to the original definition, these were
not false alarms but should be classified as such since they
were not detections of maintenance needs.

Component Replacement

In most of the analyses, the SoS-level performance depended
upon its essential subsystems or components. If any of the
major components were replaced or degraded over time, this
affected the performance of the final product, as shown in
Fig. 5.

The maintenance team replaced one of the essential
components to improve production. However, the replaced
component did not fit well and caused contamination in the
process. It is observed from the result that after replace-
ment, the performance varied with a high floating level. In
most of the component replacement activities, unsatisfactory
syncing of the replacement not only ruined the production
standard but also placed stress on themachines and consumed
extra resources. The DT analysis showed the lifespan of the
re-equipped component and how it affected the machine’s
performance. These responses were similar to those in Fig. 5.
However, when the component fit well, it imposed less stress
on the machine and led to satisfactory production, and the
deviation between them remained at a constant level. A sim-
ilar reflection is shown at the end of Fig. 5. When the team
replaced the component again, the deviation level decreased
to a low level, thereby indicating that the machine performed
well.

Fig. 6 Degradation analysis of an industrial tool that typically breaks
down during the process

Degradation

Degradation of the physical systems occurred in various
stages due to utilization and environmental effects. If the pro-
cess operator did not take the necessary action, equipment
failure or breakdown occurred. Figure 6 shows the results
of the equipment life analysis, where the equipment perfor-
mance decreased with respect to its utilization and external
effects. After a certain cyclic period, the deviation between
the physical system and its twin gradually increased, which
led to breakdown. We observed from a similar analysis that
when the machine worked in an optimal mode, without any
external parameter settings (either by the operator or the
maintenance team), the deviation increased gradually to a
threshold level before failure occurred. The prediction of
such breakdowns is essential, and its successful implemen-
tation prevents failure and leads to standard production.

Degradation can be due to one or more reasons or failure
modes. For each of the failuremodes, a health indicator is cal-
culated, and the deviation is registered. By using regression
analysis, future deteriorations can be estimated. By setting a
threshold for how large deterioration is acceptable, the RUL
can be calculated. One condition, however, is that the mea-
surement sequence does not contain parameter changes or
component changes as in Sects. “Parameter Settings” and
“Component Replacement”.

Observed Problems

The results from the analyses are promising and provide valu-
able information. We were effectively able to measure the
equipment degradation stages from fresh to complete fail-
ure, capture the process behavior, analyze the performance,
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and detect contamination when the essential component was
repaired or replaced orwhen the operator changed the param-
eter settings. These pilot observations pave the way for
implementation in a live system, but due to hurdles and com-
plications (such as no explanations from the operator when
he/she altered the system) and the complexity of regulating
the parameter settings by the process operator (the process
twin did not receive external feedback from the operator),
the analyzer block considered these system change activities
to be performance deviations and, in response, deceptively
generated false alarms.

Similar to alterations of parameter settings, maintenance
activities also resulted in deviations in the DT performance
analysis. The maintenance activities were usually planned a
couple of weeks in advance and typically covered a whole
working day. The team usually inspected almost every part of
the machinery, tools, and necessary equipment; replaced or
repaired the necessary components that could affect the per-
formance; and recorded these activities in the log afterward.
In the future, data access to the maintenance logs (which
would be in “Digital Data” in Fig. 1) will prevent false alarms
during the maintenance activities. However, some activities
were unplanned, whichwere usually performed during emer-
gency stops and were reported instantly or after several days.
This causes problems since the activities were not reported
in a timely manner.

Activities that are related to maintenance and parameter
settings are part of most industrial processes. In a pragmatic
analysis, the overall process depends upon several individ-
ual processes that are driven by machines and tools. Each
process correlates with other processes; therefore, any small
misalignment could alter the system dynamics. In contrast, a
DT is identified once; the maintenance activities for compo-
nent replacement could cause the equipment state to become
good, satisfactory, or bad. The system state is modified after
parameter settings and component replacement, and the ana-
lyzer block sniffs these changes and produces high deviation
even when the process leads to satisfactory production. This
can be solved by updating the DT after maintenance activ-
ities. However, this could be difficult because a DT update
after finding a bad or misaligned component could compen-
sate for the idealized unit’s behavior, and we were not able
to detect whether the replaced component was good or bad.

Another major problemwas setting an alarm for decision-
making. Different types of production required different
tool categories. The operator often switched tools from one
category to another according to the production require-
ments and reused tools. When a tool broke, the operator
often reused an old tool that was available and continued
production. Lifetime data of most equipment from fresh to
failure were not available. No records on equipment health,
usage, or when the operator started using fresh tools were
available. The RUL analysis results showed that from initial

degradation to complete failure, a machine’s performance
deviated at a random level that varied from one breakdown
to another. This can be improved by including process log
information in the DT model.

Potential solutions

Regarding the problem of operators changing parameter set-
tings, we see several solutions. One possibility is to include
parameter values as part of the digital twin. However, it can
cause the DT to become too complex. A simpler option is
to create a look-up table where different parameter settings
address a unique DT. A third option in order to avoid false
alarms is that the DT can be turned off if parameter values
are changed. To reduce the number of false alarms during
maintenance, good communication is needed between com-
puterized maintenance management systems (CMMS) and
DT. This would allow the twin to be calibrated after a main-
tenance operation to adapt to new components. In addition,
abnormally large deviations after a component change could
warn of possible deficiencies in the new equipment.

Discussion

Machine degradation andperformance deviation of industrial
machinery and tools, which were analyzed using DTs, are
the key factors in our research. During the analysis period,
we observed that the designed DTs missed various machine
deterioration activities, and in some cases, they did not reflect
the true performance of the physical system under testing.
This can be overcome by including unit-level DTs, which
can also help enhance the overall monitoring strength and
overcome missed opportunities.

Some analyses indicate false alarms due to changes in
the parameter settings, which were usually altered either by
process operators or after successful trial activities. The fre-
quency of these false alarms can be reduced by including
parameter settings in the DT model. However, the resulting
model would be more complex. Alternatively, the monitor-
ing of health parameters is paused when other than default
parameter values are used.

Moreover, the maintenance of supply systems can also
affect the performance, and it modifies the properties of the
monitored systems. A connection to the maintenance system
(see “Digital Data” in Fig. 1) can help tune a DT after main-
tenance. However, incorrect component maintenance could
lead to an incorrect DT. Therefore, a plausibility analysis
should be performed to sort out and warn of faulty spare
parts before updating the properties of the DT.

Furthermore, changes or replacement of the components
in the test system (after breakdown or maintenance activ-
ities) would also require adjustments in the DT. In such
scenarios, unit-level DTs need to be updated individually

123



Journal of Intelligent Manufacturing (2024) 35:875–884 883

and synchronized with system-level DTs. From the analysis
and implementation experience, DT models have been fur-
ther fine-tuned, and the new results give better performance.

Conclusions

From a thorough assessment of industrial DT models over a
period of 18 months, we have demonstrated that DTs are a
useful tool in real industrial processes, where various factors
influence the physical system’s properties. The results show
that DTs can be used as assisting tools to monitor health and
forecast failures at early stages.

Various industrial processeswere examined, inwhich lim-
ited manufacturer information on machinery and equipment
was available, such as data sheets. Gray box techniques were
used to design the DTs. The designed twin models were used
to facilitate successful detection of maintenance needs and
tool degradation, performance analysis, and estimation of
the RUL. The DTs ran in parallel with the physical system,
performed satisfactorily and produced promising results.
However, several problems were encountered in industrial
implementation.

When a parameter was changed by the operator and/or by
themaintenance teamdue to process needs, false alarmswere
generated, as the twin did not obtain information to update
in time. In future work, an ideal production standard should
be defined with the help of process workers and maintenance
teams. Hence, after operational activities such as parame-
ter setting and component changes, a trial test should be
performed before starting production to match the physical
system with the defined product standard. Furthermore, it is
important to include a data exchange (interoperability) with
other sources that are related to the DT, such as maintenance
logs.

An interesting question is whether more advanced meth-
ods can avoid false alarms and give better predictions. Since
the production units in the industries of interest to the paper
are unique, are there resources (skills and economical) to
implement and maintain more advanced algorithms, or is
"good enough" good enough?
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