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Abstract: Glass fiber-reinforced polymer (GFRP) reinforcements are useful alternatives to traditional
steel bars in concrete structures, particularly in vertical structural elements such as columns, as
they are less prone to corrosion, and impart increasing strength and endurance of buildings. There
is limited research on the finite element analysis (FEA) of the structural behavior of hollow glass
fiber-reinforced polymer reinforced concrete (GFRPRC) columns. The hollow portion can be used
for the service duct and for reducing the self-weight of the members. Numerical analysis of the
compressive response of circular hollow concrete columns reinforced with GFRP bars and spirals is
performed in this study. This article aims to investigate the axial behavior of hollow GFRP concrete
columns and compare it with that of solid steel reinforced concrete (RC) columns as well as hollow
steel RC columns. The Abaqus software is used to construct finite element models. After calibration of
modeling using an experimental test result as a control model, a parametric study is conducted. The
columns with the same geometry, loading, and boundary conditions are analyzed in the parametric
study. It is resulted that the hollow GFRP concrete columns provide a greater confinement effect than
the solid steel RC columns. The average variation in the ultimate axial load-carrying capacities of
the experimental results, from that of the FEA values, is noted to be only 3.87%, while the average
difference in the corresponding deformations is 7.08%. Moreover, the hollow GFRP concrete columns
possess greater axial load and deformation capacities compared with the solid steel RC columns.

Keywords: glass fiber-reinforced polymer bars; hollow reinforced concrete columns; spirals; axial
loading; Abaqus; finite element analysis

1. Introduction

Hollow glass fiber-reinforced polymer (GFRP) columns have emerged as a promising
alternative to conventional construction materials due to their high strength-to-weight
ratio, corrosion resistance, and durability. In civil engineering, GFRP columns are widely
used as structural members in various construction applications, such as bridges, buildings,
and offshore structures. GFRP columns are extensively being used as a useful innovative
reinforcement material instead of traditional steel reinforcements in reinforced concrete
(RC) structures, thanks to their corrosion free characteristics [1]. Ephraim et al. [2] reported
that GFRP with 40% fiber showed 25% more ductility than that recommended by ACI
440 [3]. Jabbar and Farid [4] observed that in addition to higher corrosion resistance, the
GFRP bars have 13% higher tensile strength and 58% higher tensile yield strain than steel.
Over the last two decades, different investigations have been conducted on the GFRP in
axial members having solid cross sections and under different loading conditions [5–24].
Tobbi et al. [25] investigated the cover spalling in which the lateral confinement is gained
from GFRP spiral reinforcement that enhances the strength and ductility of the columns.
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Raval and Dave [26] witnessed that the ultimate axial load-carrying capacity of columns
is lowest for rectangular shape, followed by square and circular columns. Considerable
improvement in the axial strength and corresponding deflection is attained for RC circular
columns by wrapping with fiber-reinforced polymer (FRP) [27]. The FRP bars in columns
demonstrated the compressive strength range of 10–86% and the modulus of elasticity
range of 65–97% with different fiber types [28]. In contrast with steel-reinforced columns,
the GFRP columns fail by simultaneous crushing of GFRP bars and concrete, as reported
by El Gamal and Alshareedah [29].

Numerous studies [5–24] have examined the structural performance of hollow GFRP
columns under various loading conditions, including axial, bending, and combined load-
ings. The results suggest that the performance of hollow GFRP columns is strongly influ-
enced by the percentage of the GFRP bars, GFRP spirals, as well as the boundary conditions,
loading type, and columns slenderness. Additionally, it has been shown that GFRP columns
exhibit significant strain hardening, ductility, and energy absorption capacity, even under
high strain rates and large deformations.

Lignola et al. [30] stated that in hollow glass fiber-reinforced polymer reinforced
concrete (GFRPRC) columns, the cross-sectional shape and material properties determine
the failure behavior. Khorramian and Sadeghian [15] suggested that while designing short
GFRPRC columns, axial contribution of GFRP bars should be taken into consideration.
The longitudinal GFRP bars contribute to load-carrying capacity, up to 5% of the ultimate
load in the high strength concentric columns [31]. According to Liang and Sritharan [32],
concrete dilation in RC columns occurs due to the inner void in the hollow columns which
results in decrease in the columns’ confinement efficiency. Wayghan et al. [33] resulted that
longitudinal GFRP bars have substantial contribution to the axial strength of RC columns,
which is augmented by spirals. Al-Rubaye et al. [34] suggested that hollow composite
structural elements can provide more compatibility with GFRP reinforcements compared
with steel reinforcements due to similar elastic modulus.

Researchers studied the experimental responses of hollow GFRP columns under
the axial loading, compared the results with the conventional hollow RC columns, and
found that the key factors affecting the structural axial response of hollow RC columns
are the size and diameter of GFRP bars, amount of lateral reinforcement, columns’ inner
diameter to outer diameter ratio (i/o), and ratio of the actual load to axial load-carrying
capacity [35–37].

The finite element method (FEM) is a smart and efficient way of analyzing the FRP com-
posites, as it incurs much lower cost and time than experimental setups [38]. Havlásek [39]
compared the concrete damage plasticity (CDP) model with the experimental results.
Bahrami and Mahmoudi Kouhi [40] found that the circular columns gave much better axial
performance than rectangular and square columns. He et al. [41] carried out the finite ele-
ment analysis (FEA) on tubular hollow composite columns with GFRP bars and observed
a gain in their load-carrying capacity by increasing the concrete strength or reducing the
hollow ratio. Rashid and Bahrami [42] presented a comprehensive review on the structural
performance of infilled steel–concrete composite thin-walled columns combined with FRP
and CFRP.

Despite the significant progress made in the research on hollow GFRP columns [5–42],
there are several challenges that need to be addressed. For example, there is a need for
more reliable and accurate predictive FEM models to capture the complex behavior of
hollow GFRP columns, including the effect of fiber architecture, material variability, and
manufacturing defects. Therefore, this article focuses on the FEA of the axial response of
hollow RC columns reinforced with GFRP, using the Abaqus software 6.14, on the published
experimental results [35–37]. The significance of this study is that it helps explain the axial
behavior of hollow GFRPRC columns and can lead to further parametric study of the
columns numerically, without the need of cumbersome, time-consuming, and destructive
experimental tests.
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2. Experimental Program
2.1. Material Selection and Properties
2.1.1. Concrete

A normal strength concrete was cast for preparation of the column specimens, having
a slump of 105 mm as per ASTM C143 [43] and using aggregate size of below 10 mm. The
28-day average compressive strength of concrete cylinders was noted as 31.8 MPa, having
3.54 MPa standard deviation. For determining the compressive strength of the columns,
six cylinders were cast (each with 0.1 m diameter and 0.2 m height) as per ASTM C39 [44]
and AS 1012.9 [45].

2.1.2. Reinforcements

The hollow GFRP column has GFRP bars No. 5 (each 15.9 mm diameter) used as main
reinforcements and GFRP spirals No. 3 (each 9.5 mm diameter) as lateral reinforcements
(Figure 1). The transverse GFRP reinforcements were provided in the form of spirals (with
180 mm inner diameter) instead of conventional circular hoops, because of their greater
transverse confinement capability. For comparison, steel reinforcements were also used in
the control specimen. The physical as well as mechanical properties of reinforcements are
listed in Table 1.
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Table 1. Characteristics of GFRP and steel reinforcements.

Type of
Reinforcement

Nominal Diameter
(mm) Area (mm2) Tensile Strength

(MPa)
Elastic Modulus

(GPa) Ultimate Strain (%)

GFRP spiral No. 3 9.5 70.8 1315 62.5 2.3

GFRP bar No. 5 15.9 198.5 1237 60 2.1

Steel bar No. 5 16 200.96 500 200 2.1

2.2. Preparation of Specimens

Five RC columns (each 1000 mm high with 250 mm diameter) were cast and evaluated,
as presented in Table 2. The height to diameter ratio of 4 was ensured to eliminate buckling
failure, as suggested by Hadi et al. [10]. Transverse reinforcement of all five columns
consisted of GFRP spirals. The GFRP spirals were provided with spacing of 100 mm c/c
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along the middle half of the columns’ height, while spacing of 50 mm c/c was utilized
along the exterior half-length toward top and bottom. Longitudinal reinforcements in all
five tested specimens comprised six reinforcement bars, attaining 2.79% reinforcement
ratio, well within the recommended range for steel bars (1–4%).

Table 2. Size and reinforcement details of tested column specimens.

Specimen Inner Diameter (mm) Inner-to-Outer Diameter
Ratio (i/o) Reinforcement Ratio (%) Volumetric Ratio (%)

SG-0 00 0 2.41 1.49

HG-40 40 0.16 2.47 1.56

HG-65 65 0.26 2.59 1.69

HG-90 90 0.36 2.78 1.92

HS-65 65 0.26 2.59 1.60

Assemblage of the tested columns is displayed in Figure 2, while parametric properties
of various specimens are summarized in Table 2. The nomenclature of the specimens
consists of two letters followed by a number. The first letter (S/H) defines whether the
column is solid or hollow, the second letter (G/S) represents the type of main reinforcements
(GFRP or steel), while the number designates the column’s inner diameter (mm). For
example, specimen HG-90 stands for a hollow column, GFRP reinforced with 90 mm inner
core diameter. Figure 2 depicts the cross sections of column specimens. In the figure, the
light grey color illustrates the concrete cover of each specimen, the dark grey color shows
the concrete core, and the inner white color displays the hollow core of the specimen.
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Four columns were GFRP-reinforced, with one solid and three hollow cross sections
(Figure 2), to achieve varying inner-to-outer diameter ratios (i/o), reinforcement ratios, and
volumetric ratios. The fifth column was reinforced with steel bars, having inner diameter
of 65 mm, which was used as a yardstick.

2.3. Test Setup and Instrumentation

A concentric monotonic load of 2000 kN at the rate of 1.5 mm/min was applied via
a hydraulic cylinder to evaluate the columns. To ensure the occurrence of failure at the
desired point (columns’ mid-height), 50 mm wide and 10 mm thick steel clamps were
fixed to the columns’ top and bottom along with a 3 mm rubber pad, as illustrated in
Figure 3. The deformation of the rubber pads was ignored during the experiment since it
had no effect on the results. The applied load, axial deformation, and strain were regularly
recorded using System 5000 data logger during the testing period. The cracking pattern
was cautiously observed while loading the specimens.
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3. FEA
3.1. Overview

The FEA of the RC columns was performed by modeling the constituent materials
(concrete as well as GFRP and steel reinforcements) and their behavior. Abaqus [46] was
utilized for the FEA of the RC columns. The concrete and reinforcements were simulated as
a 3D solid stress section and 3D deformable wire elements, respectively. To ensure gradual
application of applied load and its even distribution, a steel plate along with a 3 mm
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thick rubber pad was modeled and tied at the column’s top and bottom. After applying
boundary conditions and loading, the controlled model was calibrated for parameters such
as concrete shape factor, dilation angle, viscosity parameter, size of mesh, and type of mesh
element. Next, further parametric study of additional parameters was conducted using the
calibrated finite element model.

3.2. Simulation of Concrete (CDP Model)
3.2.1. Concrete Plasticity Models

In Abaqus, the concrete’s response in inelastic range can be defined using three
different types of models, namely the CDP model, concrete smeared cracking (CSC) model,
and brittle cracking concrete (BCC) model [46]. The CDP model is a damage model based
on plasticity and like the other two, it also explains the concrete’s behavior and failure
pattern, both the tensile cracking and compressive crushing. However, this model (Figure 4)
is the most accurate of all as it delivers the output results more accurately in comparison
with the CSC and BCC models. The peak stress of confined concrete is f’cc, and the failure
stress of confined concrete is rk3f’cc with its corresponding strain as εcu, while the peak
stress of un-confined concrete is fcm with its corresponding strain as εc1.
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3.2.2. Computation of Compressive and Tensile Stresses

The uniaxial stress–strain relation is useful in obtaining the stress versus plastic-strain
relation by providing stress versus “inelastic” strain data to Abaqus which automatically
carries out the conversion and calculation. Thus, if εt

pl and εc
pl are equivalent plastic strains

in tension and compression, respectively, εt
.pl and εc

.pl are rates of equivalent plastic strains
in tension and compression, respectively, θ represents the temperature, and fi demonstrates
another defined variable, then, tensile and compressive stresses σt and σc are:

σt = σt

(
εt

pl , εt
.pl , θ, fi

)
(1)
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σc = σc

(
εc

pl , εc
.pl , θ, fi

)
(2)

During unloading of concrete in the strain softening phase, the elastic stiffness of the
concrete is diminished or reduced. This reduction in the elastic stiffness is dependent upon
the temperature, the plastic strains, and other field variables, and is designated by the
two damage variables, dt and dc, with the values ranging from 0 (for undamaged material)
to 1 (totally damaged material), as mentioned below:

dt = dt

(
εt

pl , θ, fi

)
(3)

dc = dc(εc
pl , θ, fi

)
(4)

where 0 ≤ dt and dc ≤ 1.
The stress–strain curves under both tensile and compressive uniaxial loads are pro-

vided by the following equation, where E0 indicates the undamaged initial elastic stiffness
of concrete.

σt = (1− dt) E0

(
εt − εt

pl
)

(5)

σc = (1− dc) E0

(
εc − εc

pl
)

(6)

3.3. Finite Element Modeling
3.3.1. Geometric and Material Properties

The concrete core was simulated using a 3D solid feature, with the third dimension as
an extrusion type. The GFRP and steel bars were simulated using a 3D wire frame, with
planar third dimension. The GFRP spirals, presented as 3D solid features, were wound
around the bars with a translational pitch of 50 mm. As GFRP has higher resistance against
corrosion; therefore, relatively lesser clear cover was used for the GFRP reinforcements, as
suggested by [22,23]. Few additional parts incorporated as parts of testing apparatus, such
as top and bottom steel plates, top and bottom peripheral collars, and rubber pads, were
also simulated as 3D solid features, using standard properties of steel and rubber, as can
be observed from Figure 5a,b. Regarding rigidity, all the components were selected as de-
formable to allow for deformations under loading, thus enabling measuring their response.

Buildings 2023, 13, x FOR PEER REVIEW 8 of 28 
 

The stress–strain curves under both tensile and compressive uniaxial loads are pro-

vided by the following equation, where E0 indicates the undamaged initial elastic stiffness 

of concrete. 

𝜎𝑡 = (1 − 𝑑𝑡) 𝐸0(𝜀𝑡 − 𝜀𝑡
𝑝𝑙) (5) 

𝜎𝑐 = (1 − 𝑑𝑐) 𝐸0(𝜀𝑐 − 𝜀𝑐
𝑝𝑙) (6) 

3.3. Finite Element Modeling 

3.3.1. Geometric and Material Properties 

The concrete core was simulated using a 3D solid feature, with the third dimension 

as an extrusion type. The GFRP and steel bars were simulated using a 3D wire frame, with 

planar third dimension. The GFRP spirals, presented as 3D solid features, were wound 

around the bars with a translational pitch of 50 mm. As GFRP has higher resistance against 

corrosion; therefore, relatively lesser clear cover was used for the GFRP reinforcements, 

as suggested by [22,23]. Few additional parts incorporated as parts of testing apparatus, 

such as top and bottom steel plates, top and bottom peripheral collars, and rubber pads, 

were also simulated as 3D solid features, using standard properties of steel and rubber, as 

can be observed from Figure 5a,b. Regarding rigidity, all the components were selected as 

deformable to allow for deformations under loading, thus enabling measuring their re-

sponse. 

 

(a) 

Figure 5. Cont.



Buildings 2023, 13, 1056 8 of 26
Buildings 2023, 13, x FOR PEER REVIEW 9 of 28 
 

 

(b) 

Figure 5. Modeling: (a) individual parts, (b) assembled parts. 

For the simulation of concrete’s plasticity, the CDP model was implemented thanks 

to its comparative advantages. The steel and GFRP reinforcements were taken as linear 

elastic materials. Other properties of the materials are reported in Table 3. 

Table 3. Geometric and material properties. 

Parameter Concrete GFRP Steel Rubber Pad 

Density (ton/mm3) 2.4 × 10−9 2.1 × 10−9 7.58 × 10−9 1.25 × 10−9 

Poisson ratio, 𝜈 0.2 0.25 0.3 0.49 

Elastic modulus, Ec (N/mm2) 24,435 60,000 200,000 6000 

Concrete cover of specimen (mm) - 20 40 - 

3.3.2. Finite Element Mesh 

Two important aspects of meshing are the type of mesh element and mesh size. The 

different types of mesh elements available in Abaqus can be grouped into two main sets. 

One is 3D stress elements, while the second is 3D wire elements. The 3D wire elements 

consist of T3D2H and T3D3H sub-types. The 3D stress elements are a variety of element 

types including hexahedral (C3D8R) and tetrahedral elements (C3D10H, C3D6H, and 

C3D4H). In this model, the GFRP and steel reinforcements were meshed using T3D2 ele-

ments, which means a 2-node truss with reduced integration. For the simulation of con-

crete, however, C3D8R elements were utilized which are 8-node, three-dimensional, hex-

ahedral elements with reduced integration. The suitability of the use of these elements for 

non-linear static and dynamic analysis was also validated by Amiri et al. [47]. After defin-

ing the mesh type, a mesh size of 20 mm was selected through calibration, which demon-

strated a close correlation with the experimental work. 

3.3.3. Constraints and Interactions 

The interaction amongst various components was modeled by “tie constraint”, using 

the concept of master and slave surfaces. In each two coinciding surfaces, the load trans-

ferring surface was considered to be “master surface”, while the second surface was “slave 

surface”. Thus, smooth transmitting of the load from the top steel plate, through the rub-

ber pad, to the concrete column and then further to the bottom steel plate, was accurately 

Figure 5. Modeling; (a) individual parts and (b) assembled parts.

For the simulation of concrete’s plasticity, the CDP model was implemented thanks
to its comparative advantages. The steel and GFRP reinforcements were taken as linear
elastic materials. Other properties of the materials are reported in Table 3.

Table 3. Geometric and material properties.

Parameter Concrete GFRP Steel Rubber Pad

Density (ton/mm3) 2.4 × 10−9 2.1 × 10−9 7.58 × 10−9 1.25 × 10−9

Poisson’s ratio 0.2 0.25 0.3 0.49

Elastic modulus (N/mm2) 24,435 60,000 200,000 6000

Concrete cover of specimen (mm) - 20 40 -

3.3.2. Finite Element Mesh

Two important aspects of meshing are the type of mesh element and mesh size. The
different types of mesh elements available in Abaqus can be grouped into two main sets.
One is 3D stress elements, while the second is 3D wire elements. The 3D wire elements
consist of T3D2H and T3D3H sub-types. The 3D stress elements are a variety of element
types including hexahedral (C3D8R) and tetrahedral elements (C3D10H, C3D6H, and
C3D4H). In this model, the GFRP and steel reinforcements were meshed using T3D2
elements, which means a 2-node truss with reduced integration. For the simulation of
concrete, however, C3D8R elements were utilized which are 8-node, three-dimensional,
hexahedral elements with reduced integration. The suitability of the use of these elements
for non-linear static and dynamic analysis was also validated by Amiri et al. [47]. After
defining the mesh type, a mesh size of 20 mm was selected through calibration, which
demonstrated a close correlation with the experimental work.

3.3.3. Constraints and Interactions

The interaction amongst various components was modeled by “tie constraint”, using
the concept of master and slave surfaces. In each two coinciding surfaces, the load transfer-
ring surface was considered to be “master surface”, while the second surface was “slave
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surface”. Thus, smooth transmitting of the load from the top steel plate, through the rubber
pad, to the concrete column and then further to the bottom steel plate, was accurately
simulated. The bond or interface of reinforcing bars and spirals with concrete was modeled
with the help of another constraint “embedded region” in which reinforcements were
defined as the “embedded elements” while concrete acted as “host region”.

The bottom ends of the modeled column specimens were fixed using “encased”, while
no boundary condition was applied on the top ends, leaving them free to move in all
directions. An axial static concentric load was applied at the center point of the RC columns’
top to explore the response of the columns under compressive load up to failure. The load
was simulated using equivalent displacement instead of actual load. The displacement
control technique was used to avoid damage to expensive testing equipment as a result
of the load failure and consequent material rupture. To apply a concentric load of 25 kN,
the equivalent displacement of 20 mm was used. The initial and maximum increment size
of loading was kept as 0.01, minimum increment size was used as 10−15, and maximum
number of increments was limited to 1000.

3.4. Calibration of Control Model
3.4.1. Parameters for Calibration

The calibration and authentication of the finite element model is necessary to ac-
curately examine the effect and relative impact of various parameters and geometric or
material properties of the model. For this reason, a control specimen (HG-65) from ex-
perimental work in [35–37] was used to calibrate the developed numerical model. The
finite element model was checked for the impact of varying the mesh size, mesh element
type, viscosity parameter (ν), shape factor (Kc), and dilation angle (d). A total of 58 models
were constructed, using various combinations of the above properties. The calibrated finite
element model was then considered as a control model, to perform the FEA and further
parametric study on all the modeled RC column specimens, as illustrated in the flow chart
in Figure 6.

3.4.2. Viscosity Parameter (ν)

The initial and maximum times of increment greatly affect the viscosity parameter to
be selected for the model. To attain the closest possible value, initial calibration was started
using smaller values of the viscosity (almost 15% of the step time increment), as suggested
by [22,23]. The viscosity values of 0.001, 0.0018, 0.002, 0.03, and 0.005 were examined
on the control model. The variation in the axial load–axial deformation curve of HG-65
(control specimen) by varying the viscosity is shown in Figure 7. The numerical speci-
mens, having the viscosities of 0.005 (1927.89 kN), 0.003 (1680.71 kN), 0.002 (1606.47 kN),
0.0018 (1580.82 kN), and 0.001 (1485.34 kN), demonstrated the differences of 23.43%, 7.61%,
2.85%, 1.21%, and −4.9%, respectively, in the ultimate axial load-carrying capacities com-
pared with that of the experimental test result as 1561.0906 kN. Therefore, the closest curve
was achieved using the viscosity as 0.0018.

3.4.3. Dilation Angle (d)

The impact of varying the dilation angle on the axial load–axial deformation curve is
not as large as that of the effect of the viscosity parameter, as indicated in Figure 8 for the
control specimen (HG-65). To obtain the most accurate result, the dilation angles of 30◦, 36◦,
and 40◦ were used. The numerical specimens, with the dilation angles of 40◦ (1596.36 kN),
36◦ (1580.82 kN), and 30◦ (1544.14 kN), illustrated the differences of 2.21%, 1.21%, and
−1.14%, respectively, in the ultimate axial load-carrying capacities compared with that of
the experimental test result (1561.09 kN). Consequently, the closest curve was obtained 36◦

as the dilation angle.
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3.4.4. Shape Factor (Kc)

Figure 9 displays the variation in the axial load–axial deformation curve of the control
specimen (HG-65) due to the effect of the shape factor. The effect of the shape factor on the
columns’ behavior is not as considerable as the other parameters; however, its calibration is
essential to obtain more refined and accurate results. The graphs depict that increasing the
shape factor values between 0.667 and 0.9 results in more flattened post-peak curve and
lesser values of the ultimate axial load-carrying capacity. The numerical specimens, having
the shape factors of 0.667 (1580.823 kN), 0.7 (1555.97 kN), and 0.9 (1516.93 kN), gave the
differences of 1.21%, −0.38%, and −2.88%, respectively, in the ultimate axial load-carrying
capacities compared with that of the experimental test result as 1561.0906 kN. Thus, the
value of Kc = 0.7 provided the closest curve to that of the experimental test.
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3.4.5. Mesh Size

The selection of suitable mesh size is extremely important for the accurate prediction of
numerical results. Selecting larger mesh size results in greater variation in numerical results
than the experimentally obtained values, thus compromising the accuracy. As the different
sizes of the mesh (i.e., finer or coarse mesh) cause the strain localization phenomenon, i.e.,
localizing the strain to a few selected elements, thus resulting in failure of the numerical
convergence. Therefore, as a principle, appropriate mesh sizes were used to converge
the numerical curve closer to the experimental result. Figure 10 demonstrates the axial
behavior of the control model (HG-65) for the mesh sizes of 50 mm, 40 mm, 30 mm, 25 mm,
20 mm, and 15 mm. The numerical specimens, with the mesh sizes of 15 mm (1536.85 kN),
20 mm (1580.82 kN), 25 mm (1594.22 kN), 30 mm (1639.36 kN), 40 mm (1399.52 kN), and
50 mm (1396.19 kN), displayed the differences of −1.6%, 1.21%, 2.07%, 4.96%, −10.4%, and
−10.62%, respectively, in the ultimate axial load-carrying capacities compared with that
of the experimental test result (1561.09 kN). It can be concluded from the figure that the
most accurate graph was obtained for the mesh size of 20 mm. Further, smaller meshes
unnecessarily made the analysis time longer, with no significant enhancement in accuracy.
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3.4.6. Mesh Element Type

The calibration of the model based on the element type of meshing is shown in
Figure 11. The element type providing the most accurate result within the minimum analy-
sis time is considered as the best suited element. As discussed earlier, 3D wire elements
consist of T3D2H and T3D3H sub-types. However, for concrete, 3D stress elements have a
variety of element types including hexahedral (C3D8R) and tetrahedral elements (C3D10H,
C3D6H, and C3D4H). The axial load–axial deformation curves of all the elements indi-
cate that the most accurate results are provided by the C3D8R element. It was observed
from [22,23] that the C3D8R element took lesser running time for the analysis, with com-
paratively greater degree of accuracy. The numerical specimens, having the mesh types of
C3D4H (1648.93 kN), C3D6H (1648.93 kN), C3D10H (974.24 kN), and C3D8R (1580.82 kN),
demonstrated the differences of 5.57%, 5.57%, −37.62%, and 1.21%, respectively, in the
ultimate axial load-carrying capacities compared with that of the experimental test result
as 1561.09 kN. As a consequence, the C3D8R element, which gave the most accurate result,
was taken in this study to ensure the accuracy of the modeling.
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3.4.7. Properties of Rubber Pads

The rubber pads were used at the column’s top and bottom surfaces to ensure grad-
ual transfer of the concentric load. These rubber pads had a softening effect on the slope
of the stress–strain curve. To incorporate this phenomenon, 3 mm neoprene rubber cush-
ions were fixed between the surfaces of concrete and steel plates and connected via tie
constraints. Thus, the actual mechanical properties of the rubber pads had to be incorpo-
rated in the model’s behavior. However, the deformation of the rubber pads was ignored
during the experiment, as it has no effect on the results. Therefore, the model was cal-
ibrated for various properties of the rubber pads such as yield stress (YIELD) and Pois-
son’s ratio (POIS). The numerical specimens, with the properties of YIELD = 10 MPa and
POIS = 0.49 (1927.89 kN), YIELD = 7.5 MPa and POIS = 0.49 (1497.01 kN), YIELD = 2.5 MPa
and POIS = 0.49 (1788.36 kN), YIELD = 6 MPa and POIS = 0.49 (1580.82 kN), YIELD = 6 MPa
and POIS = 0.20 (1210.647 kN), and YIELD = 6 MPa and POIS = 0.40 (1210.647 kN), re-
vealed the differences of 23.43%, −4.15%, 14.5%, 1.21%, −22.49%, and −22.49%, respec-
tively, in the ultimate axial load-carrying capacities compared with that of the experimental
test result (1561.09 kN). The closest curve was resulted for the yield stress of 6 MPa and
Poisson’s ratio of 0.49 (Figure 12).
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4. Comparisons of Numerical Results and Experimental Result
4.1. Control Finite Element Model (HG-65)

The axial load–axial deformation curve of the control finite element model (HG-65)
and experimental result are illustrated in Figure 13. After intensive calibration for various
parameters through trial models, the finally selected values of the viscosity parameter,
shape factor, dilation angle, and mesh size are 0.0018, 0.667, 36◦, and 20 mm, respectively.
The experimental work conducted in [35–37] was considered as the yardstick and compared
with the control model. The axial load–axial deformation curve of the control model (HG65)
followed a similar path to that of the experimental result, as displayed in Figure 13. The
results of the FEA indicated the difference of only 1.21% in the compressive strength and
5.18% in the axial deformation from the results of the experimental work. The results proved
that numerical and experimental values of the ultimate axial load, and their corresponding
axial deformations were approximately equal. However, the post-peak behavior of the
numerical model was not properly converging with that of the experimental curve. This
discrepancy during the post-peak behavior might be owing to the linear elastic characteristic
of the GFRP bars because the damage criteria could not be considered for them.
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4.2. Ultimate Axial Load-Carrying Capacity and Corresponding Axial Deformation

The FEA and experimentally obtained values for the ultimate axial load-carrying
capacity and corresponding deformation for all the modeled columns are summarized in
Table 4, while their graphical representations are given in Figures 14 and 15, respectively.
The ultimate axial load obtained for the modeled columns SG-0, HG-40, HG-65, HG-90,
and HS-65 at the deformations are listed in Table 4.

Table 4. Ultimate axial load-carrying capacities and corresponding deformations, FEA versus experi-
ment (EXP).

Sr. No. Specimen

Ultimate Axial Load-Carrying Capacity
(kN)

Deformation at Ultimate Axial-Load Carrying
Capacity (mm)

FEA EXP Percentage
Difference FEA EXP Percentage

Difference

1 SG-0 1577.13 1582.48 0.34 9.84 10.27 4.17
2 HG-40 1494.80 1403.51 −6.5 9.41 9.26 −1.64
3 HG-65 1580.82 1561.91 −1.21 9.78 9.33 −4.8
4 HG-90 1395.91 1410.14 1.01 9.07 9.30 2.41
5 HS-65 1684.64 1409.07 −19.56 9.56 11.65 17.95
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Figure 15. Deformations at ultimate axial load-carrying capacities.

The ultimate axial load-carrying capacities of the columns SG-0 and HG-90 were
overestimated by 0.34%, and 1.01%, respectively, while those of HG-40, HG-65, and HS-65
were underestimated by −6.5%, 1.21%, and 19.55%, respectively. These discrepancies are
very nominal except for steel-reinforced column HS65 where the discrepancy of 19.55%
could be found. This large difference for steel is due to its properties compared with GFRP
used in the testing, or minor variation in steel placement. It may also be owing to an
imperfect bond between steel reinforcement and concrete because of higher difference in
their modulus of elasticity.

4.3. Axial Load–Axial Deformation Behavior

Figure 16 provides the comparative results of the numerically (FEM) and experimen-
tally (EXP) achieved axial load–axial deformation curves for all the studied columns. The
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first column specimen (SG-0) demonstrated a linear load–deformation behavior in the initial
phase, followed by a short nonlinear just before the peak load. The brief nonlinearity in the
axial load–axial deformation curve indicates the initiation and development of minor cracks
in the outer concrete core, as already observed in the experimental work. The ultimate
load of 1577 kN was obtained at the deformation of 9.84 mm which is comparable with the
experimental results. After the peak load, the axial load-carrying capacity experienced a
drop, which is attributed to spalling of the concrete cover. A second upward movement
in the axial load-carrying capacity is seen afterward, which is due to the confining effect
of the GFRP spirals wound around the inner concrete core. The column finally failed
when the GFRP reinforcements (both bars and spirals) ruptured. The other columns also
generally showed a similar load–deformation response as that of SG-0. Models of all the
columns exhibited linear elastic curves in the pre-peak phase dip due to spalling of the
concrete cover, the second peak is attributed to the GFRP reinforcements’ confinement,
and the final rupture is owing to the rupture of the reinforcements. The load–deformation
behavior of all the modeled columns revealed a reasonable accuracy in the pre-peak phase.
However, in the post-peak phase till failure, the results diverged from the experimental
values and the numerical models overestimated the experimentally observed values. The
deviation in the models’ behavior in the post-peak phase is attributed to the fact that the
damage criteria for the GFRP reinforcements were not defined, as they were simulated as
linear elastic materials. The differences between the obtained ultimate axial load-carrying
capacities from the experiment and modeling of the columns SG-0, HG-40, HG-65, HG-90,
and HS-65 are 0.34%, −6.5%, −1.21%, 1.01%, and −19.56%, respectively. The significant
difference for HS-65 is owing to the calibration of the Abaqus modeling carried out on
HG-65 (using the GFRP bars not on the steel bars). To avoid confusion for the calibration,
the authors only used the calibrated values for HG-65. However, for the same columns,
the axial deformation differences achieved from the experiment and modeling are 4.14%,
−1.64%, −4.8%, 2.41%, and 17.95%, respectively.
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4.4. Ductility of Columns

The ability to withstand plastic deformation before failure is called ductility. It is the
capability of any members to withstand the applied force after reaching the compressive
strength limit. The term ductility may be applied to any of the mechanical parameters
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including deformation, rotation, axial strain, or energy associated with a member. For the
hollow RC columns reinforced with GFRP, the ductility was examined and compared with
that of the hollow RC columns with the same dimensions but reinforced with steel. The
ductility factor (DF) for the columns in this study was determined using Equation (7).

DF =
A∆85

A∆75
(7)

where A∆75 and A∆85 are graphically explained through Figure 17. A∆75 is the area under
the curve up to a point (∆75) where the axial deformation is 75% of the ultimate compressive
strength in the elastic phase, and A∆85 is the area under the curve up to a point (∆85) where
the axial deformation is 85% of the ultimate compressive strength in the inelastic phase.
Using the area under the curve method, the ductility factors of the numerical models of
HG65 and HS65 were found to be 2.59 and 2.14, respectively. As both columns had similar
geometry and reinforcements, only differing in the type of reinforcements, the ductility of
the components with the steel bars was 20.68% lower than that of the components with the
GFRP bars and was thus more brittle. This issue confirmed the earlier experimental results
of [35–37].
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4.5. Crack Development and Failure Pattern

The visualization and simulation of cracks that were observed in the columns during
the experimental study were performed with the help of the finite element models, as
depicted in Figure 18. It was witnessed that the direction of equivalent plastic strain (PEEQ)
is perpendicular to the development of cracks in concrete. Therefore, the models of the
PEEQ of the studied columns were drawn to investigate the cracks’ behavior and failure
modes in these columns. Strain models of all the columns were also studied to visualize
and analyze the formation of the axial strain at the point of the cracks’ development.
Furthermore, the PEEQ is the strain in the material that is irreversible and associated with
the plastic deformation. It is often used to analyze the plastic behavior of the system, such
as the amount of deformation that can occur before failure. The contours of the PEEQ in
Figure 18 illustrate the maximum values of the concrete strain in the percentages.
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Figure 18 demonstrate that the proposed finite element model could predict and
explain the crack development behavior and failure pattern of the columns with reasonable
accuracy. The failure modes of the columns are explained below:

a. Failure Mode of SG-0

The fracture of spirals followed abruptly by buckling of the longitudinal bars, resulting
in failure of SG-0. However, the modeling showed the same with more stress concentration
in the middle of SG-0 due to failure of both reinforcements.

b. Failure Mode of HG-40

The failure of the column HG-40 was due to the fracture of spirals and buckling of
bars, with lesser time gap. The modeling indicated stress concentration in the center of the
column, as a result of sequel spirals and bar failure.

c. Failure Mode of HG-65

In HG-65, there was more distributed failure owing to the bars rupture at different
bars heights and simultaneous spiral fracture. The displayed stresses along the complete
height of the column in the modeling presented more distributed failure.

d. Failure Mode of HG-90

The failure was because of the bar rupture after concrete spalling, with the spirals
intact. The modeling provided lesser stresses, indicating the same controlled failure due to
the bar rupture only.

e. Failure Mode of HS-65

In HS-65, the failure was characterized by bar buckling at different heights, but no
spiral rupture. The modeling illustrated the same, with lesser stresses observed in the
column, scattered along the column’s height.

4.6. Summary of Validity of Calibrated Model

The comparison of the experimental results with those of the calibrated finite element
models revealed that the axial load–axial displacement curve of the control model (HG65)
followed a similar path to the experimental curve, as reported in Figure 13. The average
difference in the peak loads of the experimental and numerical curves of the columns was
3.87%. The ductility of the components with the steel bars was 20.68% lower than that of
the components with the GFRP bars, which resulted in being more brittle. Moreover, all
the observations in Figure 18 proved that the finite element model can be used for further
parametric study.

5. Parametric Study

To comprehensively study the axial load–axial deformation behavior of the hollow
GFRPRC columns, a numerical parametric study was done on the control specimen, i.e.,
HG-65. The study aimed at determining the effects of different variables such as the concrete
compressive strength (f’c), presence or absence of the GFRP spirals and bars (provision of
reinforcements), longitudinal reinforcement ratio (ρl), and pitch of spiral reinforcement.

5.1. Effect of Concrete Compressive Strength (f’c)

To investigate the effect of varying the compressive strength of concrete (f’c) on the ax-
ial load–axial deformation response of the control specimen, fc’ of 10 MPa, 20 MPa, 30 MPa,
40 MPa, and 50 MPa were considered to analyze its effect on the axial behavior of the
column. The resultant behavior is illustrated in Figure 19. The concrete strength of 30 MPa
was taken as the benchmark, since it is closer to the compressive strength of the experimen-
tal specimen, i.e., 31.8 MPa. The longitudinal and lateral reinforcements were kept constant.
The numerical specimens, having fc’ = 10 MPa (1434.94 kN), fc’ = 20 MPa (1516.84 kN),
fc’ = 30 MPa (1583.45 kN), fc’ = 40 MPa (1924.339 kN), and fc’ = 50 MPa (2278.1 kN), pro-
vided the differences of −8.13%, −2.89%, 1.38%, 23.2%, and 45.85%, respectively, in the
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ultimate axial load-carrying capacities compared with that of the experimental test result
as 1561.09 kN.

 

 

Figure 19 

 

 

 

Figure 20 

Figure 19. Effect of concrete compressive strength.

5.2. Effect of Provision of Reinforcements

To ascertain the comparative role of longitudinal as well as transverse reinforcements
in the axial behavior of the modeled column, separate specimens were modeled in which
either or both types of reinforcements were provided one by one. As can be seen from
Figure 20, the ultimate axial load-carrying capacity was achieved for the control model, in
which both the longitudinal and transverse reinforcements were used. However, the col-
umn, with the spiral reinforcement only, displayed higher ultimate load-carrying capacity
than the column, with the longitudinal bars only. The least axial load-carrying capacity was
observed for the column having no reinforcement. In addition, all the columns showed
almost identical response in the pre-peak phase, while in the post-peak phase, the greatest
axial load-carrying capacity was seen for the column with both types of the reinforcements,
followed by spiral only column, bar only column, and no reinforcement column. The FEA
of the specimens, with GFRP Bar + GFRP Spiral (1580.82 kN), No GFRP Bar + GFRP Spiral
(1386.24 kN), GFRP Bar + No GFRP Spiral (1561.79 kN), and No GFRP Bar + No GFRP Spiral
(1345.06 kN), presented the differences of 1.21%, −11.25%, −0.01%, and −13.88%, respec-
tively, in the ultimate axial load-carrying capacities compared with that of the experimental
test result (1561.09 kN).

5.3. Effect of Longitudinal Reinforcement Ratio (ρl)

Figure 21 illustrates the relation of various longitudinal reinforcement ratios with the
axial load–axial deformation response of the hollow GFRP columns. The control model
had the transverse reinforcement of 5-mm diameter GFRP spirals and the longitudinal rein-
forcement ratio of 2.6%, using 16-mm diameter GFRP bars. While keeping the transverse
reinforcement constant, the longitudinal reinforcement was changed with the GFRP bars
having the diameters of 10 mm, 12 mm, 14 mm, 16 mm, 18 mm, 20 mm, and 22 mm. The
corresponding longitudinal reinforcement ratios achieved for these bars were 1.03%, 1.48%,
2.02%, 3.34%, 4.12%, and 4.98%, thus remaining within the recommended longitudinal re-
inforcement range for axial members (1–4%). It was observed that the percentage decreases
in the axial load-carrying capacities compared with that of the control column were 2.82%,
5.99%, and 9.18%, by reducing the longitudinal reinforcement ratios to 2.02%, 1.48%, and
1.03%, respectively. Similarly, the increases of 1.56%, 7.67%, and 10.99% were observed by
using the longitudinal reinforcement ratios of 3.34%, 4.12% and 4.98%, respectively. The
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FEA results verified that increasing the longitudinal reinforcement ratio enhanced the axial
load-carrying capacity of the modeled columns, as shown by Figure 21.

 

 

Figure 19 

 

 

 

Figure 20 

Figure 20. Effect of provision of longitudinal and transverse reinforcements.

 

 

Figure 21 

 

 

 

Figure 22 

Figure 21. Effect of longitudinal reinforcement ratio.

5.4. Effect of Pitch of Spiral Reinforcement

In the control model, the spiral pitch of 100 mm was used in the middle portion of
the column’s length. However, along the peripheral, 250 mm toward top and bottom of
the column, the pitch was reduced to 50 mm to avoid premature cracking of concrete.
Due to the varying pitch along the length, the effect of the pitch on the column’s axial
load-carrying capacity was not completely understood. Therefore, to clearly observe the
effect of the spiral pitch on the column’s response, three separate specimens were modeled
with the continuous spiral pitches of 50 mm, 100 mm, and 200 mm. The results in Figure 22
signifies that the spiral pitch of 50 mm was the most effective with 7.05% higher axial
load-carrying capacity compared with the column with the spiral pitch of 200 mm. The
numerical specimens, having Spiral @ 100 mm (1580.82 kN), Spiral @ 50 mm (1373.50 kN),
Spiral @ 150 mm (1404.85 kN), Spiral @ 200 mm (1435.74 kN), and No Spiral (1486.16 kN),



Buildings 2023, 13, 1056 22 of 26

provided the differences of 1.21%, −12.06%, −10.06%, −8.08%, and −4.9%, respectively,
in the ultimate axial load-carrying capacities compared with that of the experimental test
result as 1561.09 kN.

 

 

Figure 21 

 

 

 

Figure 22 

Figure 22. Effect of pitch of spiral reinforcement.

6. Compatibility of Equations for Axial Load-Carrying Capacity

The RC design codes such as ACI 440 [3] and AS 1012.9 [45] consider the design of
RC columns reinforced with FRP but both of them ignore the relative share of the GFRP
reinforcements in the axial load-carrying capacity of the RC columns and suggest that
the load is resisted by concrete only. Researchers [35–37] have found that the GFRP bars
also add to the axial load-carrying capacity, therefore, its incorporation into the equation
is essential to accurately predict the compressive behavior of hollow RC columns. The
specific amount of contribution provided by the GFRP bars is, however, under study
due to variation in failure behavior of the GFRP reinforcements under axial load. Afifi
et al. [48] observed that the compressive strength of GFRP corresponds to 35% of its
strength in tension, as demonstrated in Equation (8). However, their hypothesis overrated
the contribution of the GFRP bars. This may be attributed to lower strength of the GFRP
bars tested by Afifi et al. [48] in comparison with the one used in this study. On the
contrary, Tobbi et al. [49] proposed the linear elastic theory with respect to the GFRP
reinforcements, in which the axial load-carrying capacity of the GFRP bars is expressed in
terms of multiplication of the elastic modulus of GFRP (EFRP) and average axial strain value
corresponding to the peak load. The expression is elaborated by Equation (9). AlAjarmeh
et al. [35–37] proposed another equation through an experimental study, as Equation (10).
The actual contribution of the concrete area was taken by all the researchers as 85% of the
concrete compressive strength, as per recommendation of ACI 440 [3].

Pn = 0.85 fc
′
+ 0.35 fu,FRP.AFRP (8)

Pn = 0.85 fc
′(

Ag − AFRP
)
+ 0.002EFRP.AFRP (9)

Pn = 0.85 fc
′(

Ag − AFRP
)
+ 0.0025EFRP.AFRP (10)

In the above equations, f’c is the concrete compressive strength, EFRP is the elastic
modulus of the longitudinal FRP bars, Ag is the column’s gross cross-sectional area, AFRP is
the longitudinal FRP bar’s cross-sectional area, and fu,FRP is the GFRP bar’s ultimate tensile
strength. The axial load-carrying capacity ratio (Pn) was calculated with Equations (8)–(10)
and compared with the experimental and FEA results. The comparisons are summarized
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in Table 5. The table indicates that Equations (9) and (10) present the most accurate results
regarding the axial load-carrying capacities.

Table 5. Comparison of ultimate axial load-carrying capacity in percentage.

Column Specimen
Percentage Difference (Equation vs. Exp) Percentage Difference (Equation vs. FEA)

Equation (8) Equation (9) Equation (10) Equation (8) Equation (9) Equation (10)

SG-0 28.78 3.79 3.79 29.22 3.47 3.46

HG-40 42.36 −5.63 −5.63 42.49 −5.72 −5.73

HG-65 23.73 9.28 9.28 22.25 10.36 10.36

HG-90 30.18 6.37 6.37 31.51 5.42 5.42

Average 31.263 3.453 3.453 31.368 3.383 3.378

7. Conclusions

This research work aimed at exploring the axial response of the hollow GFRPRC
columns, using Abaqus. The FEA was executed by simulating the RC columns using
the CDP model and reinforcements as linear elastic materials. The following are the key
outcomes of this study:

• The results indicated that the axial load-carrying capacity of the hollow RC columns
reinforced with GFRP was affected by certain input parameters. The most critical of
these parameters were the mesh size and viscosity parameter. Other variables affecting
ultimate axial load-carrying capacity of the columns were the shape factor, dilation
angle, and mesh type. Thus, any finite element model should be calibrated for these
variables before using it for numerical study.

• The FEA analysis yielded close results with those earlier concluded by experimental
work. The axial load-axial deformation responses of the finite element models of all the
columns coincided with a reasonable accuracy to the experimental curve, particularly
in the pre-peak phase.

• The post-peak behavior of the axial load–axial deformation curves which employed
the GFRP bars and spirals, could be accurately simulated by Abaqus. However, the
ultimate failure of the GFRP reinforcements could not be predicted by the curve. This
was probably due to the fact that the damage parameters of the GFRP were not as
defined as that of concrete. Therefore, further study is required to define the damage
pattern of the GFRP reinforcements.

• The average variation in the ultimate axial load-carrying capacities of the experimental
results, from that of FEA values, was noted to be only 3.87%, while the average
difference in their corresponding deformations was 7.08%. This nominal difference
in the results revealed that the numerical model was suitable for implementation in
further study on the hollow GFRPRC columns.

• The numerical analysis confirmed the results of the experimental work regarding the
effects of inner-to-outer diameter ratios, hollowness, and confinement efficiency on
the hollow RC columns reinforced with GFRP.

• The cracking pattern in the hollow RC columns was visualized through PEEQs. A
satisfactory comparison was obtained between the crack development behavior at-
tained through the FEA and actual experimental cracks. This substantiated the idea
that the FEA analysis of structural members can be performed using Abaqus, instead
of undergoing costly experimental investigations.

• The average variations between numerically obtained ultimate axial load-carrying capaci-
ties and the results of Equations (8)–(10) were 31.368%, 3.383%, and 3.378%, respectively.

• The numerical parametric study of HG-65 (selected model column) revealed that the
ultimate axial load-carrying capacity of the column was enhanced by increasing the
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concrete compressive strength and longitudinal reinforcement ratio or by reducing the
spiral pitch.

The limitation of this work is that the outcomes of the parametric study through
the detail experimental scheme must be validated, which is the future work of this
research project.

Recommendation

The load-carrying capacity of the hollow GFRP columns can be predicted by the
FEM models by using the values of the viscosity parameter, shape factor, dilation angle,
and mesh size of 0.0018, 0.667, 36◦, and 20 mm, respectively. The results exhibited that
the presented FEM models predicted the close axial load–axial deformation curves of the
studied specimens compared with that of the experimental counterpart.
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