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Abstract

Rogue waves are unexpectedly high waves of 2.5X the significant wave height and which

occur in nearly all phases of nature, from oceans, to fiber-optic cables and atmospheric

air-masses. In the ocean, rogue waves pose a significant danger to shipping and fishing

vessels and have been found to reach 27.8 meters in height, and attain velocities of up

to 100 km/hr. Mechanisms on naval structures for the real-time prediction of rogue

waves are currently non-existent, and their development requires a) a good equation

for simulating rogue waves and b) a deep study of the wave-trains of rogue waves. In

this work, we consider the time-series of four rogue wave trains collected from various

sources, including the U.S. Coastal Data Information Program. The method of study

encompasses the development piece-wise constant functions from the rogue wave read-

ings by laser/buoys. We use these piece-wise constant functions to form regularized

functions as Fourier series, which we consider as weak solutions to the stationary non-

linear Schrödinger equation. The resulting force functions are quantified and compared

to physical data of the rogue wave trains. The results show that we obtain a good cor-

relation between the norms of the obtained force functions and the rogue wave height

Hmax and the wave-velocity. The methods developed in the study build a potentially

useful foundation for the development of a prediction model in a future study.
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1 Introduction

Rogue waves are highly nonlinear phenomena [1] which occur in the worlds oceans [2,

3, 4], on the great lakes [5], in the atmosphere [6] and in fiber optic cables [7]. A rogue

wave is normally 2.5X the significant wave height (Hs) and can move up to 100 km/hr

[8] potentially inducing devastating damage on ships or at worse capsizing supply and

fishing vessels, or breaking apart and sinking giant oil-tankers and cargo ships such as

the ”MS München”, the ”MV Derbyshire” and the ”El Faro” [9, 10, 11]. There are

several mechanisms of formation of rogue waves which encompass the X-interference, Y-

interference, wind-to-surface perturbation, perturbation from bottom-morphology and

other mechanisms where some are still elusive - such as the rogue wave appearing ”out of

nowhere and disappearing without a trace” [2]. Several of these mechanisms of formation

of rogue waves can be simulated by various approaches accounting for water-depth, wind

speed, water temperature, coastal formation and other parameters [2]. Rogue waves can

travel at least 1000 km across oceans [2] and merge eventually with the surrounding

water via gravity-effects, or collide with land-masses where they vanish.

1.1 Rogue wave modeling

The mathematical function for a rogue wave is known as a soliton, describing a solitary

wave which is a self-reinforcing wave-packet that maintains a constant velocity and looses

its shape only by gravitational effects [2]. Solitons are the solutions of a widespread class

of weakly nonlinear dispersive partial differential equations describing physical systems

that can be obtained explicitly using specific initial conditions and boundary conditions.

Examples of solitons are waves that have a permanent form and are localized within

a region and which can interact with other solitons. Upon collisions, solitons emerge

unchanged except for experiencing a phase shift [12]. Solitons are calculated using

weakly nonlinear partial differential equations (PDEs) [13, 14, 15, 3, 2], such as the

Nonlinear Schrödinger equation, the Korteweg de Vries equation, the MMT equation,
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and others [2]. In this section, we shall review the most common differential equations

and their soliton-solutions.

1.1.1 The nonlinear Schrödinger equation

The partial differential equations used in modeling rogue waves are intricate and are

often equipped with multiple coefficients and non-linear terms. The prime example of

such PDEs is the Nonlinear Schrödinger Equation (NLSE) [16] which is the most used

for numerical simulations of rogue waves [3, 7, 8, 17, 18, 19]. The NLSE in dimensionless

form reads

iψt = −1

2
ψxx + κ|ψ|2ψ, (1.1)

where ψ is a complex-valued function, κ is the wave-number and i is the imaginary

unit. The NLSE can be both inhomogeneous or homogeneous. For the first case, it

is first transformed to a homogeneous PDE using specific initial conditions, and sub-

sequently solved using the Darboux-transformation method which ultimately generates

n soliton solutions organized in a hierarchical system [3, 7, 19]. The Darboux trans-

formation method is related to the Laplace transformation method and is a mapping

between solutions and coefficients of a system of equations of the same form [20]. Let

ψ(x, λ), ϕ(x, µ) ∈ C2, where the elements are twice differentiable, and let ψ and ϕ be

solutions to the PDE:

−ψxx + u(x)ψ = λψ, (1.2)

where u is a function which yields non-linearity of the following equations

ψ1 = ψx + σψ; σ = −ϕxϕ−1 (1.3)
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which are the solutions to the equation

−ψ1xx + u(x)1ψ1 = λψ1, (1.4)

where

u1 = u+ 2σx. (1.5)

Here, the forms of ψ1 and u1 are given as functions of the solutions and define the

Darboux transformation. An example of a soliton function is given by

ψ(x, t) = 1− 4
1 + 2ix

1 + 4t2 + 4x2
eix (1.6)

which was obtained by Dai et al [21] as particular solution of the first-order of the

hierarchy of solutions of the variable coefficient inhomogeneous nonlinear Schrödinger

equation(vci-NLSE):

iψx +
1

2
β(t)ψtt + χ(x)|ψ|2ψ + α(x)t2ψ = iγ(x)ψ (1.7)

where α(x) = βWxx−βxWx

2β2W
(where W is a family of solutions of the form factor specified

in [21]) defines the normalized loss rate, the form α(x)t2 accounts for the chirping effects,

the parameter β(x) = β0e
−σ1x defines the group-velocity dispersion (i.e., for an entire

wave train), while χ(x) = χ0e
σ2x defines the non-linearity parameters, and γ(x) = γ

defines the loss or gain effects of the wave signal.

The ”extended Dysthe equation” (eDe) [22] is a precursor of the NLSE, and is an im-

portant PDE to include in this survey of PDEs for rogue waves. The eDe reads

i

k
ψxyy + ψyy + 2ikψx + 2ψz = βϵ3. (1.8)

In order to solve this equation, we first transform [22] the Ede to the NLSE in (1.1) by

the procedure given by Dysthe [22] and subsequently obtain the following trial solution

(by applying a linear perturbation)
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ψ = c0(1 + α)e1(θ−
1
2
ic20t) (1.9)

where α and θ are small real perturbations of the amplitude and phase, respectively

[22]. The trial solution in (1.9) is then inserted in (1.1), which is then linearized into a

system of two PDEs, with the respective solutions in plane-wave form. These plane-wave

solutions contain parameters that satisfy the dispersion relation ω2 = gk where k is the

wavenumber and g is the acceleration due to gravity [22]. The solutions to the Dysthe

equation, as for the general NLSE, are soliton solutions (Peregrine solitons) [23, 24, 25]

and are given in the general form.

ψj(x, t) = (−1)j +
Gj(x, t) + ixHj(x, t)

Dj(x, t)
eix (1.10)

which is shown below with G = 1, H = 2, D = 1 + 4t2 + 4x2

Figure 1. Soliton function in a wave-train. The plot of ψ1(x, t) from (1.6), generated by the

Darboux transformation of the standard NLSE [26]. X-axis: wave-position; Y-axis: time-line;
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Z-axis: amplitude. Real and imaginary parts shown respectively above and below. Plotted with

SageMATH [27].

1.1.2 Korteweg de Vries equation

The Korteweg de Vries equation is another important equation in the modeling of ocean

waves, and is an equation which requires bilinearization into a simplified PDE using

the modified Bäcklund transformation technique where one applies the Hirota bilinear

operators [28]. The general KdV equation is given by

ψt + ψpψx + ψxxx = 0 (1.11)

where p is a positive parameter. We shall review the results of the specific KdV variant:

ψt + 6ψψx + ψxxx = 0 (1.12)

which is subjected to bilinearization [29] using a trial function, also known as steady-state

function, which is in principle a soliton function.

ψ(x, t) =

(
p2

2

)
sech2

(
η

2

)
, (1.13)

where

η = px− p3t+ η0.

and p and η are arbitrary constants. This soliton function is shown below in figure 2
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Figure 2. Soliton function. The soliton function used as steady state reference function

(1.13) for the bilinearization technique in the modified Bäcklund transformation of the Korteweg

de Vries equation. X-axis: wave-position; Y-axis: time-line; Z-axis: amplitude.

The steady-state reference function is written in exponential form ψ(x, t) = 2p2(eη/2 +

e−η/2) and is converted to its functional form:

ψ(x, t) = 2
∂2 ln[f(x, t)]

∂x2
, (1.14)

so that by the bilinearization technique [29] eqn. (1.14) is replaced into the original KdV

Equation (1.12) and integrated with respect to x to give:

fxtf − fxft + fxxxxf − 4fxxxfx + 3(fxx)
2 = 0 (1.15)

which is the bilinearized variant of the Korteweg–de Vries Equation (1.12) obtained from

the bilinearization using Bäcklund transformation method [29]. It is at this stage that

the simplicity of the transformed form of the KdV equation in (1.15) becomes evident,

where the operators are replaced by the Hirota operators [28] and yield the simple PDE:

Dx(Dt +D3
x)f · f = 0, (1.16)
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which has the general solution given by:

Ψ = 1 + ϵ(eη1 + eη2)− ϵ2
F (Ω1 − Ω2, p1 − p2)

F (Ω1 +Ω2, p1 + p2)
eη1+η2 (1.17)

where η1 and η2 are the functions with the independent variables x and t as given in

the steady-state function in (1.13) for each of the solitons. Ω1 = −p31 and Ω2 = −p32,

following the same definition for (1.13) for each soliton. η represents the perturbations

[29]. A particular solution of (1.16) is given by :

Ψ = e2it
cos(2

√
x)sech(2

√
x) + i

√
2 tanh(2t)√

2− cos(2
√
x)sech(2

√
x)

, (1.18)

which is plotted below in Fig 3. Interestingly, the KdW equation has also been solved

using a nonlinear Fourier method [30, 31], which is represented by a superposition of

nonlinear oscillatory modes of the wave spectrum. This equation, developed by Osborne

[30, 31], has the capacity to include a large number of non-linear oscillatory patterns,

also known as multi-quasi-cnoidal waves, which are used to form the rogue wave by su-

perposition in constructive phases. These solutions to the original KdV Equation (1.12)

include several solitons, depending on the number of degrees of freedom selected for the

numerical simulation of the KdV equation. This yields a 3D wave as a complex function

composed of multiple solitons and radiation components in the simulated wave train [30]

(Fig. 3).
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Figure 3. Soliton solution of the Korteweg de Vries equation. The function of this

plot is given in (1.18). X-axis: wave-position; Y-axis: time-line; Z-axis: amplitude. Real and

imaginary parts shown respectively above and below. The solution is developed using a nonlinear

Fourier method which is not discussed in detail here, but can be found in the reference sources

[30, 31].

1.1.3 The MMT equation

The MMT equation is a one-dimensional nonlinear equation, which was originally pro-

posed by Majda, McLaughlin and Tabak [32]. The MMT equation gives soliton-like

solutions, which have been analyzed in detail by Zhakarov [33, 34, 35], and gives four-

wave resonant interaction between waves (where bichromatic mother waves are generated

to give birth to a daughter wave), which, when coupled with large-scale forces and small-

scale damping, yields a family of waves that exhibit direct and inverse cascades [36]. This
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family of waves is modeled by the MMT equation:

iψt = |∂x|αψ + |∂x|−β/4

(∣∣|∂x|−β/4ψ|2
∣∣ · |∂x|−β/4ψ

)
(1.19)

here |∂x|α is the pseudo-differential operator defined on the real axis through the Fourier

transform:

|∂x|αψ(k) = |k|αψ̂(k). (1.20)

Equation (1.19) is a Hamiltonian system with the Hamiltonian operator:

H =

ˆ (∣∣∣|∂x|α/2ψ∣∣∣2 + 1

2

∣∣∣|∂x|−β/4ψ
∣∣∣4) dx (1.21)

where the parameter α determines the dispersion relation:

ω = Ω(k) = |k|α. (1.22)

The given MMT equation is in principle an extension of the NLSE, as the usual NLSE

results by putting α = 2 [32]. When α = 1/2 however, the equation describes the water

wave dispersion law with ω =
√
|k|. Furthermore, when α ≥ 1 the dispersion relation

is convex, which otherwise does not hold when α < 1. The convex property of the

dispersion relation gives a crescent behaviour of the attenuating waves, leading to the

formation of a rogue wave. The parameter β is the nonlinear term, when β = 0 we

have a standard cubic power law, and when β grows, the nonlinearity becomes weaker

because of nonlocal smoothing in the variable x [32]. Majda et al [32] introduces the

conserved norm in the MMT equation:

|ψ|2 =
ˆ
R
|ψ|2dx (1.23)

and the conserved linear momentum by the time-evolution of equation (1.19):

P =

ˆ
R
|ψψ̂x − ψxψ̂|dx (1.24)
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Furthermore, one transform the MMT prior to numerical simulation to a Fourier-space

form, which is given in [32]. This is particularly convenient when studying the energy-

transfer mechanism from waves surrounding the rogue wave. The numerical study of the

MMT equation done by [32] uses a trial function given in the form:

ψ(x, t) = ϵ

[ 4∑
j=1

Aj(T )e
i[(]kjx−Ω(kj)t] + ϵ2ψ̂(x, t)

]
(1.25)

where Ω(k) denotes the dispersion relation while the slow-time is given by T = ϵ2t. An

example of the MMT-trial function is

ψ(x, t) = 4(ei(−3t+3x) + 0.04eixt2), (1.26)

which is plotted below.

Figure 3. General form of the trial function for the MMT equation. The function of

this plot is given in (1.26). X-axis: wave-position; Y-axis: time-line; Z-axis: amplitude. Real

and imaginary parts shown respectively in blue and orange.

Insertion of (1.25) in (1.19) produces a rather elaborate differential equation for ψ̂ given

in [32], which corresponds to a forced linear oscillator, with a secular growth in time.

Under specific conditions given in [32], the resulting equation is simplified into a system
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of ODEs. If specific resonance conditions are met, then the ODEs give a maximal energy

interchange between wave-modes, which gives an estimate of the transfer of energy which

yield eventually a resonance quartet, which exist only for non-convex dispersion laws.

Additional equations for rogue wave modeling are the one-dimensional nonlinear disper-

sive wave equations [36, 37, 37], the Hirota equation [28], the parity- and time-symmetric

(PT -symmetric) nonlocal equation [38, 39, 40] and as briefly mentioned before, the Os-

borne equations developed by Fourier analysis [30, 31], which are all thoroughly described

in [2].

2 Wave-reading analysis using piece-wise constant functions

In this section, we shall introduce the notions of this study. The main motivation of this

study is to analyse laser/buoy readings of rogue wave-trains from the ocean so we can

identify conserved patterns of rogue-wave formation and possibly some warning signals.

An example of such laser/buoy readings is given below in Figure 4. Wave-readings are

laser/buoys registrations of the amplitudes of wave-trains with respect to time, hence,

wave-readings are in practice time-series of waves that can be defined as:

Definition 2.1. The set of amplitudes of rogue waves. The set of amplitudes

from a laser/buoy reading of rogue wave is defined by a finite sequence of coordinates

rn ∈ R2, given by rn = {(ξ1, η1), (ξ2, η2), · · · , (ξn, ηn)}, where n denotes the number of

coordinates.

Such wave-readings are outputs from data-registration in the ocean, using bouys or

lasers under oil-rigs, which measure the stability and level of the rig over the sea (given

depressions in the sea-bed given extraction of oil/gas). An example is shown below,

where the a time-series of wave at the buoy at Aunuu of American Samoa is shown.
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Figure 4. Wave-reading example. The figure shows the wave-train registered with a buoy of

the US Coastal Data Information Program located at American Samoa (https://cdip.ucsd.edu/).

Wave-readings reproduce the wave-patterns of a wave-train perturbed under various

weather conditions, which can give rise to the formation of wave-packets. Wavepack-

ets are groups of localized waves that travel as a unit and can be measured precisely

in such wave-readings from the ocean. Wavepackets are conventionally represented by

plane-wave functions of the form:

u(x, t) = ei(kx−ωt), (2.1)

which satisfy the wave-equation:

utt = αuxx, (2.2)

which can be solved either by developing the Fourier coefficients or using d’Alembert’s

formula, provided intial and boundary conditions. During ocean storms, such wavepack-

ets can display extreme velocities and monstrous wave-heights, with registered veloci-

ties reaching up to 100 km/hr for individual crests with height 27.8m, contained in a

wavepacket extending more than 1 km in length [8]. The wave-reading from the related

buoy in the Atlantic ocean is shown below in Figure 5 and is an ideal example of the

basis of forming piece-wise constant functions.
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Figure 5. Rogue wave-packets formed in ocean waves. The figure displays a wave-reading

of the time-series of a rogue-wave train, where the rogue wave appears inside a wave-packet lo-

calized to the out-most left part of the plot, from 0-100 seconds. This wave-packet travelled

at a velocity of 100 km /hr. Adapted with permissions from [8]. Copyright Nature Scientific

publishing.

2.0.1 Piece-wise constant functions and their Fourier series

We shall now introduce the notions required to develop a study of the rogue-wave read-

ings. An indicator function, defined on Aj = [ξj−1, ξj ] ⊂ [−a, a] is defined by

χAj (ξ) =


1 if ξ ∈ Aj

0 if ξ /∈ Aj .

(2.3)

A piece-wise constant function is of the form

f(ξ) :=

n∑
i=1

ηjχAj (ξ). (2.4)
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We define a partitioning on the interval [−a, a] to be a set of interval P = {A1, A2, · · · , An}

such that [−a, a] = ∪n
j=1Aj and Ai ∩ Aj is either empty or vanish at most at a single

point where i ̸= j. We then say that {A1, · · · , An} is an almost disjoint partitioning

of [−a, a]. Let S ([−a, a]) be the set of all piece-wise constant functions on [−a, a] and

let SP ([−a, a]) be the subset of such functions that are constant on every interval Aj

(
⋃n−1

j=0 ξi, ξj+1 = [−a, a]), such that SP ⊂ S . A partition P can be refined, by form-

ing a new almost disjoint union of its sub-intervals. This refinement can be applied to

any simple indicator function or to a sum of indicator functions. Moreover, given two

partitions P = {A1, · · · , An} and Q = {B1, · · · , Bn} there exists a common refinement

R = {C1, · · · , Cn} so that each Ai and Bj is an almost disjoint union of sets from C.

It follows that SP ([−a, a]) ⊆ SR([−a, a]), SQ ⊆ SR. Therefore, if f ∈ Sp([−a, a]),

g ∈ SQ it is clear that αf + βg ∈ SR([−a, a]), where α, β ∈ R. We exemplify such a

refinement in figure 6. Such a described piece-wise constant function is constructed for

each wave-reading (see Fig. 5 of examples of such wave-readings). First, we introduce

two examples of piece-wise constant functions, which are also simple functions composed

of a finite linear combination of indicator functions. These two examples are introduced

for respectively a uniform grid (composed of n partitions of equal length) and a non-

uniform grid (composed of n partitions of unequal length).

Example 2.0.1. Here we show an example of a piece-wise constant function f(t) on a

uniform grid and an example of piece-wise constant function g(t) on a non-uniform grid

on the vector space S [−3, 3] characterized by the points ξj , j = 0, 1, 2, · · · , n and with

n = 4

f(ξ) :=

4∑
j=1

ηjχAj (ξ), (2.5)

where Aj=[ξj−1, ξj ], ξ0 = −2, ξ1 = −1, ξ2 = 0, ξ3 = 1, ξ4 = 2,
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f(ξ) =



2, −2 ≤ ξ < −1

1, −1 ≤ ξ < 0

2, 0 ≤ ξ < 1

3, 1 ≤ ξ ≤ 2,

(2.6)

and with n = 4

g(ξ) :=
4∑

j=1

ηjχAj (ξ), (2.7)

where Aj=[ξj−1, ξj ], where ξ0 = −3, ξ1 = −3
2 , ξ2 =

1
5 , ξ3 = 1, ξ4 = 2

g(ξ) =



2, −3 ≤ ξ < −3
2

1, −3
2 ≤ ξ < 1

5

3, 0.2 ≤ ξ < 1

6, 1 ≤ ξ ≤ 3

(2.8)

which are plotted jointly in (Fig. 6).
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Figure 6. The piece-wise constant function. From top left to bottom, f, g, h = f + g. Cir-

cled and pointed in red are the coordinates of the intervals for the stepwise function given in

(2.6) on the interval [−2, 2]. Respective ξf -values: ξ0 = −2, ξ1 = −1, ξ2 = 0, ξ3 = 1, ξ4 = 2.

Respective ηf -values: η1 = 2, η2 = 1, η3 = 2, η4 = 3. Respective ξg-values: ξ0 = −3, ξ1 =

−1.5, ξ2 = 0.2, ξ3 = 1, ξ4 = 2. Respective ηg-values: η1 = 2, η2 = 1, η3 = 3, η4 = 6. Bottom:

h: green color; f : red color; g: blue color. Note that the lowermost picture shows the τh values

on the x -axis and ςh on the y-axis, which are not-related to neither the ξg or ξg values on the

upper plots. The bottom picture shows that h yields a refinement of S into n=8 partitions,

while S is subdivided into n=4 partitions for f and g. The relationship between the partitions

is thence given by f, g ∈ SP ⊂ S while h ∈ SPP
⊂ SP ⊂ S .
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2.0.2 The Fourier series of the piece-wise constant function on a uniform grid.

The Fourier series of the indicator function χAj (t) can be calculated by the formula:

χAj (t) := αj
0 +

∞∑
k=1

αj
k cosωkt+ βjk sinωkt (2.9)

where ω = π
a and which converges to χAj (t) point-wise at every t ∈ [−a, a], except for

discontinuity points. The Fourier coefficients can be computed as:

αj
0 =

1

2a

ˆ a

−a
χAj (t)dt =

1

2a
(ξj − ξj−1) =

hj
2a
, (2.10)

where hj = ξj − ξj−1. Then, let h = 2a
n and we obtain

α0 =
h

2a
=

1

n
(2.11)

Now we calculate αj
k:

αj
k =

1

a

ˆ a

−a
χAj (t) cosωktdt =

1

a

ˆ ξj

ξj−1

cosωktdt =

1

πk

[
sin

πkξj
h

− sin
πkξj−1

h

]
=

2

πk
sin

(
ωk

hj
2

)
cos

(
ωk

ξj + ξj−1

2

)
,

(2.12)

where we made use of the trigonometric identity: sinx− sin y = 2 sin x−y
2 cos x+y

2 . Now,

let ξj = −a+ jh, j = 0, 1, · · · , n. Also, let hj = h = 2a
n and ξj + ξj−1 = −2a+(2j− 1)h.

Then we obtain for the cosine term brackets: ωk
(ξj+ξj−1)

2 = −πk+ (2j − 1)πkn such that

αj
k =

2(−1)k

πk
sin

(
ωk

hj
2

)
cos

(
(2j − 1)

πk

n

)
, (2.13)

where with hj = ξj − ξj−1 and wk = πk
n obtain:

αj
k = 2

(−1)k

πk
sinwk cos

(
wk(2j − 1)

)
(2.14)

The same is done for βjk:
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βjk =
1

a

ˆ a

−a
χAj (t) sin(ωkt)dt =

1

a

ˆ ξj

ξj−1

sinωktdt =

1

πk

[
cos

πkξj−1

h
− cos

πkξj
h

]
=

2

πk
sin

(
ωk

hj
2

)
sin

(
ωk

ξj + ξj−1

2

)
,

(2.15)

Again, with ξj = −a+jh, j = 0, 1, · · · , n, hj = h = 2a
n with ξj+ξj−1 = −2a+(2j−1)h we

obtain for the second sine term on the RHS (using the trigonometric identity sin(a+b) =

cos(b) sin(a) + cos(a) sin(b):

sinωk
ξj + ξj−1

2
= sin

(
− πk + (2j − 1)

πk

n

)
= (−1)k sin

(
(2j − 1)

πk

n

)
, (2.16)

which we then rewrite with wk = πk
n and hj = ξj − ξj−1 to:

βk =
2(−1)k

πk
sinwk sin

(
wk(2j − 1)

)
. (2.17)

From this we obtain the Fourier series for the piece-wise constant function.

fn(t) =
n∑

j=1

ηjχAj (t), (2.18)

where the uniform grid is given by

hj = h, j = 1, 2, · · · , n

ξj = −a+ jh, j = 0, 1, · · · , n, h = 2a
n ,

(2.19)

and we obtain

α0 =
h

2a

n∑
j=1

ηj =
1

n

n∑
j=1

ηj ; (2.20)

αk =
2(−1)k

πk
sinwk

n∑
j=1

ηj cos
(
(2j − 1)wk

)
; (2.21)

βk =
2(−1)k

πk
sinwk

n∑
j=1

ηj sin
(
(2j − 1)wk

)
, (2.22)
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where wk = πk
n and k = 1, 2, · · · , n.

2.0.3 The Fourier series for a piece-wise-constant function on a non-uniform grid.

Since the piece-wise constant function on a non-uniform grid supported on [−a, a] =

∪n
j=1Aj = ∪n

j=1[ξj−1, ξj ], −a = ξ0, a = ξn is given by:

fn(t) =
n∑

j=1

ηjχAj (t), (2.23)

and the Fourier series is given by:

fn(t) = α0 +

∞∑
k=1

αk cos(ωkt) + βk sin(ωkt), (2.24)

where, by ω = π
a we obtain the coefficients on the non-uniform grid:

α0 =
1

2a

ˆ a

−a
fn(t)dt =

1

2a

n∑
j=1

ηj(ξj − ξj−1) (2.25)

αk =
1

a

ˆ a

−a
fn(t) cos(ωkt)dt =

2

πk

n∑
j=1

ηj sin

(
ωk

hj
2

)
cos

(
ωk

ξj + ξj−1

2

)
(2.26)

βk =
1

a

ˆ a

−a
fn(t) sin(ωkt)dt =

2

πk

n∑
j=1

ηj sin

(
ωk

hj
2

)
sin

(
ωk

ξj + ξj−1

2

)
(2.27)

We prove two lemmas showing the essential properties of stepwise functions.

2.0.4 Two lemmas for the Fourier series

Lemma 2.1. Let f ∈ SP [−a, a] where the partitioning P is uniform. Then, the Fourier

coefficients of f are independent of a.

Proof. Let the indicator function χAj (t) be
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χAj (t) =


1, ξj−1 < t < ξj

0, elsewhere,

(2.28)

The function f is of the form f(t) =
∑
ηjχAj (t).

Let us calculate the Fourier coefficients of the Fourier series over [−a, a] with an arbitrary

a of the indicator function of interval Aj = ξj−1 < t < ξj :

αj
0 =

1

2a

ˆ a

−a
χAj (t)dt =

1

2a

ˆ ξj

ξj−1
dt =

1

2a
(ξj − ξj−1) (2.29)

with (ξj − ξj−1) = h we get:

αj
0 =

h

2a
(2.30)

Finally, since h = 2a
n we get:

αj
0 =

1

n
, (2.31)

which is independent of a. Concomitantly, for the step-wise function we get:

α0 =
1

2a

ˆ a

−a
fn(t)dt =

n∑
j=1

ηjα
j
0 =

1

2a

n∑
j=1

ηjhj =
1

2a

n∑
j=1

ηj(ξj − ξj−1), (2.32)

since (ξj − ξj−1) = hj is constant, we can form the integral as:

hj
2a

n∑
j=1

ηj , (2.33)

and with hj =
2a
n , we readily obtain

α0 =
1

n

n∑
j=1

ηj . (2.34)

Now, with αk and βk as calculated in the previous section:
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αk =
2

πk

n∑
j=1

ηj sin

(
ωk

hj
2

)
cos

(
ωk

ξj + ξj−1

2

)
(2.35)

and

βk =
2

πk

n∑
j=1

ηj sin

(
ωk

hj
2

)
sin

(
ωk

ξj + ξj−1

2

)
, (2.36)

we express f as a Fourier series:

n∑
j=1

ηjχAj (t) =
1

n

n∑
j=1

ηj +

∞∑
k=1

[
2(−1)k

πk
sinwk

n∑
j=1

ηj cos
(
(2j − 1)wk

)]
cosωkt+

[
2(−1)k

πk
sinwk

n∑
j=1

ηj sin
(
(2j − 1)wk

)]
sinωkt,

(2.37)

where ω = π
a on [−a, a]. Herein, we have therefore shown that each Fourier coefficient

does not depend on a and we can therefore formulate fn(t) as a Fourier series independent

of a. Calculations for αk and βk are given in 7.1.

Lemma 2.2. Given the n first Fourier coefficients of a function f ∈ S (sine or cosine):

{α0, α1, · · · , αn−1}, or,

{β1, β2, · · · , βn}
(2.38)

one can uniquely determine the stepwise function (numbers ηj, j = 1, 2, · · ·n) on a given

grid of points, ξj , j = 0, 1, · · ·n, provided that the system of linear equations of n-

first Fourier coefficients and n-first Fourier integrals is represented by a square matrix

Bn which is composed of the entries Bn = (bkj) where k = 1, 2, · · · , n is the number

(and index) of rows and j = 1, 2, · · · , n is the number (and index) of columns, and that

|Bn| ≠ 0. Hence, the matrix must be invertible.

Proof. Consider the αk coefficient in the system of linear equations:
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Bn



η1

η2
...

ηn


=



α1
0(f)

α2
1(f)

...

αn
n−1(f)


, (2.39)

where, αk with k = 0, 1, · · · , n for each successive row. Then we can form the matrix of

coefficients by

Bn =



α1
0(A1) α2

0(A2) · · · αn
0 (An)

α1
1(A1) α2

1(A2) · · · αn
1 (An)

...
...

...
...

α1
n−1(A1) α2

n−1(A2) · · · αn
n−1(An)


, (2.40)

where Bn = (bk,j)0≤k,j≤n and where A1, A2, · · ·An are the n intervals of a piece-wise

constant function. We claim that we can obtain ηj from αj
k using (2.39), provided that

Bn is invertible (|Bn| ≠ 0) and that k is an odd-numbered integer (given the resulting

zeros of the sine function for even k values in wk in αj
k).

Therefore for Bn we obtain with αj
k = 2 (−1)k

πk sinwk cos
(
wk(2j−1)

)
, where wk = πk

n and

with α0 =
1
n :

Bn =



1
1 · · · 1

n

2 (−1)2

π sinw1 cos
(
w1(2− 1)

)
· · · 2 (−1)2

π sinw1 cos
(
w1(2(n)− 1)

)
...

...
...
...

...

2 (−1)n−1

π(n−1)) sinwn−1 cos
(
wn−1(2− 1)

)
· · · 2 (−1)n−1

π(n−1)) sinwn−1 cos
(
wn−1(2(n)− 1)

)


,

(2.41)

where Bn = (bk,j)0≤k,j≤n. By Bn we can identify ηj in (2.39) provided |Bn| ≠ 0.

Take the following series for k = 3, 5, 7, 9 and obtain:
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B4 =



− 3
π

3
π

3
π − 3

π

5
π − 5

π − 5
π

5
π

− 7
π

7
π

7
π − 7

π

9
π − 9

π − 9
π

9
π


(2.42)

which gives:

η1

η2

η3

η4





− 3
π

3
π

3
π − 3

π

5
π − 5

π − 5
π

5
π

− 7
π

7
π

7
π − 7

π

9
π − 9

π − 9
π

9
π


=



2

1

2

3





− 3
π

3
π

3
π − 3

π

5
π − 5

π − 5
π

5
π

− 7
π

7
π

7
π − 7

π

9
π − 9

π − 9
π

9
π


(2.43)

which gives: 

η1

η2

η3

η4


=



2

1

2

3


(2.44)

2.0.5 Examples of calculations of Fourier coefficients and Fourier series.

In this section we shall return to the examples of the piece-wise constant functions given

in (2.6) and (2.8) and calculate their respective Fourier coefficients and Fourier series.

Example 2.0.2. For the piece-wise constant function

f(ξ) :=

4∑
j=1

ηjχAj (ξ), (2.45)

where j = 1, 2, 3, 4, 5 and Aj=[ξj−1, ξj ], and ξ0 = −2, ξ1 = −1, ξ2 = 0, ξ3 = 1, ξ4 = 2

and ηj = [η1, η2, η1, η3] = [2, 1, 2, 3]
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f(ξ) =



2, −2 ≤ ξ < −1

1, −1 ≤ ξ < 0

2, 0 ≤ ξ < 1

3, 1 ≤ ξ ≤ 2

(2.46)

The Fourier coefficients are:

α0 =
1

2π

ˆ π

−π
f(ξ) =

1

2π

( ˆ −π/2

−π
2dξ +

ˆ 0

−π/2
1dξ +

ˆ π/2

0
2dξ +

ˆ π

π/2
3dξ

)
= 2 (2.47)

and αk, with j = 1, 2, · · · , n is given by:

αj
k =

ηj(−1)k

πk
sin

πk

n
cos(2j − 1)

πk

n

α1
k =

2(−1)k

πk
sin

πk

4
cos

πk

4

α2
k =

(−1)k

πk
sin

πk

4
cos

3πk

4

α3
k =

2(−1)k

πk
sin

πk

4
cos

5πk

4

α4
k =

3(−1)k

πk
sin

πk

4
cos

7πk

4

αk =
4∑

j=1

αj
k =

(−1)k

πk
sin

πk

4

(
2 cos

πk

4
+ cos

3πk

4
+ 2 cos

5πk

4
+ 3 cos

7πk

4

)

(2.48)

and

βjk =
ηj(−1)k

πk
sin

πk

n
sin(2j − 1)

πk

n

β1k =
2(−1)k

πk
sin

πk

4
sin

πk

4

β2k =
(−1)k

πk
sin

πk

4
sin

3πk

4

β3k =
2(−1)k

πk
sin

πk

4
sin

5πk

4

β4k =
3(−1)k

πk
sin

πk

4
sin

7πk

4

βk =
4∑

j=1

βjk =
(−1)k

πk
sin

πk

4

(
2 sin

πk

4
+ sin

3πk

4
+ 2 sin

5πk

4
+ 3 sin

7πk

4

)

(2.49)
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Example 2.0.3. Let the following piece-wise constant function be given by:

f(ξ) :=

4∑
j=1

ηjχAj (ξ), (2.50)

where j = 1, 2, 3, 4, 5 and Aj=[ξj−1, ξj ], ξ0 = −3, ξ1 = −1.5, ξ2 = 0.2, ξ3 = 1, ξ4 = 2,

and ηj = [η1, η2, η3, η4] = [2, 1, 3, 6]

f(ξ) =



2, −3 ≤ ξ < −3
2

1, −3
2 ≤ ξ < 1

5

3, 0.2 ≤ ξ < 1

6, 1 ≤ ξ ≤ 3

(2.51)

Here we calculate the Fourier coefficients by:

α0 =
1

2a

ˆ a

−a
f(ξ)dξ =

1

6

4∑
j=1

ηj(ξj − ξj−1) =
1

6

[(
2(−3

2
+ 3)

)
+ (

1

5
+

3

2
)

)
+

3(1− 1

5
) + 6(3− 1)

)]
=

191

60

(2.52)

and αk, where ω = π
3 :

αj
k =

2ηj
πk

sin

(
ωk

hj
2

)
cos

(
ωk

ξj + ξj−1

2

)
α1
k =

2 · 2
πk

sin

(
π

3
k
3

4

)
cos

(
π

3
k
9

4

)
=

4

πk
sin

(
πk

4

)
cos

(
3πk

4

)
α2
k =

2 · 1
πk

sin

(
π

3
k
17

20

)
cos

(
π

3
k
13

20

)
=

2

πk
sin

(
17πk

60

)
cos

(
13πk

60

)
α3
k =

2 · 3
πk

sin

(
π

3
k
4

10

)
cos

(
π

3
k
6

10

)
=

6

πk
sin

(
2πk

15

)
cos

(
πk

5

)
α4
k =

2 · 6
πk

sin

(
π

3
k

)
cos

(
π

3
k · 2

)
=

12

πk
sin

(
πk

3

)
cos

(
2πk

3

)
αk =

4∑
j=1

αj
k = − 1

πk

(
2 sin

kπ

15
+ 3 sin

kπ

3
+ sin

kπ

2

)

(2.53)

and, βk, with ω = π
3
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βjk =
2ηj
πk

sin

(
ωk

hj
2

)
sin

(
ωk

ξj + ξj−1

2

)
β1k =

2 · 2
πk

sin

(
π

3
k
3

4

)
sin

(
π

3
k
9

4

)
=

4

πk
sin

(
πk

4

)
sin

(
3πk

4

)
β2k =

2 · 1
πk

sin

(
π

3
k
17

20

)
sin

(
π

3
k
13

20

)
=

2

πk
sin

(
17πk

60

)
sin

(
13πk

60

)
β3k =

2 · 3
πk

sin

(
π

3
k
4

10

)
sin

(
π

3
k
6

10

)
=

6

πk
sin

(
2πk

15

)
sin

(
πk

5

)
β4k =

2 · 6
πk

sin

(
π

3
k

)
sin

(
π

3
k · 2

)
=

12

πk
sin

(
πk

3

)
sin

(
2πk

3

)
βk =

4∑
j=1

βjk =
1

πk

(
4 cos

kπ

15
+ 3 cos

kπ

3
+ cos

kπ

2
− 8(−1)k

)

(2.54)
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3 ODE analysis: The nonlinear Schrödinger equation

In section 1.1, we have described a series of PDEs, particularly the NLSE, which is

commonly used to simulate rogue waves. The time-dependent form of the NLSE for

u(x, t) can be represented by:

−1

2
uxx + κ|u|2u = iut (3.1)

which we aim to study in its stationary form:

−1

2
uxx + κ|u|2u = 0 (3.2)

where κ = 1 for simplicity, and where u(x) is the time-independent Fourier series (which

are regularized time-independent piece-wise constant functions in Q, which has the same

vector space properties as S however having the position variable, x). In order to obtain

these time-independent functions u(x) ∈ Q for the one-dimensional problem in (3.2) we

do the following.

1) The time-series in 7.2 are used to obtain a set of coordinates (S) from approximately

100 seconds before and after the rogue wave following definition 2.1. The coordinates of

the amplitudes of the waves in the wave-train are extracted in the mathematical software

(i.e. Mathematica).

2) With the obtained (S) time-series coordinates, we can either use these are direct input

to generate a piecewise-constant function or we can scale these by multiplying the time

coordinate (seconds) by the known wave-velocity (meter/seconds - see 7.2) and obtain

a new set of position-dependent coordinates (Q) and then generate a piecewise constant

function.

3) Using (Q) we generate the time-independent piece-wise constant functions u(x) reg-

ularized as Fourier series which are elements of Q.

4) The Fourier series in Q are finally evaluated as weak solutions to (3.2) to generate

the force functions, h (which we assume to be individual for each rogue wave event). We
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do this by thus considering the time-independent Fourier series of piece-wise constant

function in Q as functions for the NLS operator

P := −1

2

d2

dx2
+ |u(x)|2. (3.3)

which gives the operator equation:

P
(
u(x)

)
= h(x). (3.4)

Where, as noted, u(x) is the time-independent Fourier series of the piece-wise constant

functions of the rogue wave readings which considered as a weak solutions to the inho-

mogeneous equation (3.4) and h(x) is the force function. The resulting individual force

functions h(x) are quantified for magnitude by using the 2 − norm by the following

definition.

Definition 3.1. Let h(x) ∈ L2 on the arbitrary interval [−a, a]. We can then define the

2-norm of h(t) by

∥h(t)∥2 :=
(ˆ b

a
|h(t)|2dt

) 1
2

(3.5)

The calculations for the 2-norm for the respective readings are Draupner: 2.85× 1015,

Gorm: 3.85 × 109, Black Sea: 4.45 × 1010 and Ucluelet: 7.75 × 1013. From this quan-

tification, we rank the calculated norms of the rogue wave with the rogue wave height

(Hmax) and the wave-train velocity (supplied in 7.2). The ranking, shows that the most

powerful rogue wave event was the Draupner wave in the North Sea, by highest norm

value, highest wave velocity and highest rogue wave height Hmax. The second highest

was Ucluelet, with next highest magnitude, wave velocity and Hmax. The third and

fourth are Gorm and Black Sea rogue waves. We plot the respective NLS-force functions

h(x) for each rogue wave event to illustrate their relationship with one another in Figure

7.
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Figure 7. Force functions generated by the NLS operator for four different rogue

wave events. Green: Force function of the Draupner wave (Eastern North Sea); Magenta:

Force function of the Ucluelet wave (Pacific ocean); Red: Force function of the Black sea rogue

wave (North-East Black sea); Blue: Force function of the Gorm rogue wave (southern North

sea). x-axis: position (x), y-axis: force function h(x). Inserted picture upper right: Black Sea

and Gorm rogue wave force functions shown for clarity purposes.

Using the norms of the force functions, we can differentiate between the individual

rogue wave to a satisfactory degree (Black Sea rogue wave was overestimated over the

Gorm rogue wave). For future studies, our aim is to use several stationary functions from

rogue wave readings in Q to develop a warning method for shipping vessels to increase

their safety at sea. This work will be based on the hypothesis that a warning signal for

a rogue wave is detectable in the profile of stationary force functions given in h(x).
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4 Conclusions

In this study, we have prepared the theoretical foundation to analyse a set of rogue wave

readings from laser from oil-platforms and buoys in the ocean. This analysis is based on

developing regularized functions (Fourier series) of the piece-wise constant functions of

laser readings. We studied briefly the time-independent regularized functions by using

them as weak solutions to the homogeneous Nonlinear Schrödinger equation and thus

generated a force function. Each force function was quantified by the 2-norm, and the

norm was compared with Hmax and wave-velocity of the rogue wave event. The norms

are in good agreement with Hmax and the wave-velocity, except for an overestimation

of the Black Sea rogue wave compared to the Gorm rogue wave.
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7 APPENDIX

7.1 Relationship between Fourier coefficients and the arbitrary interval

value a.

1. Consider αk for the indicator function:

αj
k =

2

πk
sin

(
π

a
k
hj
2

)
cos

(
π

a
k
ξj + ξj−1

2

)
(7.1)

Since we have for the uniform grid that hj =
2a
n we get:

αj
k =

2

πk
sin

(
π

a
k

2a
n

2

)
cos

(
π

a
k
ξj + ξj−1

2

)
(7.2)

and since ξj + ξj−1 = a
C , such that with hj = h = 2a

n we get C =
hjn

2(ξj+ξj−1)
we obtain

for the indicator function:

αj
k =

2

πk
sin

(
π

n
k

)
cos

(
π

2C
k

)
. (7.3)

For the piece-wise constant function, consider again the αk coefficient for the indicator

function:

αj
k =

2

πk
sin

(
π

a
k
hj
2

)
cos

(
π

a
k
ξj + ξj−1

2

)
(7.4)

Now let ξj = −a + jh, j = 0, 1, · · · , n. Then, let hj = h = 2a
n , j = 1, 2, · · · , n and

ξj + ξj−1 = −2a+ (2j − 1)h, such that we get for the cosine term:

cos
π

a
k
(ξj + ξj−1)

2
= cos

(
− πk + (2j − 1)

πk

n

)
= (−1)k cos

(
(2j − 1)

πk

n

)
(7.5)

Insert for the cosine term in (7.4) and put wk = πk
n , such that we obtain:

αk =
2(−1)k

πk
sinwk

n∑
j=1

ηj cos
(
(2j − 1)wk

)
; (7.6)

Before we can show independence of αk for the whole piece-wise constant function using

this formula, we need however to take the same approach first for the βk coefficient, and
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after express the piece-wise constant function as a Fourier series.

2. Consider the βk coefficient for the indicator function.

βjk =
2

πk
sin

(
π

a
k
hj
2

)
sin

(
π

a
k
ξj + ξj−1

2

)
, (7.7)

Since we have for the uniform grid that hj =
2a
n we get:

βjk =
2

πk
sin

(
π

a
k

2a
n

2

)
sin

(
π

a
k
ξj + ξj−1

2

)
(7.8)

and since ξj + ξj−1 =
a
C , such that with hj =

2a
n we get C =

hjn
2(ξj+ξj−1)

we obtain for the

indicator function:

βjk =
2

πk
sin

(
π

n
k

)
sin

(
π

2C
k

)
. (7.9)

For the piece-wise constant function, consider the βk coefficient for the indicator function:

βjk =
2

πk
sin

(
π

a
k
hj
2

)
sin

(
π

a
k
ξj + ξj−1

2

)
(7.10)

Now let ξj = −a + jh, j = 0, 1, · · · , n. Then, let hj = h = 2a
n , j = 1, 2, · · · , n and

ξj + ξj−1 = −2a+ (2j − 1)h, such that we get for the sine term:

sin
π

a
k
(ξj + ξj−1)

2
= sin

(
− πk + (2j − 1)

πk

n

)
= (−1)k sin

(
(2j − 1)

πk

n

)
(7.11)

Insert for the cosine term in (7.10) and put wk = πk
n , such that we obtain:

βk =
2(−1)k

πk
sinwk

n∑
j=1

ηj sin
(
(2j − 1)wk

)
; (7.12)

7.2 Rogue wave data

Here we present the meteorological and oceanographic information of each rogue wave

event. The 4 considered events belong all to the class of rogue waves occurring in shallow

waters (¡200m).
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7.2.1 Draupner rogue wave

The Draupner rogue wave, occurred on 1 January 1995 at 15 UTC, at the Draupner oil

rig (58◦11’ 19.6” N, 2◦ 28’ 21.6” E) and had a wave height Hmax=25.6 m high. The

significant wave height (Hs) was 11m, and the wave speed was estimated to be 15m/s,

with North-Western winds blowing at 30m/s [41]. The wave occurred during a strong

low pressure pushing cold waters from the North Atlantic towards the southern North

Sea (Fig 7), generating the conditions for this extreme rogue wave event occurring at 70

meters depth. This combination of the direction of the low-pressure movement and the

transition from open Atlantic ocean to closed North sea was described by the concept of

‘dynamical swell’ [41] where the rogue wave is formed by strong nonlinear interactions

from the active part of the wind-sea spectrum given the topology of the continental land

and bottom morphology.

Figure 7. Draupner rogue wave event.

Left: Weather map displayed on the left with isobar scale and wind-speed indicators. White

dot: location of platform. Adapted from [41] with permissions, Copyright Wiley 2016. Right:

Laser-reading from the Draupner-platform. x -axis: time (sec), y-axis wave-height (m.). Adapted

from [2] with permissions. Copyright MDPI Publishing 2018.
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7.2.2 Gorm rogue wave

The Gorm rogue wave was recorded by the Gorm platform, in North Sea on 17 November

1984. The wind speed was 18m/s and the wave-velocity was 9m/s (by the Draupner ra-

tio). The wind data obtained from Norwegian Meteorological Institute (https://seklima.met.no).

The wave had maximal height Hmax = 11 m and the significant wave height was Hs =5m

[3]. The water depth at the Gorm field is 40 meters, and the rogue wave occurred in the

aftermath of a North Sea storm which had its wind-speed peak on the 16th of November,

1984.

Figure 9. The Gorm rogue wave. Figure of the laser reading from the rogue wave that hit

the Gorm platform outside of the Danish coast, in the North Sea. x -axis: time (sec.), y-axis:

wave height (m.). Reprinted with permissions [3]. Copyright 2008 by Annual Reviews.
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7.2.3 Black Sea rogue wave

The Black Sea rogue wave occurred in 1995 in the North-East sector of the Black Sea,

near the city of Gelendzhik. The wave was the most steep rogue wave ever recorded on

buoy readings and had a maximal height Hmax=10.32 m (this is 3.91X times as high

as the significant wave height Hs = 2.6 m). The wave had a velocity of 4.65m/s and

occurred without any stormy conditions and without any registered earth quakes in the

region [42].

Figure 10. The Black Sea wave. Buoy reading of the Black sea rogue wave [42]. x -axis: time

(sec.), y-axis: wave height (m.). Copyright 2004 by Divinsky, Levin, Lopatukhin, Pelinovsky,

Slyunyaev.
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7.2.4 Ucluelet rogue wave

The Ucluelet rogue wave was registered on the 17th of November 2020 by a coastal buoy

stationed in the bay of Ucluelet, British Columbia [43]. The wave had a Hmax = 17.6m

over a standard wave height of Hs = 6m. The velocity of the wave was registered to

and it occurred over a water depth of 45 meters, and occurred during calm weather

conditions. The rogue wave speed was estimated to be 12m/s [44].

Figure 11. The Ucluelet rogue wave. Buoy reading of the rogue wave that hit the Ucluelet

bay, British Columbia. x -axis: time (hrs.), y-axis wave-height (m.). Reprinted with permissions

[43]. Copyright 2022 Nature publishing.

7.3 Mathematica code
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University of Gaevle
Examensarbete 

del II

Sergio Manzetti

Rogue wave nr. 1:
Draupner rouge wave (1994)
 



In[ ]:= points = {{395.4416644777464`, 207.63931734339303`},

{391.15890276860114`, 240.47382378017346`},

{382.59337935031067`, 219.06001523444706`}, {378.3106176411653`,

209.0669045797748`}, {369.74509422287485`, 177.65998537937617`},

{361.1795708045843`, 250.4669344348457`}, {355.46922185905726`,

204.78414287062958`}, {346.9036984407667`, 236.19106207102823`},

{341.19334949523966`, 184.79792156128497`}, {332.6278260769492`,

220.48760247082885`}, {326.9174771314222`, 214.77725352530183`},

{322.6347154222768`, 260.4600450895181`}, {316.9243664767498`, 219.06001523444706`},

{314.06919200398636`, 241.90141101655524`},

{304.076081349314`, 119.12890868772422`}, {295.5105579310235`, 327.5566451994606`},

{278.3795110944425`, 156.24617683364988`}, {269.8139876761519`, 251.8945216712275`},

{264.1036387306249`, 196.218619452339`}, {258.39328978509786`, 286.1566153443896`},

{249.8277663668073`, 233.33588759826466`}, {241.26224294851679`,

173.37722367023093`}, {231.26913229384448`, 184.79792156128497`},

{224.13119611193568`, 286.1566153443896`}, {215.56567269364515`,

160.52893854279512`}, {199.86221309344583`, 303.28766218097076`},

{184.1587534932465`, 72.01852988712619`}, {172.73805560219247`, 587.3775222209401`},

{162.74494494752017`, 83.43922777818022`}, {149.89665982008435`,

260.4600450895181`}, {145.61389811093912`, 254.74969614399106`},

{138.47596192903032`, 317.56353454478824`}, {131.33802574712158`,

183.37033432490318`}, {124.20008956521278`, 193.36344497957543`},

{119.91732785606749`, 160.52893854279512`}, {112.77939167415872`,

214.77725352530183`}, {108.49662996501345`, 199.07379392510256`},

{105.64145549224995`, 250.4669344348457`}, {101.35869378310466`,

324.70147072669704`}, {98.50351931034115`, 224.77036417997408`},

{91.36558312843238`, 220.48760247082885`}, {81.37247247376007`, 96.28751290561604`},

{75.66212352823305`, 200.50138116148423`},

{72.80694905546954`, 351.82562821795045`}, {54.24831498250671`, 154.8185895972681`},

{41.4000298550709`, 240.47382378017346`}, {35.68968090954388`, 236.19106207102823`},

{32.83450643678037`, 280.4462663988626`}, {12.848285127435787`,

131.97719381515992`}, {7.1379361819087705`, 227.62553865273765`}};

Shift the set of coordinates to align lowest through with the x-axis.

In[ ]:= points2 = {#〚1〛, #〚2〛 - 72.01852988712619`} & /@ points;

Generate the piecewise constant function

In[ ]:= Clear[t];

f[t_] = Piecewise[

Partition[Sort[points2], 2, 1] /. {{a_?NumericQ, b_}, {c_, d_}}  {b, a ≤ t < c}];

Align the rogue-wave of  the piecewise constant function  to the y-axis.

2     Examensarbete-Draupner.nb



In[ ]:= f1[t_] = f[(172.73805560219247` (t + Pi) / Pi)];

Plot[f1[t], {t, -Pi, Pi}]

Out[ ]=

-3 -2 -1 1 2 3

100

200

300

400

500

Generate Fourier series of the time-series piece-wise constant function.

In[ ]:= FD[t_] = FourierSeries[f1[t], t, 20]

Out[ ]= 139.85 + (15.8404 + 4.76022 ) 
- t

+ (15.8404 - 4.76022 ) 
 t

+

(4.64917 - 3.3024 ) 
-2  t

+ (4.64917 + 3.3024 ) 
2  t

+ (7.42191 - 0.300123 ) 
-3  t

+

(7.42191 + 0.300123 ) 
3  t

+ (0.340877 - 2.54665 ) 
-4  t

+

(0.340877 + 2.54665 ) 
4  t

+ (7.72422 + 6.71332 ) 
-5  t

+ (7.72422 - 6.71332 ) 
5  t

+

(3.16511 - 9.14479 ) 
-6  t

+ (3.16511 + 9.14479 ) 
6  t

+ (3.31502 + 2.18874 ) 
-7  t

+

(3.31502 - 2.18874 ) 
7  t

+ (9.31827 + 6.94538 ) 
-8  t

+ (9.31827 - 6.94538 ) 
8  t

+

(5.87173 + 18.8341 ) 
-9  t

+ (5.87173 - 18.8341 ) 
9  t

+ (8.75949 + 14.7107 ) 
-10  t

+

(8.75949 - 14.7107 ) 
10  t

+ (19.2903 + 7.78329 ) 
-11  t

+ (19.2903 - 7.78329 ) 
11  t

-

(3.39063 - 18.5502 ) 
-12  t

- (3.39063 + 18.5502 ) 
12  t

+ (3.58427 + 18.7438 ) 
-13  t

+

(3.58427 - 18.7438 ) 
13  t

+ (2.66129 + 20.0781 ) 
-14  t

+ (2.66129 - 20.0781 ) 
14  t

-

(8.46335 - 9.96867 ) 
-15  t

- (8.46335 + 9.96867 ) 
15  t

- (8.50037 - 1.20377 ) 
-16  t

-

(8.50037 + 1.20377 ) 
16  t

- (1.36102 - 16.9315 ) 
-17  t

- (1.36102 + 16.9315 ) 
17  t

-

(5.78964 - 2.96094 ) 
-18  t

- (5.78964 + 2.96094 ) 
18  t

+ (2.14681 + 8.29635 ) 
-19  t

+

(2.14681 - 8.29635 ) 
19  t

- (3.91145 - 10.7712 ) 
-20  t

- (3.91145 + 10.7712 ) 
20  t

In[ ]:= Plot[{FD[t]}, {t, -3, 3}, PlotRange  Full]

Out[ ]=

-3 -2 -1 1 2 3

-100

100

200

300

400

500
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Conversion of time-series to position functions (wind-velocity: 15 meter/second).

In[ ]:= pointsq = ScalingTransform[{15, 1}][points2]

Out[ ]= {{5931.62, 135.621}, {5867.38, 168.455}, {5738.9, 147.041},

{5674.66, 137.048}, {5546.18, 105.641}, {5417.69, 178.448},

{5332.04, 132.766}, {5203.56, 164.173}, {5117.9, 112.779}, {4989.42, 148.469},

{4903.76, 142.759}, {4839.52, 188.442}, {4753.87, 147.041}, {4711.04, 169.883},

{4561.14, 47.1104}, {4432.66, 255.538}, {4175.69, 84.2276}, {4047.21, 179.876},

{3961.55, 124.2}, {3875.9, 214.138}, {3747.42, 161.317}, {3618.93, 101.359},

{3469.04, 112.779}, {3361.97, 214.138}, {3233.49, 88.5104}, {2997.93, 231.269},

{2762.38, 0.}, {2591.07, 515.359}, {2441.17, 11.4207}, {2248.45, 188.442},

{2184.21, 182.731}, {2077.14, 245.545}, {1970.07, 111.352}, {1863., 121.345},

{1798.76, 88.5104}, {1691.69, 142.759}, {1627.45, 127.055}, {1584.62, 178.448},

{1520.38, 252.683}, {1477.55, 152.752}, {1370.48, 148.469}, {1220.59, 24.269},

{1134.93, 128.483}, {1092.1, 279.807}, {813.725, 82.8001}, {621., 168.455},

{535.345, 164.173}, {492.518, 208.428}, {192.724, 59.9587}, {107.069, 155.607}}

Generate piece-wise constant function

In[ ]:= f[x_] = Piecewise[

Partition[Sort[pointsq], 2, 1] /. {{a_?NumericQ, b_}, {c_, d_}}  {b, a ≤ x < c}];

Align the rogue wave in the  piecewise constant function with the y-axis

In[ ]:= f1[x_] = f[(2591.070834032887` (x + Pi) / Pi)];

Plot[f1[x], {x, -Pi, Pi}]

Out[ ]=

-3 -2 -1 1 2 3

100

200

300

400

500
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In[ ]:= ud[x_] = FourierSeries[f1[x], x, 20]

Out[ ]= 139.85 + (15.8404 + 4.76022 ) 
- x

+ (15.8404 - 4.76022 ) 
 x

+

(4.64917 - 3.3024 ) 
-2  x

+ (4.64917 + 3.3024 ) 
2  x

+ (7.42191 - 0.300123 ) 
-3  x

+

(7.42191 + 0.300123 ) 
3  x

+ (0.340877 - 2.54665 ) 
-4  x

+

(0.340877 + 2.54665 ) 
4  x

+ (7.72422 + 6.71332 ) 
-5  x

+ (7.72422 - 6.71332 ) 
5  x

+

(3.16511 - 9.14479 ) 
-6  x

+ (3.16511 + 9.14479 ) 
6  x

+ (3.31502 + 2.18874 ) 
-7  x

+

(3.31502 - 2.18874 ) 
7  x

+ (9.31827 + 6.94538 ) 
-8  x

+ (9.31827 - 6.94538 ) 
8  x

+

(5.87173 + 18.8341 ) 
-9  x

+ (5.87173 - 18.8341 ) 
9  x

+ (8.75949 + 14.7107 ) 
-10  x

+

(8.75949 - 14.7107 ) 
10  x

+ (19.2903 + 7.78329 ) 
-11  x

+ (19.2903 - 7.78329 ) 
11  x

-

(3.39063 - 18.5502 ) 
-12  x

- (3.39063 + 18.5502 ) 
12  x

+ (3.58427 + 18.7438 ) 
-13  x

+

(3.58427 - 18.7438 ) 
13  x

+ (2.66129 + 20.0781 ) 
-14  x

+ (2.66129 - 20.0781 ) 
14  x

-

(8.46335 - 9.96867 ) 
-15  x

- (8.46335 + 9.96867 ) 
15  x

- (8.50037 - 1.20377 ) 
-16  x

-

(8.50037 + 1.20377 ) 
16  x

- (1.36102 - 16.9315 ) 
-17  x

- (1.36102 + 16.9315 ) 
17  x

-

(5.78964 - 2.96094 ) 
-18  x

- (5.78964 + 2.96094 ) 
18  x

+ (2.14681 + 8.29635 ) 
-19  x

+

(2.14681 - 8.29635 ) 
19  x

- (3.91145 - 10.7712 ) 
-20  x

- (3.91145 + 10.7712 ) 
20  x

In[ ]:= Plot[{ud[x]}, {x, -3, 3}, PlotRange  Full]

Out[ ]=

-3 -2 -1 1 2 3

-100

100

200

300

400

500

Declare the derivative for the nonlinear Schrodinger equation

In[ ]:= d2U[x_] = D[ud[x], {x, 2}];

In[ ]:= a = -3;

b = 3;

Generate the force function, its norm and plot by the  NON LINEAR SCHRODINGER EQUATION

In[ ]:= h[x_] = h[x_] = -1 / 2 * dU[x] + (Abs[ud[x]])^2 * ud[x]

NIntegrate[Abs[h[x]]^2, {x, a, b}]

Plot[h[x], {x, a, b}, PlotRange  Full]
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Out[ ]=

1

2
(-4.76022 + 15.8404 ) 

- x
- (4.76022 + 15.8404 ) 

 x
+

(6.60479 + 9.29833 ) 
-2  x

+ (6.60479 - 9.29833 ) 
2  x

+ (0.900369 + 22.2657 ) 
-3  x

+

(0.900369 - 22.2657 ) 
3  x

+ (10.1866 + 1.36351 ) 
-4  x

+ (10.1866 - 1.36351 ) 
4  x

-

(33.5666 - 38.6211 ) 
-5  x

- (33.5666 + 38.6211 ) 
5  x

+ (54.8687 + 18.9907 ) 
-6  x

+

(54.8687 - 18.9907 ) 
6  x

- (15.3212 - 23.2052 ) 
-7  x

- (15.3212 + 23.2052 ) 
7  x

-

(55.5631 - 74.5462 ) 
-8  x

- (55.5631 + 74.5462 ) 
8  x

- (169.507 - 52.8456 ) 
-9  x

-

(169.507 + 52.8456 ) 
9  x

- (147.107 - 87.5949 ) 
-10  x

- (147.107 + 87.5949 ) 
10  x

-

(85.6162 - 212.194 ) 
-11  x

- (85.6162 + 212.194 ) 
11  x

- (222.602 + 40.6875 ) 
-12  x

-

(222.602 - 40.6875 ) 
12  x

- (243.669 - 46.5955 ) 
-13  x

- (243.669 + 46.5955 ) 
13  x

-

(281.093 - 37.2581 ) 
-14  x

- (281.093 + 37.2581 ) 
14  x

- (149.53 + 126.95 ) 
-15  x

-

(149.53 - 126.95 ) 
15  x

- (19.2604 + 136.006 ) 
-16  x

- (19.2604 - 136.006 ) 
16  x

-

(287.835 + 23.1373 ) 
-17  x

- (287.835 - 23.1373 ) 
17  x

- (53.2969 + 104.214 ) 
-18  x

-

(53.2969 - 104.214 ) 
18  x

- (157.631 - 40.7895 ) 
-19  x

- (157.631 + 40.7895 ) 
19  x

-

(215.425 + 78.2289 ) 
-20  x

- (215.425 - 78.2289 ) 
20  x

 +

139.85 + (15.8404 + 4.76022 ) 
- x

+ (15.8404 - 4.76022 ) 
 x

+

(4.64917 - 3.3024 ) 
-2  x

+ (4.64917 + 3.3024 ) 
2  x

+ (7.42191 - 0.300123 ) 
-3  x

+

(7.42191 + 0.300123 ) 
3  x

+ (0.340877 - 2.54665 ) 
-4  x

+

(0.340877 + 2.54665 ) 
4  x

+ (7.72422 + 6.71332 ) 
-5  x

+ (7.72422 - 6.71332 ) 
5  x

+

(3.16511 - 9.14479 ) 
-6  x

+ (3.16511 + 9.14479 ) 
6  x

+ (3.31502 + 2.18874 ) 
-7  x

+

(3.31502 - 2.18874 ) 
7  x

+ (9.31827 + 6.94538 ) 
-8  x

+ (9.31827 - 6.94538 ) 
8  x

+

(5.87173 + 18.8341 ) 
-9  x

+ (5.87173 - 18.8341 ) 
9  x

+ (8.75949 + 14.7107 ) 
-10  x

+

(8.75949 - 14.7107 ) 
10  x

+ (19.2903 + 7.78329 ) 
-11  x

+ (19.2903 - 7.78329 ) 
11  x

-

(3.39063 - 18.5502 ) 
-12  x

- (3.39063 + 18.5502 ) 
12  x

+ (3.58427 + 18.7438 ) 
-13  x

+

(3.58427 - 18.7438 ) 
13  x

+ (2.66129 + 20.0781 ) 
-14  x

+ (2.66129 - 20.0781 ) 
14  x

-

(8.46335 - 9.96867 ) 
-15  x

- (8.46335 + 9.96867 ) 
15  x

- (8.50037 - 1.20377 ) 
-16  x

-

(8.50037 + 1.20377 ) 
16  x

- (1.36102 - 16.9315 ) 
-17  x

- (1.36102 + 16.9315 ) 
17  x

-

(5.78964 - 2.96094 ) 
-18  x

- (5.78964 + 2.96094 ) 
18  x

+ (2.14681 + 8.29635 ) 
-19  x

+

(2.14681 - 8.29635 ) 
19  x

- (3.91145 - 10.7712 ) 
-20  x

- (3.91145 + 10.7712 ) 
20  x



Abs139.85 + (15.8404 + 4.76022 ) 
- x

+ (15.8404 - 4.76022 ) 
 x

+

(4.64917 - 3.3024 ) 
-2  x

+ (4.64917 + 3.3024 ) 
2  x

+ (7.42191 - 0.300123 ) 
-3  x

+

(7.42191 + 0.300123 ) 
3  x

+ (0.340877 - 2.54665 ) 
-4  x

+

(0.340877 + 2.54665 ) 
4  x

+ (7.72422 + 6.71332 ) 
-5  x

+ (7.72422 - 6.71332 ) 
5  x

+

(3.16511 - 9.14479 ) 
-6  x

+ (3.16511 + 9.14479 ) 
6  x

+ (3.31502 + 2.18874 ) 
-7  x

+

(3.31502 - 2.18874 ) 
7  x

+ (9.31827 + 6.94538 ) 
-8  x

+ (9.31827 - 6.94538 ) 
8  x

+

(5.87173 + 18.8341 ) 
-9  x

+ (5.87173 - 18.8341 ) 
9  x

+ (8.75949 + 14.7107 ) 
-10  x

+

(8.75949 - 14.7107 ) 
10  x

+ (19.2903 + 7.78329 ) 
-11  x

+

(19.2903 - 7.78329 ) 
11  x

- (3.39063 - 18.5502 ) 
-12  x

-

(3.39063 + 18.5502 ) 
12  x

+ (3.58427 + 18.7438 ) 
-13  x

+

(3.58427 - 18.7438 ) 
13  x

+ (2.66129 + 20.0781 ) 
-14  x

+ (2.66129 - 20.0781 )


14  x

- (8.46335 - 9.96867 ) 
-15  x

- (8.46335 + 9.96867 ) 
15  x

-

(8.50037 - 1.20377 ) 
-16  x

- (8.50037 + 1.20377 ) 
16  x

- (1.36102 - 16.9315 )


-17  x

- (1.36102 + 16.9315 ) 
17  x

- (5.78964 - 2.96094 ) 
-18  x

-

(5.78964 + 2.96094 ) 
18  x

+ (2.14681 + 8.29635 ) 
-19  x

+ (2.14681 - 8.29635 )


19  x

- (3.91145 - 10.7712 ) 
-20  x

- (3.91145 + 10.7712 ) 
20  x


2

Out[ ]= 2.85644 × 1015
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Out[ ]=

-3 -2 -1 1 2 3

5.0×107

1.0×108

1.5×108
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