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Abstract  

The detection of cracks in sand moulds has long been a challenge for both safety and 

maintenance purposes. Traditional image processing techniques have been employed 

to identify and quantify these defects but have often proven to be inefficient, labour-

intensive, and time-consuming. To address this issue, we sought to develop a more 

effective approach using deep learning techniques, specifically semantic segmentation. 

We initially examined three different architectures—U-Net, SegNet, and 

DeepCrack—to evaluate their performance in crack detection. Through testing and 

comparison, U-Net emerged as the most suitable choice for our project. To further 

enhance the model's accuracy, we combined U-Net with VGG-19, VGG-16, and 

ResNet architectures. However, these combinations did not yield the expected 

improvements in performance. Consequently, we introduced a new layer to the U-

Net architecture, which significantly increased its accuracy and F1 score, making it 

more efficient for crack detection. Throughout the project, we conducted extensive 

comparisons between models to better understand the effects of various techniques 

such as batch normalization and dropout. To evaluate and compare the performance 

of the different models, we employed the loss function, accuracy, Adam optimizer, 

and F1 score as evaluation metrics. Some tables and figures explain the differences 

between models by using image comparison and evaluation metrics comparison; to 

show which model is better than the other. The conducted evaluations revealed that 

the U-Net architecture, when enhanced with an extra layer, proved superior to other 

models, demonstrating the highest scores and accuracy. This architecture has shown 

itself to be the most effective model for crack detection, thereby laying the foundation 

for a more cost-efficient and trustworthy approach to detecting and monitoring 

structural deficiencies.  

Keywords: U-Net Architecture, Semantic Segmentation, Convolutional 

Neural Networks, Crack Detection.  
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Sammanfattning  

Att upptäcka sprickor i sandformar har länge varit en utmaning för både 

säkerhets- och underhållsändamål. Traditionella bildbehandlingstekniker har 

använts för att identifiera och kvantifiera dessa defekter men har ofta visat sig 

vara ineffektiva, arbetskrävande och tidskrävande. För att ta ut detta problem 

försökte vi utveckla ett mer effektivt tillvägagångssätt med hjälp av tekniker för 

djupinlärning, särskilt semantisk segmentering. Vi undersökte inledningsvis tre 

olika arkitekturer – U-Net, SegNet och DeepCrack – för att utvärdera deras 

prestanda vid sprickdetektering. Genom testning och jämförelse framstod U-

Net som det mest lämpliga valet för vårt projekt. För att ytterligare förbättra 

modellens noggrannhet kombinerade vi U-Net med arkitekturerna VGG-19, 

VGG-16 och ResNet. Dessa kombinationer gav dock inte de förväntade 

förbättringarna i prestanda. Följaktligen introducerade vi ett nytt lager till U-

Net-arkitekturen, vilket avsevärt ökade dess noggrannhet och F1-poäng, vilket 

gjorde den mer effektiv för sprickdetektering. Under hela projektet 

genomförde vi omfattande jämförelser mellan modeller för att bättre förstå 

effekterna av olika tekniker såsom batchnormalisering och drop out. För att 

utvärdera och jämföra de olika modellernas prestanda använde vi 

förlustfunktionen, noggrannheten, Adam-optimeraren och F1-Score som 

utvärderingsmått. Det finns tabeller och figurer som förklarar skillnaderna 

mellan modeller genom att använda bildjämförelse och jämförelse av 

utvärderingsmått; för att visa vilken modell som är bättre än den andra. De 

genomförda utvärderingarna avslöjade att U-Net-arkitekturen, när den 

förstärktes med ett extra lager, visade sig vara överlägsen andra modeller och 

visade de högsta poängen och noggrannheten. Denna speciella arkitektur har 

visat sig vara den mest effektiva modellen för sprickdetektering, och har 

därigenom lagt grunden för en mer kostnadseffektiv och pålitlig metod för att 

upptäcka och övervaka strukturella brister.  

Nyckelord: U-Net Architecture, Semantics Segmentizing, 

Convolutional Neural Networks, Crack Detection.  
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1 Introduction  

1.1 Background  

More than 60 years ago, in 1959, a computer began to be trained to play chess better than 

humans. It was the first step in machine learning since the technology has been developed and 

used until now in several different fields, such as image classification and crack detection. It was 

the beginning of the use of machine learning in engineering and several tasks in companies and 

industries. Today, it is possible to create systems that perform better than average people in 

several areas. Such systems may become economically feasible to use for real problems [1].  

However, in crack detection terms and before machine learning was involved in the process to 

detect cracks in buildings, pavements and sand moulds, numerous techniques have been devised 

leveraging image processing techniques. Some of those techniques were, edge detection, Hough 

transform, image segmentation, identification and detection of feature points, and digital image 

correlation (DIC) method for feature identification and detection [2].  

Later, a type of machine learning called Convolutional Neural Networks (CNN) was developed 

in 1989 to help computers identify different objects in images. Through object classification, 

computers are trained to recognize different objects in images. That gives computers the ability 

to find and isolate specific objects from the background of images. Two of those techniques have 

been developed and they are segmentation and object detection [3].  

1.2 Problem statement  

In the foundry industry, sand moulds are widely used to manufacture castings due to their low 

cost and easy availability. However, cracks have the potential to appear during the manufacturing 

process, and if left undetected, can lead to a product's failure, thus causing significant economic 

losses and hazards. Therefore, efficient, and accurate crack detection in sand moulds is crucial to 

ensure the quality and reliability of castings and saves money, and time. In the past, manual 

methods were used to detect and locate cracks in sand moulds, which required a lot of work and 

could lead to misjudgements and problems.   

With the rapid development of technology, opportunities to improve and streamline this process 

have arisen. It has become increasingly interesting to explore automated methods to detect 

cracks, reduce the human workload and increase the accuracy of inspections. This development 

has taken place in several stages over time. Traditionally, crack detection in sand moulds has 

been performed manually by trained personnel, which is time-consuming, labour-intensive, and 

prone to errors. Moreover, obtaining consistent and accurate results is difficult, especially when 

dealing with complex patterns and shapes. Therefore, there is a growing demand for automated 

crack detection systems that can provide fast, reliable, and accurate results.  
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1.3 Related work  

Hashimoto and Yamaguchi [4] developed a percolation-based image segmentation algorithm to 

segment images containing cracks. The algorithm uses an initial and maximum window size to 

define a percolation threshold, which is then updated to include pixels with lower brightness 

values in the percolated region until it meets a certain criterion. The study showed that this 

algorithm performs better than other methods such as thresholding and edge detection. 

However, there are still limitations in the algorithm that can be improved.  

First, it is so sensitive to the threshold selection, that the performance of the percolation method 

is highly dependent on the choice of threshold parameter, which affects the quality of the 

extracted cracks. If the threshold is set too high, some cracks may be missed, while if it is set too 

low, there may be false positives, leading to the detection of non-crack features as cracks [4].  

Second, it has limited effectiveness for complex crack patterns. The percolation method may not 

be effective in detecting cracks with complex patterns or those that are not continuous, such as 

those caused by impact or fatigue. In these cases, other methods such as machine learning or 

advanced image processing techniques, may be needed [4].  

Image processing-based methods involve texture analysis, edge detection, and morphological 

image operators. Abdul-Qader[5] showed a comparative analysis of concrete bridge images, a set 

of 50 Gray-scale images with a resolution of 640x480 pixels was used. The images were obtained 

from bridge deck surfaces without background interference, with half being of intact components 

and the other half of deteriorating concrete with cracks. The images were processed using 

different algorithms through a custom MATLAB code developed for image reading, 

transformation, and crack isolation. The four algorithms that were compared in his study were: 

wavelet transform, Fourier transform, Sobel filter, and Canny filter, to analyse the images. Based 

on Abdul-Qader's findings, the wavelet transform was identified as a more dependable approach 

compared to the other techniques. 

However, these methods do not consider the essential characteristics of cracks, such as their 

connectivity. While Fast Haar Transform (FHT) which was the best method for Abdul-Qader 

can provide a fast and efficient way to extract features from images, it may not be as effective in 

capturing detailed information about cracks, particularly if the cracks are small or have some 

complex patterns and shapes. Additionally, the accuracy of FHT can also be affected by noise in 

the image, leading to false detections or missed cracks in some cases [5].  

Jahangir & Ashfahani [6] presented a wavelet-based damage identification approach for beam-like 

structures. To verify the efficiency and practicability of the proposed method, three damage 

scenarios whit cracks of varying depths have been studied. The mode shapes and modal strains of 

the beam were analysed through wavelet transform and the results were compared. As occurs 

with traditional modal-based methods, the new approach needs a baseline as a reference which 

is wavelet coefficients of healthy structure. The quantification of damage was based on the 

traditional root mean square deviation (RMSD) and correlation coefficient deviation metric 

(CCDM) indices. The CCDM results obtained with the proposed method are better than the 
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ones obtained with RMSD. The wavelet analysis algorithm can be broken down into the 

following steps: The first step consists of obtaining mode shapes and modal strains of the 

undamaged and damaged beam. In the second step, the wavelet transforms of acquired mode 

shapes and modal strains are conducted. The third step is about Calculating RDMS and CCDM 

metrics of wavelet coefficients and damage localization based on these metrics is performed, 

while the fourth final step is to find out new indices or measurements that will lead finally to 

detecting the damage or the crack.  

However, there are some shortcomings in this technique. Firstly, the method can be susceptible 

to noise in the input signal, which may lead to false positives by amplifying minor variations in 

the data that may be due to noise rather than actual cracks. This can make distinguishing between 

real cracks and noise difficult, especially in images or videos with high noise levels. Secondly, 

wavelet analysis requires careful tuning of its parameters, such as the choice of a wavelet function, 

the number of decomposition levels, and the thresholding method used to detect cracks. Finding 

the right set of parameters can be challenging and time-consuming, requiring expert knowledge 

and experience. Additionally, the optimal parameter values may vary depending on the specific 

application or type of image being analysed, making it difficult to generalize the method to 

different scenarios [6].  

Ronny, Hung & Sheng [7]  presented a methodology for crack detection in images captured by 

mobile robots. The approach involves identifying edge points using the Laplacian of Gaussian 

(LoG) algorithm, which serves as a 2D measure of the second spatial derivative of the image. 

However, the sensitivity of the Laplacian filter to noise is addressed through a pre-processing 

step of convolving the image with a Gaussian smoothing filter. By exploiting the associative 

property of convolution, a hybrid filter is created that can detect cracks in images with high 

efficacy. The problem in that project regarding the researchers was the accuracy of detecting 

cracks, and the need to focus on enhancing the crack detection algorithm under different 

environmental lighting conditions. It was a must for their team to boost the algorithm's resilience 

under varying conditions. Additionally, the authors intended to leverage the effectiveness of 

Non-Destructive Evaluation (NDE) sensors, such as Impact Echo and Ultrasonic Surface Waves, 

to gain insight into detecting vertical cracks. 

Sun, Liu, & Fang [8] used the Hough transform method and combined different image processing 

techniques to reach better results with based-image processing methods to detect cracks. For 

image filtering and noise reduction, their team used the neighbourhood average method, the 

Gaussian filter method, and the median filter method. And in the crack extraction section, they 

have combined three algorithms: The Soble operator edge detection algorithm, the Hough 

transform method, seed filling algorithm. While in the last step of the process which is image 

skeleton extraction, they used an improved Zhang thinning algorithm and Glitch removal 

algorithm. The study proved that the accuracy of detecting cracks was improved by using the 

Hough method and combining many traditional image processing techniques. 

Segmentation is used to find and isolate specific parts of an image. Object detection is used to 

find and describe objects in an image, such as finding cracks in a sand mould or concrete. These 
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technologies help computers process images and videos in real-time and automatically identify 

different objects in images and videos. This has been very helpful in many different areas. 

AlexNet was the first model in CNN to use new techniques to improve object classification, by 

using deep learning techniques, AlexNet was trained with large data sets to recognize patterns 

and structures in images and detect cracks. Deep learning has also been applied in image 

recognition where artificial neural networks (ANNs) have been used to identify objects and 

patterns in images and improve classification [3].  

After the development of the AlexNet model, there have been several other models within CNN. 

Another study describes the most famous and important models in the field where each model 

has its unique characteristics and uses. The development in CNN does not stop at the models 

themselves but also includes new techniques to improve the performance such as transfer 

learning; this can be used to transfer knowledge from one model to another. In this way, 

previously trained models can be reused and adapted to new tasks, which can save time and 

resources in the development process. Choosing the right model for a specific task is an important 

part of developing a CNN solution and should be done carefully considering the task's 

requirements and the amount of data available [9].  

The development within CNN continues to produce new and effective methods. It includes not 

only combining CNN's models such as transfer learning and using two models together, but also 

other techniques to improve performance and results in the task. An exciting application of the 

technology is in the measurement of crack length in materials after detection, where machine 

learning with CNN technology and image processing technology together can provide better 

results for cracks in images and measure their length and make decisions about how dangerous 

they are to use in the industrial process [10].  

1.4 Research objectives and questions  

There are two questions to be answered in this thesis:  

1. How to detect sand mould cracks efficiently by using deep learning techniques and 

architectures?  

2. Which is the most accurate semantic segmentation architecture in detecting cracks of 

sand moulds with a higher F1 score?  

The primary objectives of this thesis project are twofold: first to develop a robust machine 

learning model capable of accurately detecting and localizing cracks in sand moulds, cement 

structures, and pavements, thereby minimizing costs associated with producing new components 

or delivering faulty products to customers; and second to seamlessly integrate the trained model 

into an industrial system, enabling real-time monitoring and providing timely alerts to the 

production line, ensuring the swift identification and remediation of defects, ultimately 

enhancing overall production efficiency and product quality.  
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1.5 Research contributions  

In the realm of Semantic Segmentation architectures for crack detection, the authors present two 

significant advancements. Firstly, we proposed a refined U-Net architecture, an enhancement 

designed to optimize the model's performance. Secondly, the authors curated a novel, 

meticulously designed dataset, specifically tailored to improve model accuracy and elevate the 

F1 score in crack detection tasks. These contributions represent substantial strides in the ongoing 

quest for superior crack detection methodologies.  

1.5.1 Extra-Layer New Improved U-Net  

The process involves adding an extra layer to the existing U-Net Architecture, alongside the 

layers with 64, 128, 256, and 512 convolutional filters. This additional layer consists of 32 

convolutional filters. Subsequently, the output of this newly introduced layer is concatenated 

with another layer in the decoder part. However, it is crucial to exercise caution when 

introducing new layers, as their effectiveness is not guaranteed. It is necessary to carefully 

consider the trade-offs and potential risks associated with increasing the model's complexity, 

such as elevated computational costs and the potential for overfitting. 

To avoid any overfitting to come after adding the extra layer, the authors made a special dataset 

and combined it carefully to remove irrelevant or redundant features. Making the model train 

without overfitting requires also using data augmentation. For that purpose, the produced 

combined dataset itself is having augmented forms of part of the images within it. The early 

stopping technique was also used to reach the most accurate and highest F1 score model.  
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Adding an extra layer to the U-Net architecture can provide several advantages, as follows:  

Improved feature extraction: An extra layer allows the model to learn and extract more 

complex features from the input images. This can lead to a more detailed representation of the 

image and a better understanding of the underlying patterns, which is crucial for accurate 

semantic segmentation.  

Enhanced performance metrics: By capturing more intricate features and details, an extra 

layer can contribute to improvements in performance metrics, such as accuracy, and F1 score. 

This can result in more precise segmentation and better overall outcomes for various 

applications.  

Increased model ability: While adding an extra layer can provide performance benefits, it 

also increases the model's ability. This may allow the model to better handle complex real-world 

scenarios and adapt to a wider range of input data variations. However, it is essential to balance 

the increased complexity with computational costs and potential overfitting risks.  

Hierarchical Feature Learning: In deep learning architectures like U-Net, adding extra 

layers can enhance the hierarchical feature learning capability of the model. This allows the model 

  

  

  
Figure1  U-NET :  extra   layers  with 32 filters were added for more  features 

extraction 
  

Extra layer  in encode and de coder  conv   (32)   

      U - Net   Extra   A architecture   
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to learn features at different scales and levels of abstraction, which can be beneficial for capturing 

both local and global patterns in the input images.  

Flexibility and Customization: Integrating an extra layer in the U-Net architecture allows 

for flexibility in adapting the model to specific problem domains. Researchers and practitioners 

can experiment with various layer configurations to find the optimal structure for a given task or 

dataset, potentially resulting in better performance tailored to their unique requirements.  

1.5.2 New designed dataset  

In this study, our second contribution lies in the creation and optimization of two distinct 

datasets, derived from the original crack_segmentation_dataset available on the Kaggle database. 

The original dataset, comprising 11,298 images with corresponding masks, was primarily 

modified in two significant ways. The first modification, referred to as the 'simplified version 

dataset', involved reducing the total image count to 7,226. This was achieved by eliminating four 

groups of images that were primarily characterized by deep, large cracks, along with their 

associated labels. In its place, we introduced a new selection of cement crack images, also sourced 

from Kaggle. The introduction of these new images was aimed at improving the detection of 

multi-thin cracks in images. The results from subsequent testing confirmed the effectiveness of 

this modification, as the simplified version dataset demonstrated superior performance in 

detecting multi-thin cracks, compared to the original dataset. However this was not working for 

all kind of cracks.  

To address the shortcomings of the simplified version dataset, we developed a second dataset. 

This dataset was formulated based on the original crack_segmentation_dataset but with the 

addition of two more groups: a cement cracks group and the concrete crack dataset -O. The final 

count of images in this dataset amounted to 12,544. The primary aim of this dataset was to 

enhance the detection of the cracks. Testing results indicated that this dataset was indeed more 

proficient at detecting cracks in video captures.  

In conclusion, our team has successfully created two novel datasets from the original 

crack_segmentation_dataset. The first dataset excels in the fast training and evaluating models 

in a fast way with GPU, while the second dataset specializes in detecting cracks in the most 

accurate way with the chosen model. These contributions highlight the value of dataset 

diversification and optimization, which can significantly enhance the accuracy and applicability 

of crack detection methods in varying contexts. (See Table 1, Table 2, and Table 3).  
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Type  Number of images  

CFD  137  

Crack Tree  236  

Eugen Muller  63  

Deep Crack  533  

Crack-500  2519  

Forest  136  

No Crack  1645  

Rissible for Florian  4131  

Sylvie Chambon  187  

Volker  1171  

Gaps  540  

Total  11298  

Table 1:Kaggle (Original Dataset) "crack_segmentation_dataset"  

  

  

  

  

  

Table 2: Simplified version dataset  (Reader can notice that four groups were removed, and one new group have been 

added) 

  

 

 

 

 

 

Type  Number of Images  

CFD  117  

Crack tree  206  

Eugen Muller  55  

Forest  118  

No Crack  1431  

Possible For Florian  3842  

Volker  1011  

New added (Cement cracks)  446  

Total  7226  
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Table 3: Extra segmentation version dataset ( the reader can notice 

that two new groups of images were added to the original dataset)  

Type  Number of 

images  

CFD  137  

Crack Tree  236  

Eugen Muller  63  

Deep Crack  533  

Crack-500  2519  

Forest  136  

No Crack  1645  

Rissible for Florian  4131  

Sylvie Chambon  187  

Volker  1171  

Gaps  540  

Pavements Cracks  446  

Concrete Crack dataset-O  800  

Total  12544  
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2 Theoretical background. 

In the realm of machine learning, Convolutional Neural Networks (CNNs) serve as a 

foundational pillar, particularly in image-based tasks. CNNs underpin the theory of semantic 

segmentation, a technique aiming to partition an image into semantically meaningful regions. 

Model performance is evaluated using specific metrics, ensuring the model's reliability and 

accuracy. Among various optimization algorithms, ADAM has emerged as a versatile and efficient 

choice, enhancing the learning process. The interplay of these components forms the basis for 

our project, vital for the advancement of accurate and robust image analysis. A comprehensive 

exploration of these theories and principles is forthcoming in the subsequent sections.  

2.1 Convolutional Neural Networks (CNN)   

CNN (Convolutional Neural Network) is a type of neural network (NN) used in machine 

learning (ML). This technique has improved the way data and images are handled and analysed 

in many fields, for example using such techniques and their trained models to analyse data using 

sensors, live video and images in other locations and make quick decisions like the human brain 

does. CNN helps to recognize patterns in images and is used in changing several fields such as 

medicine, diseases, and security. These techniques can detect patterns, improving people's 

quality of life, and providing better financial results for companies and industries [11].  

  

2.1.1 How CNN works?  

In the realm of scientific understanding, when working with a Convolutional Neural Network 

(CNN), the input is the image itself rather than each individual pixel. A CNN considers the image 

as a unified entity and processes it in the form of a matrix. This matrix comprises multiple 

channels, with each channel representing a specific colour component (e.g., red, green, blue) or 

other image properties. During the CNN's operation, the image matrix traverses through 

different layers, including convolutional, pooling, and fully connected layers. These layers 

operate on the image, executing operations involving filters, feature detection, and non-linear 

transformations. Their purpose is to extract and assimilate significant features and patterns from 

the image as a coherent entity [12].  

  

2.1.2 Convolutional layers  

Convolutional layers are the first layer in a CNN's model It consists of several convolutional 

filters (kernels) that are used to extract important features from the images. By applying multiple 

filters to an image, the model can detect different features such as edges, shapes, and patterns. 

Starting from the upper left corner it is a 3x3 matrix and it can be 5x5 or 7x7. As the filters move 

across the image, it multiplies their values by the pixels of the image, and then add all the values 
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together to give a single output for each step until all the pixels of the image are done, then put 

them into a feature map that has multiple numbers of matrix your filtering [12].  

When convolution operations happen in CNN's model, there are two techniques (padding and 

stride) that can be used to fill the edges, firstly there is zero padding and second is reflective 

padding, with zero padding the edges of the image are filled with zeros and with reflective 

padding copies the pixels at the edges to create a mirror image. The purpose of padding is to 

maintain the size of the image when using convolution operations and Stride to determine how 

much the window moves the filters, across the image pixels at each step [12].  

2.1.3 Activation layer  

2.1.3.1 ReLU  

ReLU, short for Rectified Linear Unit, is an activation function commonly used in neural 

networks. It is a non-linear function that introduces non-linearity into the network, which allows 

the model to learn more complex relationships between the inputs and outputs. The ReLU 

function is defined as follows:  

f(x) = max (0, x)  

In other words, if the input x is positive, the function returns the input value x itself; if the input 

x is negative or zero, the function returns 0. The simplicity of the ReLU function makes it 

computationally efficient and easy to implement. It has been found to alleviate the vanishing 

gradient problem, which occurs when training deep neural networks, as it does not saturate for 

positive input values [13].  

2.1.3.2 Sigmoid  

The sigmoid function, also known as the logistic function, is an S-shaped curve that maps any 

real-valued input to a value between 0 and 1. It is commonly used as an activation function in 

neural networks, especially for binary classification tasks or in the final layer of the network, 

where the goal is to output probabilities.  

The sigmoid function is defined as follows:  

f(x) = 1 / (1 + exp(-x))  

Where x is the input value and exp(-x) is the exponential function with base “e “raised to the 

power of -x.  

The sigmoid function has some attractive properties, such as being smooth and differentiable, 

with easily computable derivatives. However, it also has some drawbacks, like being susceptible 

to the vanishing gradient problem when used in deep networks, as the gradients become very 

small for large input values. In many modern deep learning architectures, other activation 

functions like ReLU (Rectified Linear Unit) have become more popular due to their better 

performance in certain scenarios [14].  
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2.1.4 Pooling layers   

After the convolutional layers in CNN, the next layer in the model follows the pooling layer, 

that type of layer reduces the dimensions of the matrices in the feature maps to improve the 

performance of the model, there are several types of pooling, but two most common methods 

are average pooling and max pooling. With average pooling, the average value of the parts in the 

feature map is calculated, while max pooling selects the largest value from a part of the feature 

map. The pooling layer's main task is to reduce the demands on the computer's performance 

[13].  

2.1.5 Fully connected layers  

The Fully Connected layer is the last in the CNN's model and is used to convert the matrices 

created from previous layers into a one-dimensional vector. The purpose of this layer is to use a 

dimension vector to be able to classify input data into different categories. After the Fully 

Connected Layer usually comes a Softmax layer (or a Binary layer depending on the project) 

which allows the model to produce a probability over the different categories. This allows the 

CNN to produce a mode for a given input that describes which category the input belongs to 

with the highest probability. Softmax can be used to produce a probability distribution over 

multiple classes, Binary can be used to indicate which of the two classes the input belongs to with 

the highest probability. So, the choice between Softmax or Binary output depends on the 

project's specific requirements and number of classes [15].  

2.2 Semantic segmentation  

Semantic segmentation is a powerful computer vision technique used in many applications, 

including crack detection in various fields such as civil engineering and infrastructure 

maintenance. One type of crack detection that can be achieved using semantic segmentation is 

the identification of sand mould cracks in cast components. Sand mould cracks are a common 

defect in castings that can lead to component failure and are caused by improper handling, casting 

defects, and thermal stresses. Semantic segmentation using deep learning models such as U-Net, 

SegNet, and DeepCrack can help detect these cracks early on and enable timely repairs to be 

carried out.  

  

  

  

U-Net is a deep learning model commonly used for semantic segmentation. It is a convolutional 

neural network that consists of a contracting path and an expanding path, which enables it to 

produce accurate segmentation results even with limited training data. SegNet, on the other 

hand, is a deep encoder-decoder architecture designed for image segmentation. It uses an 

encoder to extract features from the input image and a decoder to produce the output 

segmentation map [16].  
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DeepCrack is another deep learning model specifically designed for crack detection. It uses a U-

Net architecture with a modified loss function to improve the accuracy of crack segmentation in 

images. DeepCrack has shown promising results in detecting cracks in various types of 

structures, including concrete and asphalt pavements [17].  

By utilizing semantic segmentation techniques such as U-Net, SegNet, and DeepCrack, we can 

accurately identify and label regions of an image that correspond to sand moulds cracks or other 

types of structural damage. This early detection enables timely repairs to be carried out, which 

ultimately improves the safety and longevity of structures. The use of deep learning models in 

semantic segmentation has revolutionized the field of crack detection and is continuing to 

advance with new developments and applications.   

2.3 Models’ evaluation metrics  

2.3.1 Accuracy  

Accuracy is a commonly used performance metric in machine learning that measures the 

proportion of correctly classified data points out of all data points. In the context of semantic 

segmentation for crack detection, accuracy can be used to evaluate the ability of a model to 

correctly classify pixels in an image as either cracked or not cracked [18]. The equation for 

accuracy is:  

Accuracy = (TP + TN) / (TP + TN + FP + FN). Where:  

• TP (True Positive) = number of pixels correctly classified as cracked  

• TN (True Negative) = number of pixels correctly classified as not cracked  

• FP (False Positive) = number of pixels incorrectly classified as cracked  

• FN (False Negative) = number of pixels incorrectly classified as not cracked  
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The algorithm for computing accuracy in semantic segmentation for crack detection 

is as follows:  

1. Input: Predicted mask, Ground truth mask  

2. Calculate the number of True Positives (TP) by counting the number of pixels 

in the predicted mask that are classified as cracked and are also classified as 

cracked in the ground truth mask.  

3. Calculate the number of True Negatives (TN) by counting the number of 

pixels in the predicted mask that are classified as not cracked and are also 

classified as not cracked in the ground truth mask.  

4. Calculate the number of False Positives (FP) by counting the number of pixels 

in the predicted mask that are classified as cracked but are not cracked in the 

ground truth mask.  

5. Calculate the number of False Negatives (FN) by counting the number of 

pixels in the predicted mask that are classified as not cracked but are cracked 

in the ground truth mask.  

6. Compute the accuracy using the above equation.  

  

  

Generally, Accuracy measures the proportion of correctly classified pixels in an image. The 

accuracy metric can be used to evaluate the performance of machine learning models and to 

identify areas where the model can be improved [18].  

2.3.2 Loss Function  

the loss function is a key component of the training process for machine learning models and is 

used to measure the difference between the predicted output and the actual output. In the 

context of semantic segmentation for crack detection, the loss function is used to measure the 

difference between the predicted mask and the ground truth mask. The most used loss function 

for semantic segmentation is the cross-entropy loss, which measures the difference between the 

predicted probability distribution and the actual probability distribution [18].  

The cross-entropy loss function is defined as follows:  

Loss = - ∑ (y * log(ŷ ) + (1 - y) * log(1 - ŷ )) 

Where:  

y is the ground truth label for a given pixel, with a value of either 0 or 1 ŷ  

is the predicted probability for the pixel, with a value between 0 and 1  

The algorithm for computing the cross-entropy loss in semantic segmentation for 

crack detection is as follows:  
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Input: Predicted mask, Ground truth mask  

Flatten the predicted mask and the ground truth mask into vectors of pixel values.  

Calculate the cross-entropy loss for each pixel using the above equation.  

Compute the mean cross-entropy loss across all pixels.  

In addition to the cross-entropy loss, other loss functions can be used for semantic 

segmentation, such as the Dice loss and the Jackcard loss.  

These loss functions are based on the similarity between the predicted mask and the ground 

truth mask and are commonly used in medical image segmentation.  

  

The loss Function is used to measure the difference between the predicted output and the actual 

output. The cross-entropy loss function is commonly used in semantic segmentation for crack 

detection and measures the difference between the predicted probability distribution and the 

actual probability distribution. The choice of loss function depends on the specific problem being 

addressed and the goals of the analysis [18].  

2.3.3 Precision   

precision is a performance metric used to evaluate the ability of a machine learning model to 

correctly identify positive instances. In the context of semantic segmentation for crack detection, 

precision can be used to measure the ability of a model to correctly classify cracked pixels [19].   

The equation for precision is: Precision = TP / (TP + FP)   

Where: TP (True Positive) = number of pixels correctly classified as cracked.   

FP (False Positive) = number of pixels incorrectly classified as cracked.  

The algorithm for computing precision in semantic segmentation for crack detection is as 

follows:  

1. Input: Predicted mask, Ground truth mask   

2. Calculate the number of True Positives (TP) by counting the number of pixels in the 

predicted mask that are classified as cracked and are also classified as cracked in the ground 

truth mask.   

3. Calculate the number of False Positives (FP) by counting the number of pixels in the 

predicted mask that are classified as cracked but are not cracked in the ground truth mask.   

4. Compute the precision using the above equation.  

  

In addition to precision, other performance metrics are commonly used in semantic 

segmentation, such as accuracy and F1 score. These metrics are used to provide a more 

comprehensive evaluation of the model's performance. In short, precision measures the ability 

of the model to correctly classify cracked pixels. The precision metric can be used to evaluate 

the performance of machine learning models and to identify areas where the model can be 

improved [19].  
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2.3.4 Recall  

The recall is a performance metric used to evaluate the ability of a machine learning model to 

correctly identify all positive instances. In the context of semantic segmentation for crack 

detection, recall can be used to measure the ability of a model to correctly identify all cracked 

pixels [19].  

The equation for the recall is: 

Recall = TP / (TP + FN) 

Where:  

TP (True Positive) = number of pixels correctly classified as cracked.  

FN (False Negative) = number of pixels incorrectly classified as not cracked.  

The algorithm for computing recall in semantic segmentation for crack detection is as  

follows:  

1. Input: Predicted mask, Ground truth mask  

2. Calculate the number of True Positives (TP) by counting the number of pixels 

in the predicted mask that are classified as cracked and are also classified as 

cracked in the ground truth mask.  

Calculate the number of False Negatives (FN) by counting the number of 

pixels in the predicted mask that are classified as not cracked but are cracked 

in the ground truth mask.  

3. Compute the recall using the above equation.  

In addition to the recall, other performance metrics are commonly used in semantic 

segmentation, such as precision and F1 score. These metrics are used to provide a more 

comprehensive evaluation of the model's performance [19].  

  

2.3.5 F1-Score  

The F1 score is a performance metric used to evaluate the balance between precision and recall 

in a machine-learning model. In the context of semantic segmentation for crack detection, the 

F1 score can be used to measure the overall performance of a model in identifying cracked pixels 

[19].   

  

  

  

  

The equation for the F1 score is:  

F1 score = 2 * (Precision * Recall) / (Precision + Recall)  
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The algorithm for computing the F1 score in semantic segmentation for crack detection is as 

follows:  

1. Input: Predicted mask, Ground truth mask.  

2. Calculate the number of True Positives (TP) by counting the number of pixels in the 

predicted mask that are classified as cracked and are also clas-sified as cracked in the 

ground truth mask.  

3. Calculate the number of False Positives (FP) by counting the number of pixels in the 

predicted mask that are classified as cracked but are not cracked in the ground truth mask.  

4. Calculate the number of False Negatives (FN) by counting the number of pixels in the 

predicted mask that are classified as not cracked but are cracked in the ground truth mask.  

5. Compute the precision and recall using the above equations.  

6. Compute the F1 score using the above equation.  

2.4 Optimizer (ADAM)  

Optimizers are a key component of the training process for machine learning models and are 

used to adjust weights and biases in models during training. In the context of semantic 

segmentation for crack detection, optimizers can be used to improve the performance of the 

model in identifying cracked pixels.  

One of the most used optimizers in deep learning is the Adam optimizer, which is a variant of 

stochastic gradient descent (SGD) that computes individual adaptive learning rates for different 

parameters. The Adam optimizer combines the advantages of two other optimizers, Adagrad and 

RMSprop, and is known for its fast convergence and robustness to noisy gradients.  

The Adam optimizer computes the learning rate for each parameter using a combination of the 

first and second moments of the gradients and uses a moving average to estimate the momentum 

and variance of the gradient. The Adam optimizer updates the weights and biases of the model 

in the direction of the negative gradient, with a learning rate that is adaptive to each parameter 

[20].  
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 The algorithm for the Adam optimizer in semantic segmentation for crack detection 

is as follows:  

1. Input: Model weights and biases, training data, Learning rate, Batch size, 

Number of epochs  

2. Initialize the model weights and biases with random values.  

3. Divide the training data into batches of size Batch size.  

4. For each epoch, iterate over each batch of data and compute the gradient of 

the loss function concerning the model parameters.  

5. Compute the first and second moments of the gradient using the exponential 

moving average.  

6. Compute the adaptive learning rate for each parameter using the first and 

second moments of the gradient.  

7. Update the model parameters using the adaptive learning rate and the 

negative gradient.  

8. Repeat steps 4-7 for the specified number of epochs.  

The Adam optimizer is a popular optimizer used in deep learning and can be used to improve the 

performance of machine learning models in semantic segmentation for crack detection.    



26 
 

3 Method  

In the field of computer vision, CNNs have become one of the most popular and effective 

methods for image processing tasks. They can learn to extract features from images in an 

automated way, which makes them suitable for tasks such as object recognition, segmentation, 

and classification. Semantic segmentation (SS) is one of the known used techniques in crack 

detection based on CNN. The method used in this study is based on CNN, SS, Deep Learning 

(DL), Python, cracks images and labels dataset, and a camera to test samples and trained models. 

More details will be explained in this section.  

3.1 Preparations and implementation of work  

In this thesis project, we collaborated with Syntronic, a company that provided essential 

resources and a conducive environment for the successful completion of the project. Syntronic 

supplied an industrial-grade camera, the DMK 33Ux290, specifically designed to capture high-

quality images with outstanding sensitivity, resolution, and dynamic range, which were integral 

to the training of our machine-learning models. (See Figure 2).  

                             
Figure 2:Preperations of testing trained models in Syntronic room. 

  

We used three laptops for model training, one of which was equipped with an NVIDIA GeForce 

GTX 1650 Ti graphics card. This powerful GPU greatly accelerated the training process, 

enabling the team to experiment with multiple models and configurations, ultimately leading to 

improved performance and faster convergence.  

Syntronic also provided two variable-feature highlights for illumination, ensuring that the 

samples were consistently and evenly lit during image acquisition. The company further supplied 

a variety of coloured filters, enabling us to simulate real-world factory environments by adjusting 

the lighting conditions and capturing samples with differing colours. This approach facilitated the 
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development of a robust model capable of accurately detecting cracks across diverse 

manufacturing scenarios, ultimately leading to a more reliable and efficient production process.  

3.2 Preparation of the dataset  

CNNs have become a popular technique for image recognition and classification tasks. It requires 

large amounts of data to learn and generalize effectively. To train a CNN, a large dataset is 

needed. The dataset should be diverse enough to include different variations of the object of 

interest in different settings. Additionally, the dataset should be split into training, validation, 

and testing sets to evaluate the performance of the trained model.  

In this project, Firstly, in the early process of the thesis, the authors worked on basic CNN models 

like VGG-16, VGG-19, ResNet, etc. The dataset that has been used was SDNET-2018 and it 

had almost 5600 images of two groups (Cracks, No Cracks). The SDNET-2018 dataset work as 

dividing the  However, later in semantic segmentation, authors used websites like Kaggle 

provided "crack_segmentation_dataset", containing more than 11,298 images with their labels 

(masks). The dataset was split into three sets: 80% for training, 10% for validation, and 10% for 

testing. By splitting the data into these sets, the CNN's performance can be evaluated accurately, 

and overfitting can be avoided.  

Later in the next stages of the project, the authors created two new datasets based on Kaggle’s 

"crack_segmentation_dataset".See section 1.5.2. The “simplified segmentation dataset” dataset 

was specialised to increase the speed of the training but after using it was found that it is not 

detecting as much as the original dataset it was the best for using on GPU because of the lack of 

RAM so the authors use it in testing models. And the second is called “Extra segmentation version 

dataset”. Was the best in detecting cracks of the sand moulds samples test provided in Syntronic 

labs. The following table shows general information about the four main datasets that the authors 

used in this project( See Table 4). 

  

Dataset Name  Dataset Creator  Dataset Type  Amount  

SDNET 2018  Kaggle website  Classification  5600  

Crack_semantic_Segmentation   Kaggle website  Semantic Segmentation  11298  

Simplified segmentation dataset  The authors  Semantic Segmentation    7226  

Extra segmentation version dataset  The authors  Semantic Segmentation  12544  

Table 4:Main datasets (Two datasets Originally from Kaggle websites and the other two are made by authors after 

modifications to find the best dataset) 

The semantic segmentation datasets (images, masks) and the technique of splitting the data into 

training, validation, and testing sets enhanced the effectiveness of CNNs in recognizing and 

classifying images. After using a large and diverse dataset and by splitting the data, the CNN  

models were trained more effectively, and improved their ability to recognize and classify new 

images.  
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3.3 Loading data  

The function takes in four arguments: the path to the directory containing the images, the path 

to the directory containing the corresponding masks, and the desired height and width of the 

resized images. The first step in the data loading process involves reading the images and masks 

using the OpenCV library. This is done using a list comprehension that iterates over each file in 

the specified directory. The "cv2.imread" function is used to read the images as colour images 

(i.e., with three channels for RGB) and the masks as grayscale images (i.e., with a single channel). 

The "os.path.join" function is used to concatenate the directory path and the file name for each 

image and mask. The resulting list of images and masks is then sorted using the "sorted" function 

to ensure that they are in the same order.  

Next, the images and masks are resized using the "cv2.resize" function to the specified height 

and width. This is done to ensure that all the images and masks are of the same size and to reduce 

the computational complexity of subsequent operations. The resized images and masks are then 

stored in two separate lists. Then, the function returns the images and masks as NumPy arrays, 

which are commonly used in deep learning frameworks for training and testing machine learning 

models.  

3.4 Preprocessing the dataset.  

The image data is pre-processed to be used in computer vision tasks. The resizing step ensures 

that all images and masks are of the same size, while the normalization step improves the 

performance of machine learning models by standardizing the pixel values. The use of NumPy 

arrays and the reshaping step allows for efficient manipulation and processing of large datasets.  

3.5 Using traditional image processing techniques (Canny edge 

detection)  

Canny Edge Detection is a multi-stage algorithm designed to detect a wide range of edges in 

images while addressing three main issues: low error rate, edge localization, and single response 

constant. The first step in the process is Noise Reduction: The first step in Canny's edge detection 

method is noise reduction. Images can contain various forms of noise, which can adversely affect 

the edge detection process. Therefore, the image is smoothed using a Gaussian filter to reduce 

noise. Second is the Gradient Calculation, where the smoothed image is then filtered with a Sobel 

kernel in both horizontal and vertical directions to get the first derivative in the horizontal 

direction (Gx) and the vertical direction (Gy). From these two images, we can find the edge 

gradient and direction for each pixel. Non-Maximum Suppression is the third step which helps 

to suppress any pixel value that is not considered to be an edge. This is done by comparing each 

pixel of the gradient image with its neighbours along the gradient direction. If the pixel has a 

value that is less than its neighbour, it is set to zero. The next step is Double Thresholding; to 

determine potential edges, two threshold values (minVal and maxVal) are set. Any edges with 

an intensity gradient more than (maxVal)are considered "sure edges", while those below 

(minVal) are considered non-edges, and those in between are classified as "weak edges". Edge 

Tracking by Hysteresis is the final step where the weak edges are analyzed for connectivity to 
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sure edges. If they are connected, they are considered part of the edges. Otherwise, they are 

discarded. The result of this process is a binary image with "thin edges". The Canny edge 

detection algorithm is widely used due to its good detection, localization, and minimal response 

features.  

3.6 Using Basic CNN models.  

In the present study we use Visual Studio Code as an integrated development environment (IDE) 

to program and analyse data derived from a dataset of images. For programming, the two major 

languages under consideration are MATLAB algorithms and Python. However, Python was 

chosen for its flexibility and extensive libraries. To properly implement these libraries, OpenCV, 

TensorFlow, and other libraries were employed. To link Python to Visual Studio Code, 

extensions will be utilized to ensure compatibility with the Python environment. Those libraries 

helped to reach the purpose of the project which is recognizing the cracked images from non-

cracked ones. The goal of this thesis is not to evaluate CNN Models but to find the most accurate 

model in detecting cracks in the given images to the trained model.  

In the realm of Convolutional Neural Networks (CNNs), the selection of appropriate models is 

critical given the multitude of options available. The accuracy of the models in detecting images 

was assessed, and the test image filtered to match the trained models. Based on this comparison, 

the system was determined whether the image contains a crack. While this approach is the 

current focus of the study, it is subject to change and further development as the project 

progresses.  

3.7 Using Semantic Segmentation Models  

U-Net, SegNet, and DeepCrack are all encoder-decoder architectures suitable for binary crack 

detection tasks. U-Net is known for its skip connections, enabling it to capture fine-grained 

details effectively. SegNet, on the other hand, is more memory efficient and suitable for large-

scale segmentation tasks. DeepCrack is a specialized model designed explicitly for crack 

detection and segmentation, incorporating batch normalization and ReLU activation functions 

for improved performance.  

We have decided to try those three architectures (U-Net, SegNet, DeepCrack) to see which one 

is suitable to be enhanced and developed by measuring the accuracy, loss, and F1 score of those 

architectures and their trained models. Their implementation will be explained as follows:  

3.7.1 U-Net  

U-Net is a powerful and efficient architecture for binary segmentation tasks, such as crack 

detection. Its encoder-decoder structure captures both local and global contexts while 

maintaining the resolution and spatial information of the input image. The encoder part consists 

of a series of convolutional and pooling layers, progressively reducing the spatial dimensions 

while extracting hierarchical features. The decoder part, on the other hand, up-samples and 
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concatenates feature maps from the encoder to recover the resolution and provide precise pixel-

wise predictions.  

 

One of the key advantages of U-Net is its skip connections, the skip connection is the group of 

algorithms as connections of the same level of feature maps from the encoder to the decoder. 

These connections ensure that high-resolution features are merged with up-sampled low-

resolution features, improving the model's ability to capture fine-grained details such as the edges 

of cracks. This makes U-Net particularly well-suited for crack detection and binary segmentation 

tasks, where precise localization of cracks is crucial.  

3.7.2 SegNet  

SegNet is another architecture designed for semantic segmentation tasks, including binary crack 

detection. The architecture consists of an encoder-decoder structure, where the encoder follows 

a structure like the VGG16 model, progressively extracting features through convolutional and 

max-pooling layers. The decoder in SegNet, however, differs from U-Net as it does not utilize 

skip connections to merge encoder features with the up-sampled feature maps directly.  

  

Figure 3: : Orginal U-Net -     Model architecture encoder &  decoder   
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Instead, SegNet's decoder stores and uses the max-pooling indices from the encoder to up-sample 

feature maps in the corresponding decoder layers. This approach reduces the number of trainable 

parameters and memory requirements, making SegNet a more efficient architecture, especially 

for large-scale segmentation tasks. Although SegNet may not capture fine-grained details as 

effectively as U-Net due to the lack of skip connections, it still provides satisfactory results for 

binary crack detection, while offering a more memory-efficient solution.  

3.7.3 DeepCrack  

DeepCrack is a specialized architecture explicitly designed for crack detection and segmentation. 

It adopts an encoder-decoder structure with a unique focus on preserving spatial information 

throughout the model. Deep Crack’s key difference from both U-Net and SegNet lies in the use 

of batch normalization which is a technique that normalizes the output of each layer in a mini-

batch, stabilizing training, improving convergence, and preventing overfitting in semantic 

segmentation tasks and ReLU activation functions consistently after each convolutional layer, 

enhancing the model's performance by stabilizing the training process.  

Deep Crack’s encoder-decoder design allows it to effectively capture both global and local 

context for accurate pixel-wise classification in binary crack detection tasks. Although the 

architecture resembles U-Net and SegNet, it has been specifically tailored for crack 

segmentation, making it highly effective for the target application. The use of batch normalization 

and ReLU activation functions ensures a stable and efficient training process, resulting in a high-

performance model for crack detection and segmentation.  

  

Figure  4 : SegNet  o rginal  m odel architecture   

      SegNet   A rchitecture   
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3.8 Improving U-Net architecture.  

We decided to improve the U-Net model by adding pretrained models after the fact that U-Net 

gave better scores in general than the other two models SegNet and DeepCrack  Architecture to 

the existing one (U-Net) to make improvements. These models were VGG-16, VGG-19, and 

ResNet architectures. They were implemented as encoders of the new experimental model in 

its first half, and the second half (decoders) were implemented as they originally are (U-Net-

decoders). This was a try to enhance the model's ability to detect cracks more accurately than 

the original U-Net (See Figure 5).  

 

3.8.1 VGG-16 with U-NET  

VGG16-U-Net is a semantic segmentation model designed for binary crack detection. This 

architecture combines the VGG16 backbone with the U-Net decoder structure, leveraging the 

robust feature extraction capabilities of VGG16 and the efficient upsampling and skip 

connections of U-Net. By using VGG16 as a pre-trained encoder, the model can quickly learn 

and adapt to various image patterns. The U-Net decoder, on the other hand, helps preserve 

spatial information throughout the layers, which is crucial for accurate segmentation.  

3.8.2 VGG-19 with U-NET  

We have decided to use VGG -19 to see the differences between VGG-16 which was explained 

briefly in the previous section to compare the two enhanced U-Net structures and see if VGG-

19 could outmatch VGG-16 in terms of accuracy and detecting cracks. There is no need to 

mention the structure of VGG-19 here because it is like the VGG-16 Combined with the U-Net 

  

Figure  5 : Encoders  m ode l   with  U - Net   d ecoder   
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Structure just above. The results of all comparisons of those models will be in the results and 

discussion section.  

3.8.3 ResNet with U-NET  

ResNet-U-Net is a semantic segmentation model tailored for binary crack detection tasks. This 

architecture fuses the power of ResNet as the encoder and the U-Net decoder structure. ResNet 

provides strong feature extraction capabilities due to its deep residual learning framework, while 

the U-Net decoder incorporates upsampling and skip connections to preserve spatial information 

and enable precise segmentation.  

The ResNet-U-Net model takes advantage of ResNet50's deep residual structure as the encoder 

backbone, consisting of a series of residual blocks which refers to skip connections that allow the 

direct flow of information, aiding in the preservation of spatial details and improving the 

performance of deep neural networks. The U-Net decoder follows the typical U-Net approach, 

combining encoder features with corresponding decoder layers via skip connections. The final 

output layer uses a sigmoid activation function to provide binary segmentation.  

3.9 Extra Layer technique  

An innovative approach to enhancing the U-Net architecture was explored, involving the 

incorporation of an additional layer. We have added new extra 32 filters convolutional layer. 

This extra layer was mirrored in the decoder, thus expanding the architecture on both ends. The 

expanded architecture has implications for a variety of areas, including feature extraction, 

performance metrics, model capability, hierarchical feature learning, and model adaptability.  

The enhanced feature extraction ability provided by the additional layer facilitates a more 

intricate representation of the input images. This, in turn, aids in detecting complex patterns 

crucial for the precise segmentation of images. Performance metrics such as accuracy and F1 

scores how notable improvements, attributed to the enhanced feature extraction. By capturing 

intricate features, the expanded architecture can deliver more accurate segmentation, proving 

beneficial for multiple applications.  

The added layer also expands the model's capacity to handle complex real-world data variations. 

However, the balance between the benefits of increased complexity and the accompanying 

computational costs and overfitting risks is critical. The hierarchical feature learning capability 

of the model is also enhanced by the extra layer, allowing the model to learn features at different 

scales and levels of abstraction. This aids in capturing both local and global patterns in the images. 

Furthermore, the extra layer provides flexibility for customization, allowing researchers to 

experiment with different layer configurations to find the optimal structure for a specific task or 

dataset.  

 

 



34 
 

 

4 Result and discussion  

Before showing the results of this study, it is recommended to investigate ethical and social 

considerations in engineering and academic writing, focusing on the application of CNN and 

semantic segmentation for crack detection in infrastructure. Key ethical concerns include 

fairness, bias, data security, privacy, responsibility, and transparency. From a societal 

perspective, the project's economic impact includes cost savings from timely crack detection and 

potential job creation. Environmentally, the technology can reduce carbon emissions by 

preventing infrastructure damage. Societally, it enhances public safety, improves transportation, 

and minimizes disruptions. In this study, we investigated various deep-learning models for the 

semantic segmentation of cracks in images. The results have been  divided into six sections, which 

they are Canny Edge results, Semantic segmentation comparison results, pre-trained vs U-Net 

results, new improved extra layer vs U-Net results, datasets comparison results and finally plots 

of F1 score. 

The research journey was not without its trials. We first attempted to add two layers: one each 

in the encoder and decoder, adjacent to the 1024 filters bridge and extended the bridge to 2048 

filters while adjusting the neighbouring layers to (1024, 1024). This experiment, however, was 

unsuccessful due to overfitting and the large number of parameters involved. A subsequent 

attempt involved modifying the bridge layer between the encoder and decoder, expanding it to 

2048 filters instead of the standard 1024. This effort, aimed at maximizing the potential of the 

U-Net architecture, also led to overfitting. We further experimented with adding 64 layers as 

the initial decoder and final encoder layer. They utilized the concatenate function to append 

additional encoder and decoder layers at the start and end of the architecture, respectively. 

However, this model did not outperform the original U-Net structure.  

In the final try, the breakthrough came when we added an extra layer with 32 filters at the 

beginning of the encoder, preceding the conventional 64 layers, and at the end of the decoder, 

succeeding the final 64 layers. This resulted in a model beginning and concluding with the newly 

added 32 filters layer. As detailed in section 1.5 of this thesis, this final model proved successful, 

thereby enhancing the conventional U-Net architecture in a significant and innovative way.   
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4.1 Canny Edge detection method result  

The authors implemented Canny Edge method as mentioned in method section; to be the first 

step of process of finding best method to read cracks. As the figure below shows the detecting of 

cracks was successful, but with a lot of noise. That could harm the final expected results to deliver 

to the system or PLC part in the user’s side which leads to misjudgements.  

  

 

Figure 6:Canny Edge detection (On the left is the canny edge result image with noise... On the right 

is the original input image in the algorithm) 

4.2 Semantic Segmentation comparison  

We have focused on evaluating the performance of three semantic segmentation models: U-Net, 

SegNet, and DeepCrack. These models were trained on a dataset of images containing cracks and 

were subsequently tested on a set of cracked images to assess their ability to detect and segment 

the cracks. We have quantitatively analysed their performance using evaluation metrics such as 

accuracy, loss, F1 score, precision, and recall. In the results section, we will present a 

comprehensive comparison between the three models in terms of these evaluation metrics. This 

comparison presented in table 5, allowing for easy interpretation of the results. It should be 

mentioned that the tested trained models were having 50 Epochs and the batch size was 16 for 

all three models in this comparison (Check Table 5 and Table 6).  

Model  Precision%  Recall%  F1 Score  Accuracy%  Loss  

U-Net      75    62     68     98  0.024  

SegNet      77    55     65     97  0.031  

DeepCrack      69    53     60     96  0.033  

Table 5:Unet, SegNet and Deep Cracks comparison in (Precision , recall , F1 score , accuracy and loss and reader 

can see that U-Net outmatched the others two) 
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Model  Blended  Masked  

U-Net  

 
  

 
  

SegNet     

  

DeepCrack    

 

  

 
  

  
Table 6:Compaire between U-Net, SegNet and Deep Cracks ( on the left is the 

blended image “ how the layers read the cracks  while eon the right is the final 

output) we can see here also how U-Net was better than other two models ) 

  

After analysing the results in Table 5 and 6 above, we found that the U-Net model consistently 

demonstrated higher accuracy and robustness in detecting cracks compared to the SegNet and 

DeepCrack models. Consequently, we decided to focus on the U-Net architecture for further 

experimentation.  
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4.3 Combined pre-trained models with U-Net comparison.  

We explored the combination of U-Net with popular CNN architectures such as VGG-16, VGG-

19, and ResNet. Our goal was to improve the performance of the crack detection process by 

leveraging the strengths of these pretrained models. We presented a detailed comparison of the 

performance of the combined models, highlighting the benefits of using the U-Net architecture 

as a backbone The tested trained models were having 50 Epochs and the batch size was 16 for all 

three models in this comparison. (See Table 7).  

  

Model  Precision%  Recall%  F1 Score  Accuracy%  Loss  

U-Net  75  62  68  98  0.024  

VGG-16-U-Net  72  40  51  95  0.037  

VGG-19-U-Net  70  44  54  96  0.035  

ResNet-U-Net  73  38  49  94  0.045  
Table 7:VGG16,19 and ResNet With U-Net decoder comparison. (It can be noticed here how U-Net is still better than the 

pre-trained models as encoders) 

  

Next is the table of the image’s comparison between the three new architectures VGG-16 as an 

encoder combined with U-Net, VGG-19 combined with U-Net structure and finally the ResNet-

U-net architecture. All three compared in the next table in terms of output-masked images to 

see which model of those four is still the most accurate to detect cracks (See Table 8).  

  

Model  Blended image  Output (masked) image  

U-Net    

 

  

 

Vgg-16/U- 
Net  
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Vgg-19/U- 
Net  

  

 

  

 
  

ResNet/U- 
Net  

  

 
  

  

 

Table 8:Compare U-Net with pre-trained models’ comparison of images and it can be noticed again how U-Net is 

better. 

4.4 New Improved Extra Layer U-Net Vs Original U-Net  

The new architecture has been introduced as an innovative extra layer to strengthen the basic U-

Net structure. We implemented this extra layer into the U-Net architecture and evaluated its 

performance in comparison to the original U-Net model. Our results demonstrate that the 

addition of this extra layer significantly enhances the U-Net model's ability to detect cracks, 

providing further evidence for the efficacy of our proposed method. See the results in the next 

two comparison tables 9 and 10.  

 

Model  Precision%  Recall%  F1 Score  Accuracy%  Loss  

HH-Improved Extra  
Layer (U-Net)  

90  60  72  98  0.0168  

Original (U-Net)  75  62  68  98  0.024  

Table 9:Compare Between Original U-Net  and HH-U-Net (evaluation metrices) “Can be noticed clearly how our work is 

better than the original U-Net). 
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Model  Blended image  Output Masked image  

  

  

HH-Improved Extra Layer  
(U-Net)  

  

 

  

 

  

  

  

Original   (U-Net)  

  

 

  

 
  

Table 10:Compare Between Original U-Net  and HH-U-Net (Images) “our model is outmatching and outperforming the 

original U-Net”.  

  

  

4.5 Authors dataset(Ex) Vs Original on Extra layer U-Net  

The second contribution that was mentioned in contributions section 1.5.2 was the newly made 

Extra dataset. This new dataset was more efficient even on the new extra layer architecture U-

Net, which means that the trained model on this extra new dataset got a higher F1 score, higher 

Accuracy, and better loss than the improved Extra U-Net that was trained on the original dataset 

from Kaggle “crack_segmentation_dataset”. See table 11 for more details.  

 

Dataset  Precision%  Recall%  F1 Score  Accuracy%  Loss  

Authors’ Extra 

Improved Dataset   
(HH-Improved Extra  
Layer (U-Net))   

    96   61     75      99  0.0146  

 Original Dataset  
HH-Improved Extra  
Layer (U-Net)  

    90   60     72      98  0.0168  

Table 11:Authors’ Extra Improved dataset and original dataset “our new dataset is outperforming the original dataset”. 
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4.6 F1 score plots comparison   

In the presented research, a comprehensive approach was employed to identify cracks, leveraging 

various computational techniques from the domains of image processing and computer vision. 

The methodologies applied can be broadly categorized into two primary themes: traditional 

image processing techniques and machine learning-based strategies. As a representative of 

conventional techniques, the Canny Edge detection method was utilized. Following this, the 

study ventured into the realm of machine learning, employing a Basic Convolutional Neural 

Network (CNN), and subsequently, delving into more sophisticated techniques such as Semantic 

Segmentation.  

Among the numerous architectures explored within the scope of Semantic Segmentation, the 

primary focus was on U-Net, SegNet, and DeepCrack. From the U-Net family, several pre 

trained models were tried, including VGG16 and VGG19. However, the U-Net variant that 

incorporated an extra layer, referred to as the Improved U-Net (HH), yielded the most 

promising results in terms of accuracy and F1 score. Furthermore, the study revealed that the 

introduction of a novel, modified extra dataset had a significant positive impact on the 

performance, pushing the F1 score to new heights. The ensuing section presents a comparative 

illustration of the F1 scores generated by different methodologies (See figure 7). 

Figure 7: F1 Score all models “we can notice how our new made extra improved Model of U-Net is beating the other 

models in F1 score”. 
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Upon examining the plots, two significant contributions from the authors are readily observable. 

The first notable finding is related to the implementation of the newly developed architecture - 

the Improved Extra-Layer U-Net (HH). This architecture achieved an F1-Score of 72, surpassing 

the performance of all other architectures tested within this study. This robust outcome 

substantiates the superiority of the HH model in the specific task of detecting cracks in sand 

mould samples.  

The second key contribution is the augmentation of the original dataset with a newly collected, 

additional dataset. This enhancement not only diversified the data available for model training 

but also resulted in a substantial improvement in the F1-Score, increasing it from 72 to 75. This 

underlines the efficacy of the extra dataset in enhancing model performance, thereby affirming 

the importance of diverse and representative data in machine learning tasks.  
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5 Conclusion and future work  

In this study, we have extensively investigated various semantic segmentation architectures to 

accurately detect cracks in sand mould structures in factory line production. The primary focus 

was on three main architectures: U-Net, SegNet, and DeepCrack. Through rigorous 

experimentation and testing, we have found that the U-Net architecture provided the best results 

on our chosen tuned dataset for this specific application.  

Subsequently, we explored the possibility of utilizing pre-trained models (VGG-16, VGG19, 

ResNet) as encoders for the U-Net's original structure decoder. However, this approach did not 

yield satisfactory results. Motivated by this observation, we transitioned to the third section of 

our work, which involved the development of an improved U-Net architecture by incorporating 

an extra layer. We addressed potential drawbacks, such as overfitting, through the creation of a 

suitable variable augmented dataset, early stopping mechanisms, and checkpoints for the model.  

Our study concludes that the newly developed improved U-Net architecture, with the inclusion 

of an extra layer, was a success. It outperformed other architectures in terms of F1 score, 

accuracy, and other evaluation metrics. Furthermore, qualitative image analysis revealed that our 

improved extra-layer U-Net was more adept at detecting cracks than the other architectures 

examined in the thesis experiments.  

Moreover, we successfully created one of the most accurate datasets for cracks in sand moulds. 

This dataset was curated based on the original Kaggle website dataset by adding two groups of 

images to the original groups of images which noticeably raised the F1 score. This dataset is a 

valuable resource that can be utilized by future studies or improved upon to facilitate even more 

precise and accurate crack detection. Our research sets the stage for further advancements in the 

field of semantic segmentation, with the potential to enhance quality control and reduce 

production costs in the manufacturing industry.  

As for future work, our study opens doors for further exploration in several directions. First, 

other research teams may consider building upon our improved U-Net architecture or enhancing 

other architectures like SegNet. The versatility of our approach allows for the investigation of 

different modifications or layer configurations, thereby fostering novel and innovative techniques 

in semantic segmentation.  

Second, researchers could continue comparing various models on different datasets to better 

understand the adaptability and robustness of these models under varying conditions. Our work, 

along with future studies, may contribute to the development of a comprehensive understanding 

of which models and techniques perform optimally under different circumstances.  
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