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Abstract 

The design of multiple degrees-of-freedom frames is critical in civil engineering, as these structures are commonly used in 

various applications such as buildings, bridges, and industrial structures. In this study, a six-degrees-of-freedom beam-column 

element stiffness matrix was formulated by superposition of beam and truss elements stiffness matrices and was adapted to 

statically analyze indeterminate frame structures. The development of a numerical model for the frame structures was achieved 

using the finite element method in the current study. Also, the investigation of the effects of various parameters such as frame 

geometries, material properties, and loading conditions was conducted on the internal forces developed in the frame structures. 

Three different parametric study cases that presented the frame structures with varying geometries and loading conditions 

were analyzed utilizing this matrix approach for the sake of emphasis and to evaluate the flexibility and adequacy of this 

formula to analyze the indeterminate frames using the MATLAB software. The analysis method comprised the derivation of 

the system displacements employing the relationships between the stiffness matrix and fixed end forces as the force vector 

and taking the attained displacements, which would be transformed to the local coordinates to obtain the member forces. The 

computed results from the element stiffness matrix approach were further statistically compared with the results achieved from 

the finite element software (SAP2000) applying the analysis of variance (ANOVA). The statistical results showed a P-value 

> 0.05, which indicated a good correlation between the compared results and adequate performance for the derived beam-

column element matrix formula method. 

Keywords: Indeterminate Structural Analysis; Beam-Column Element; Analysis of Variance; Matrix Stiffness Method; MATLAB; SAP2000. 

 

1. Introduction 

The analysis of multiple degrees-of-freedom (MDOF) frames is vital for designing safe and efficient structures that 

can withstand various loads and forces. Numerical methods such as the finite element analysis (FEA) and finite 

difference method (FDM) have been extensively used to analyze the behavior of such structures. FEA is a powerful 
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numerical tool that is widely utilized in structural engineering to investigate the behavior of structures subjected to 

various loading conditions [1]. The MDOF frames are a type of structural system that is commonly employed in modern 

buildings and bridges. In the MDOF frames, each floor has multiple degrees of freedom (DOF), including translational 

and rotational DOF [2]. The finite element method (FEM) is one of the numerical approaches that may be applied to 

solve engineering issues, whether they are basic or complex [3]. 

FEM has remained so firmly developed over the years that it now seems to be among the finest ways for examining 

the efficiency of a broad range of real-life situations. In fact, the approach has become one of applied mathematicians' 

primary research interests. The basic principle behind the finite element approach is to solve a complex issue by 

replacing it with a simplified solution [4]. Recently, piecewise continuous functions constructed over triangular areas 

have been used in the finite element approach. Researchers first proposed a lattice analogy for stress analysis in early 

1906, but elastic bars with regular patterns eventually took their place [5]. The parameters of the bar were selected so 

that the joint’s deflections could be utilized to estimate the deformations of the points in the continuum. The approach 

aimed to benefit from established structural analysis techniques. Most of the foregoing works presented several formulas 

and intricate algebraic solution methods for the first time due to a lack of available computers to develop and resolve 

large sets of simultaneous arithmetic problems [6]. The FEM research actually coincided with significant developments 

in digital computers and programming languages. Mathematicians and engineers have typically handled the hunt for 

different strategies to discretize continuum mechanics issues using several analytical approaches [7]. The generic 

techniques that may be employed to solve the governing system of differential equations were developed by 

mathematicians. The straightforward method and techniques for figuring out the extreme value for a function are FDM 

and residual methods, respectively [8]. 

FEM is a mathematical technique for analyzing different engineering challenges. The approach is broadly used in 

the analysis of solids and structures, as well as heat transport and fluids, and is fundamentally applicable in almost all 

domains of engineering study [9]. In engineering design and evaluation, physical issues are resolved using FEM. The 

framework or structural element exposed to particular external loading conditions was usually the source of the physical 

issues [8]. Certain assumptions are necessary for the mathematical model to idealize the physical situation, which results 

in differential equations guiding the model [10]. The mathematical model has a rough solution provided by FEA. The 

correctness of the answer must be evaluated since FEM is a numerical approach. In order to get a suitable precision, the 

numerical solution must be performed with improved solution parameters such as a finer mesh [11]. The analysis, which 

is often laborious and exceedingly thorough, must be done to get insight into the real physical issue. The choice of an 

approximate mathematical model is essential and entirely influences this. This necessitated the introduction of FEM in 

some computer-based software such as Python, MATLAB, and other computational tools to aid in accuracy assurance 

in the FEM analysis [12]. 

Due to the regrettable land shortage brought on by the fast urban population expansion in both emerging and 

industrialized nations, framed buildings are now the material of choice for residential and commercial constructions 

[13]. Structures with a combination of a slab, column, and beam can withstand lateral and gravitational stresses. These 

structures are often utilized to counteract the significant moments that are resulted from applied loads. The total DOF in 

structural frames depend on the number of nodes, and DOF is three times the number of nodes since each node has three 

DOF [14, 15]. When it comes to analyzing a frame under applied loads, solving it analytically can be tedious and time-

consuming, especially when the frame structure possesses a large number of DOF [16]. In this research study, the matrix 

stiffness method of FEM for beam-column elements would be adapted and synthesized in MATLAB computational 

software to analyze the reactions and deformation of MDOF frames under defined loading patterns and finally validate 

the calculated results using results of the finite element software SAP2000 [17, 18]. The great strength of the finite-

element model is its versatility since there is virtually no limit to the type of structure that can be analyzed; it provides 

an efficient method of static and dynamic performance assessments of structures by saving time and ensuring that 

economy and safety conditions are met [19]. 

Various studies have been done on the behavior of MDOF frames subjected to different types of loads. The use of 

FEA has become a popular tool to simulate and analyze the behavior of structures. In recent years, FEA has been 

increasingly utilized to study the behavior of MDOF frames. For instance, Li et al. [20] conducted FEA simulations 

using the ABAQUS software to evaluate the structural response of an eight-story reinforced concrete frame subjected 

to column loss scenarios. The study focused on evaluating the effectiveness of several strengthening measures, including 

external steel braces, reinforced concrete braces, and steel fiber-reinforced polymer sheets, in enhancing the progressive 

collapse resistance of the reinforced concrete frame structure. 

Gao [21] performed a study to assess the seismic behavior of multi-story steel frames using FEA. They found that 

the use of MDOF frames can remarkably reduce the deformation and damage to the frames under seismic loads. Also, 
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Zhou et al. [22] utilized FEA to investigate the seismic performance of a high-rise steel building with MDOF frames. 

The study revealed that the MDOF frames can improve the structural stiffness and reduce the overall displacement of 

the building under seismic loads. In another study, Panahi et al. [23] applied FEA to examine the effect of the number 

of stories and the height-to-width ratio on the dynamic behavior of steel MDOF frames. The study found that increasing 

the number of stories and the height-to-width ratio can increase the fundamental frequency and reduce the maximum 

displacement of the frames. Overall, these studies suggest that FEA can be a useful tool for investigating the behavior 

of MDOF frames and optimizing their design parameters to improve their seismic performance. Moreover, FEA was 

used by Fujii [24] to analyze the behavior of a MDOF frame under earthquake loading. The results showed that the 

MDOF frame exhibited good resistance to earthquake loads. Similarly, in the study by Liew [25], FEA was utilized to 

evaluate the dynamic behavior of a multi-story MDOF frame under blast loads. The results indicated that the blast loads 

caused significant damage to the frame. In addition, Khalid and Bansal [26] studied the effect of the number of stories 

on the behavior of MDOF frames under wind loads. The results demonstrated that increasing the number of stories had 

a considerable effect on the behavior of the MDOF frames under wind loads. 

Some potential gaps in the literature on FEA of internal forces and parametric studies of MDOF frames may include: 

 Lack of studies considering the effect of uncertainties in material properties and loads on the internal forces of 

MDOF frames. 

 Limited research on the effect of different boundary conditions on the internal forces of MDOF frames. 

 Scarcity of studies on the optimization of MDOF frames based on the internal forces analysis. 

 Lack of investigations that compare the accuracy and efficiency of different FEMs for the internal forces analysis 

of MDOF frames. 

To fill these gaps, the proposed approach is to conduct a comprehensive numerical analysis and parametric study on 

MDOF frames using FEA. This study evaluates the effects of multiple parameters, including load type, frame geometry, 

and material properties. The results of the study will contribute to the development of design guidelines for MDOF 

frames that can be utilized in practical applications. 

2. Research Methodology 

The matrix stiffness displacement method, which is the indeterminate analysis method, was adopted in this study. 

This method is used to analyze the static and dynamic behavior of structural systems; it mainly involves expressing the 

equilibrium equations of a structure in terms of the displacements of its nodes [27]. The governing equations are then 

solved using matrix algebra, resulting in a system of simultaneous linear equations that can be solved to determine the 

unknown nodal displacements. The matrix stiffness displacement method is often used in FEA, where the structure is 

divided into smaller elements that can be modeled using simpler equations. Each element is represented by a set of 

stiffness and mass matrices, which are then assembled into a global stiffness and mass matrix for the entire structure 

[28]. The nodal displacements can be obtained by solving the resulting system of equations, and this method can handle 

complex geometries and boundary conditions to predict the response of a structure under varying loading conditions 

[29]. Results obtained in terms of internal forces were further assessed and validated using MATLAB and SAP2000 

software. Additionally, the ANOVA statistical evaluation method was used to ascertain the accuracy of the computed 

results by testing for statistical significance at the 95% confidence interval. In order to achieve the application of this 

analysis method through parametric studies, the set and sequence of steps taken in this numerical analysis are presented 

in the flowchart shown in Figure 1. 

2.1. Development of Mathematical Model 

In this research, the analysis of statically indeterminate structures, frames (beam-column), was done using a finite 

element stiffness matrix approach to analyze the member reactions (bending moments and shear and axial forces). The 

beam element has four DOF, which consist of two vertical displacements and two rotations. The truss element has two 

axial displacements and two DOF [30–35]. If we combine these two elements, we obtain a beam-column element with 

six DOF, as depicted in Figure 2. Therefore, we need to formulate the stiffness matrix of a beam-column element and 

demonstrate how it can be used to analyze frame structures. 
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Figure 1. Flowchart of research methodology  

 

Figure 2. Beam-column element 
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Given that this beam-column element has six DOF, we can define six-member end forces (fi, for i = 1, 2, …, 6) in 

the direction of the nodal displacements, as illustrated in Figure 3. 

 
Figure 3. DOF of beam-column element 

The force and displacement vectors are related to the member stiffness matrix (k) in the local coordinate system, as 

given in Equation 1, where f is the member force vector, k is the stiffness matrix, and d is the displacement vector. The 

elements of the stiffness matrix can be defined by the superposition of the beam and truss members stiffness matrices. 

𝑓 = 𝑘𝑑 =

[
 
 
 
 
 
𝑓1
𝑓2
𝑓3
𝑓4
𝑓5
𝑓6]
 
 
 
 
 

=

[
 
 
 
 
 
𝑘11 𝑘12 𝑘13 𝑘14 𝑘15 𝑘16
𝑘21 𝑘22 𝑘23 𝑘24 𝑘25 𝑘26
𝑘31 𝑘32 𝑘33 𝑘34 𝑘35 𝑘36
𝑘41 𝑘42 𝑘43 𝑘44 𝑘45 𝑘46
𝑘51 𝑘52 𝑘53 𝑘54 𝑘55 𝑘56
𝑘61 𝑘62 𝑘63 𝑘64 𝑘65 𝑘66]

 
 
 
 
 

×

[
 
 
 
 
 
𝑑1
𝑑2
𝑑3
𝑑4
𝑑5
𝑑6]
 
 
 
 
 

  (1) 

Figure 4 presents four DOF of the beam element, and its 4×4-member stiffness matrix size is provided in Equation 

2. The matrix equation is further transformed into a 6×6 matrix because the beam-column element that we wish to define 

has 6 DOF (Equation 3). To achieve that, taking the numbering configuration of the element nodes into consideration, 

we add two rows and two columns of zeros to the matrix (kB), as displayed in Figure 5. 

 

Figure 4. Four DOF of beam element 
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Figure 5. Expansion of beam element to obtain 6 DOF of beam-column element 

In addition, Figure 6 shows two DOF of the truss element, which possesses 2×2-member stiffness matrix size, as 

displayed in Equation 4. The member stiffness matrix in Equation 5 is turned into a 6×6 matrix taken the numbering 

configuration of the element nodes into account by adding four rows and four columns of zeros (kT), as demonstrated in 

Figure 7. 

 

Figure 6. Two DOF of truss element 
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Figure 7. Expansion of truss element to obtain 6 DOF of beam-column element 

When we add or superpose the developed matrices of kT and kB in Equation 6, we obtain the member stiffness matrix 

for a beam-column element, as depicted in Figure 8. 

𝑘 = 𝑘𝐵 + 𝑘𝑇 =

[
 
 
 
 
 
 
 
 
 
𝐸𝐴

𝐿
0 0 −

𝐸𝐴

𝐿
0 0

0
12𝐸𝐼

𝐿3

6𝐸𝐼

𝐿2
0 −

12𝐸𝐼

𝐿3

6𝐸𝐼

𝐿2

0
6𝐸𝐼

𝐿2

4𝐸𝐼

𝐿
0 −

6𝐸𝐼

𝐿2

2𝐸𝐼

𝐿

−
𝐸𝐴

𝐿
0 0

𝐸𝐴

𝐿
0 0

0 −
12𝐸𝐼

𝐿3
−
6𝐸𝐼

𝐿2
0

12𝐸𝐼

𝐿3
−
6𝐸𝐼

𝐿2

0
6𝐸𝐼

𝐿2

2𝐸𝐼

𝐿
0 −

6𝐸𝐼

𝐿2

4𝐸𝐼

𝐿 ]
 
 
 
 
 
 
 
 
 

  (6) 

 

Figure 8. Six DOF of beam-column element in local coordinate system 
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Denoting the matrix stiffness, k, we can express the relationship between the member displacement and force vectors 

of the beam-column element in a matrix form (Equation 7). But before we can use the k matrix to analyze the system 

stiffness matrix in a structural analysis problem as the beam-column element’s free body diagrams are presented in 

Figure 9, the derived stiffness matrix needs to transform it from the local to global system coordinates. 

𝑓 = 𝑘𝑑 =

[
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   (7) 

 

 

Figure 9. Force-displacement relationship 

The beam-column element nodal displacement in the local coordinate system for the sake of the local-global 
transformation computation is illustrated in Figure 10. It is thus rotated by the angle θ and situated at the global 
coordinate system, as displayed in Figure 11. 

 

Figure 10. Displacements of beam-column element in local coordinate system 

 

Figure 11. Local displacements of beam-column element in global coordinate system 
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The displacements for the beam-column element in the global coordinate system following similar rotational 

orientation at the angle θ can be seen in Figure 12, where the six displacements are represented as Di for the global 

coordinate system [36]. 

 

Figure 12. Global displacement in global coordinate system 

We have to express each displacement in the local coordinate system, di, in terms of the displacements in the global 

coordinate system, Di, as indicated in Figure 13. 

 

 

 

Figure 13. Diagram showing derivation of displacement transformation matrix 
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d4 can be defined in terms of the global D5 and D4, the sum of the projection of the global displacements unto the 

local x-axis which is expressed mathematically in Equation 8. 

𝑑4 = 𝐷4 𝑐𝑜𝑠 𝜃 + 𝐷5 𝑠𝑖𝑛 𝜃  (8) 

Similarly, d5 in the local system can be considered in terms of D4 and D5 in the global system, as stated in Equation 

9, however, d6 is the same as the global D6 because they both represent the rotation about the z-axis, as presented in 

Equation 10 [37]. 

𝑑5 = −𝐷4 𝑠𝑖𝑛 𝜃 + 𝐷5 𝑐𝑜𝑠 𝜃  (9) 

𝑑6 = 𝐷6  (10) 

It is worth mentioning that the rotation of the x-y plane by the angle θ does not change the orientation of the z-axis, 

it remains perpendicular to that plane. θ is the end rotations; converting into the matrix notation we obtain. Following 

the condition of symmetry, d1, d2, and d3 can be written mathematically in Equations 11–13 which give us a total of six 

equations and denoting them in the matrix notation as presented in Equation 14 to obtain the displacement transformation 

matrix (T) [38]. 

𝑑1 = 𝐷1 𝑐𝑜𝑠 𝜃 + 𝐷2 𝑠𝑖𝑛 𝜃  (11) 

𝑑2 = −𝐷1 𝑠𝑖𝑛 𝜃 + 𝐷2 𝑐𝑜𝑠 𝜃  (12) 

𝑑3 = 𝐷3  (13) 

𝑑 = 𝑇𝐷 =

[
 
 
 
 
 
𝑑1
𝑑2
𝑑3
𝑑4
𝑑5
𝑑6]
 
 
 
 
 

=

[
 
 
 
 
 
𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃 0 0 0 0
− 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 0 0 0 0
0 0 1 0 0 0
0 0 0 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃 0
0 0 0 − 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 0
0 0 0 0 0 1]

 
 
 
 
 

×

[
 
 
 
 
 
𝐷1
𝐷2
𝐷3
𝐷4
𝐷5
𝐷6]
 
 
 
 
 

  (14) 

We can also achieve a similar matrix for the force transformation matrix (Q) by presenting the nodal forces for the 

beam-column element rotated through the angle θ. The member forces in the local (fi) and global coordinate system (Fi) 

are demonstrated in Figure 14 [39]. 

  

Figure 14. Local forces and global forces in global coordinate system 

Now, we define the global F4 in terms of the local forces f4 and f5, which can be achieved by adding the projection 

of the local f4 and f5 unto the global F4 axis (Equation 15). 

𝐹4 = 𝑓4 𝑐𝑜𝑠 𝜃 − 𝑓5 𝑠𝑖𝑛 𝜃  (15) 

Similarly, F5 can be represented mathematically, in terms of the end rotation 𝜃 and the local forces f4 and f5 in 

Equation 16. F6 is the same as the local force f6, as given in Equation 17 [40]. 

𝐹5 = 𝑓4 𝑠𝑖𝑛 𝜃 + 𝑓5 𝑐𝑜𝑠 𝜃  (16) 

𝐹6 = 𝑓6  (17) 
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The graphical expression of the six local forces fi in terms of the forces in the global coordinate system Fi is indicated 

in Figure 15. Following the condition of symmetry, the global forces F1, F2, and F3 can be written mathematically 

(Equations 18–20). These six sets of equations can be provided in the matrix form as in Equation 21 to obtain the force 

transformation matrix (Q) [41]. 

𝐹1 = 𝑓1 𝑐𝑜𝑠 𝜃 − 𝑓2 𝑠𝑖𝑛 𝜃  (18) 

𝐹2 = 𝑓1 𝑠𝑖𝑛 𝜃 + 𝑓2 𝑐𝑜𝑠 𝜃  (19) 

𝐹3 = 𝑓3  (20) 

𝐹 = 𝑄𝑓 =

[
 
 
 
 
 
𝐹1
𝐹2
𝐹3
𝐹4
𝐹5
𝐹6]
 
 
 
 
 

=

[
 
 
 
 
 
𝑐𝑜𝑠 𝜃 − 𝑠𝑖𝑛 𝜃 0 0 0 0
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 0 0 0 0
0 0 1 0 0 0
0 0 0 𝑐𝑜𝑠 𝜃 − 𝑠𝑖𝑛 𝜃 0
0 0 0 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 0
0 0 0 0 0 1]

 
 
 
 
 

×

[
 
 
 
 
 
𝑓1
𝑓2
𝑓3
𝑓4
𝑓5
𝑓6]
 
 
 
 
 

  (21) 

  

 

Figure 15. Diagram showing derivation of force transformation matrix 

With these mathematical derivations and transformation matrices, we can then obtain the stiffness matrix at the 

global coordinate system, which starts by writing the stiffness matrix in the local coordinate system for the force 

displacement relationship, as depicted in Figure 9. This expression is provided in Equation 22, and by multiplying the 

equation by the force transformation matrix (Q) on both sides of the equation, we get Equation 23. However, recalling 

the force transformation (Q) relationship, we can observe that F = Qf and is substituted into Equation 21 to obtain the 

relationship with the forces at the global coordinates (Fi) in Equation 24 [42, 43]. 

𝑓 = 𝑘 × 𝑑  (22) 

𝑄 × 𝑓 = 𝑄 × 𝑘 × 𝑑  (23) 

𝐹 = 𝑄 × 𝑘 × 𝑑  (24) 
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Also, by considering the displacement transformation matrix (T) relationship which implies that d = TD and 

substituting the expression into Equation 24, we can obtain a generalized mathematical relationship as Equation 25. 

𝐹 = 𝑄 × 𝑘 × 𝑇 × 𝐷  (25) 

The three principal parameters taken for the derivation of Equation 25 are the force transformation matrix, member 

stiffness matrix in the local coordinate, and the displacement transformation matrix, as presented in Equations 21, 7, and 

14, respectively. By multiplying Q, k, and T matrices, we obtain the expression for the global stiffness matrix of the 

beam-column element, as given in Equation 26. This is used to assemble system stiffness matrices when analyzing 

indeterminate frame structures [44]. 

𝐾 = 𝑄𝑘𝑇 =

[
 
 
 
 
 
 
12𝛽𝑠2 + 𝛼𝑐2 −12𝛽𝑐𝑠 + 𝛼𝑐𝑠 −6𝛽𝐿𝑠 −12𝛽𝑠2 − 𝛼𝑐2 12𝛽𝑐𝑠 − 𝛼𝑐𝑠 −6𝛽𝐿𝑠

−12𝛽𝑐𝑠 + 𝛼𝑐𝑠 12𝛽𝑐2 + 𝛼𝑐2 6𝛽𝐿𝑐 12𝛽𝑐𝑠 − 𝛼𝑐𝑠 −12𝛽𝑐2 − 𝛼𝑠2 6𝛽𝐿𝑐

−6𝛽𝐿𝑠 6𝛽𝐿𝑐 4𝛽𝐿2 6𝛽𝐿𝑠 −6𝛽𝐿𝑐 2𝛽𝐿2

−12𝛽𝑠2 − 𝛼𝑐2 12𝛽𝑐𝑠 − 𝛼𝑐𝑠 6𝛽𝐿𝑠 12𝛽𝑠2 + 𝛼𝑠2 −12𝛽𝑐𝑠 + 𝛼𝑐𝑠 6𝛽𝐿𝑠

12𝛽𝑐𝑠 − 𝛼𝑐𝑠 −12𝛽𝑐2 − 𝛼𝑠2 −6𝛽𝐿𝑐 −12𝛽𝑐𝑠 + 𝛼𝑐 12𝛽𝑐2 + 𝛼𝑠2 −6𝛽𝐿𝑐

−6𝛽𝐿𝑠 6𝛽𝐿𝑐 2𝛽𝐿2 6𝛽𝐿𝑠 −6𝛽𝐿𝑐 4𝛽𝐿2 ]
 
 
 
 
 
 

  (26) 

where 𝛼 =
𝐸𝐴

𝐿
; 𝛽 =

𝐸𝐼

𝐿3
; 𝑐 = 𝑐𝑜𝑠 𝜃; 𝑠 = 𝑠𝑖𝑛 𝜃; E is the modulus of elasticity; A is the cross-sectional area; I is the moment 

of inertia about the axis of bending. 

2.2. Structural Modeling of MDOF Frame for Parametric Studies 

The following nine steps are taken in the beam-column finite element application for the analysis of indeterminate 

frame structures [45]. 

1. Apply the member stiffness matrix formula and determine the member stiffness matrices without load effects. 

2. Analyze the applied loads to obtain the member fixed end forces. 

3. Apply the force transformation matrix computation for cases with member loads. 

4. Determine DOF of the frame at the global coordinate by analyzing the imposed support conditions. 

5. Associate DOF for the members (local coordinate) with the derived DOF at the global coordinate. 

6. Assemble the global stiffness matrix using the relationship derived in the step 5 above. 

7. Derive the system displacements (global coordinate) using Equation 22 i.e., relationship between the global 

stiffness matrix, displacement, and fixed end forces. 

8. Transform the calculated system displacements into local coordinate systems. 

9. Determine the member forces (bending moments and shear and axial forces) with the aid of derived member 

displacements, calculated member stiffness, and applied member forces. 

Formulation of frame structures were first taken for the study which are loaded on the distinct points namely, member 

and joint loads. The indeterminate frame for this study is illustrated in Figures 16 and 17 with the constant modulus of 

elasticity (E), moment of Inertia (I), and cross-sectional area (A) of 200 GPa, 30×106 mm4, and 5000 mm2, respectively. 

 

Figure 16. Parametric study, Case 1 
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Figure 17. Parametric study, Case 2 

Without joint loads, the member equations can be expressed as in Equation 22 where f is the force vector, d is the 

displacement vector, and k is the stiffness matrix. However, when the member is subjected to a load either concentrated 

or distributed, then the equation is transformed to Equation 27 where p represents fixed end forces due to the member 

loads. In the cases of uniformly distributed load w applied to a member with the length l, concentrated load p applied to 

the center of the member with the length l, and concentrated load p applied at arbitrary points between a and b of the 

member length l, the elements of p for the three load patterns are displayed in Equation 28 specified in the member’s 

local coordinate system. When transformed to the global coordinate system, Equation 27 is transformed to Equation 29 

where Q is the force transformation matrix. Assuming that, P = Qp, where P is the vector of fixed end forces specified 

in the global coordinate system which is used to determine the system joint loads [46, 47]. 

𝑓 = (𝑘 × 𝑑) + 𝑝  (27) 

𝑝 =

{
 
 
 

 
 
 

0
𝑤𝑙

2

𝑤𝑙2

12

0
𝑤𝑙

2

−
𝑤𝑙2

12 }
 
 
 

 
 
 

 𝑝 =

{
 
 
 

 
 
 
0
𝑝

2
𝑝𝑙

8

0
𝑝

2

−
𝑝𝑙

8}
 
 
 

 
 
 

 𝑝 =

{
 
 
 

 
 
 

0
𝑝𝑏

𝑙

𝑝𝑎𝑏2

𝑙2

0
𝑝𝑎

𝑙

−
𝑝𝑎2𝑏

𝑙2 }
 
 
 

 
 
 

   (28) 

𝐹 = (𝐾 × 𝐷) + (𝑄 × 𝑝)  (29) 

In line with the forgoing, one-story frame with concentrated member loads was modeled for the analysis (Figure 18) 

with the constant modulus of elasticity (E) of 200 GPa and moment of inertia (I) and cross-sectional area (A) of 640×106 

mm4 and 11700 mm2, respectively for the horizontal member (BC), and moment of inertia (I) and cross-sectional area 

(A) of 330×106 mm4 and 9500 mm2, respectively for the vertical members (AB and CD). 

 

Figure 18. Parametric study, Case 3 

The reactions (bending moments and shear and axial forces) are calculated from the statically indeterminate frame 

and are statistically compared with analytical solutions obtained from SAP2000 software using student’s t-test. The 

MATAB and Microsoft Excel software are adapted for the matrix computation and analysis to derive accurate result 

[48, 49]. 

3. Analysis and Iterative Solutions 

The developed beam-column element stiffness matrix was deployed for the analysis of indeterminate frame 

structures to derive the reactions (bending moments and shear and axial forces) due to applied joint and member loads. 

The formulated element stiffness matrix formula was synthesized in the MATLAB software and the solutions for the 

three cases investigated for the parametric assessments are presented according to the stated steps as follows [50]. 
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3.1. Case 1: L-Shaped Frame Supported by Pin and Fixed Supports at Two Ends with Joint Load 

3.1.1. Derivation of Member Stiffness Matrix 

Parameters for the member AB are presented below. 

𝛼 =
𝐸𝐴

𝐿
=

(200000000)(0.005)

10
= 100000;  𝛽 =

𝐸𝐼

𝐿3
=

(200000000)(0.00003)

1000
= 6 

𝑐𝑜𝑠(𝜃) = 𝑐𝑜𝑠(90) = 0; 𝑠𝑖𝑛(𝜃) = 𝑠𝑖𝑛(90) = 1  

Therefore, by substituting the parameters into the member stiffness matrix formula we obtain Equation 30. 

𝐾𝐴𝐵 =

[
 
 
 
 
 
72 0 −360 −72 0 −360
0 100000 0 0 100000 0

−360 0 2400 360 0 1200
−72 0 360 72 0 360
0 100000 0 0 100000 0

−360 0 12000 360 0 2400]
 
 
 
 
 

  (30) 

Parameters for the member BC are as following. 

𝛼 =
𝐸𝐴

𝐿
=

(200000000)(0.005)

8
= 125000; 𝛽 =

𝐸𝐼

𝐿3
=

(200000000)(0.00003)

512
= 11.72 

𝑐𝑜𝑠(𝜃) = 𝑐𝑜𝑠(0) = 1; 𝑠𝑖𝑛(𝜃) = 𝑠𝑖𝑛(0) = 0  

Equation 31 can be achieved by substituting the parameters into the member stiffness matrix formula. 

𝐾𝐵𝐶 =

[
 
 
 
 
 
125000 0 0 −125000 0 0

0 140.625 562.5 0 −140.625 562.5
0 562.5 3000 0 −562.5 1500

−125000 0 0 125000 0 0
0 −140.625 −562.5 0 140.625 −562.5
0 562.5 1500 0 −562.5 3000 ]

 
 
 
 
 

  (31) 

3.1.2. Assembling of System Matrix 

Since there are no member loads, there is no need for the force transformation computation and hence, the imposed 

joint loads are taken as the fixed end forces corresponding to the numbering orientation of the defined DOF in the global 

coordinate, as demonstrated in Figure 19. The three DOF for the beam-column element at the local coordinate associated 

with the derived four DOF at the global coordinate were added to assemble the global stiffness matrix, as presented in 

Equations 32 and 33 [51]. 

 

Figure 19. DOF in global coordinates and derivation of force vector from applied joint loads, Case 1 
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𝑘11 = 𝑘33
𝐴𝐵 𝑘12 = 𝑘34

𝐴𝐵 𝑘13 = 𝑘35
𝐴𝐵 𝑘14 = 𝑘36

𝐴𝐵 𝑘22 = 𝑘44
𝐴𝐵 + 𝑘11

𝐵𝐶  𝑘23 = 𝑘45
𝐴𝐵 + 𝑘12

𝐵𝐶 𝑘24 = 𝑘46
𝐴𝐵 + 𝑘13

𝐵𝐶 𝑘33 =

𝑘55
𝐴𝐵 + 𝑘22

𝐵𝐶  𝑘34 = 𝑘56
𝐴𝐵 + 𝑘23

𝐵𝐶  𝑘44 = 𝑘66
𝐴𝐵 + 𝑘33

𝐵𝐶  (32) 

𝐾 = [

2400 360 0 1200
0 125072 0 360
0 0 100140.6 562.5

1200 360 562.5 5400

]  (33) 

3.1.3. Derivation of System Displacements 

Using the derived system stiffness matrix and force vector and substituting in Equation 22, the displacements in the 

global coordinates are obtained in Equation 34. 

[

2400 360 0 1200
0 125072 0 360
0 0 100140.6 562.5

1200 360 562.5 5400

]{

𝐷1
𝐷2
𝐷3
𝐷4

} = {

0
20
0
−10

}; {

𝐷1
𝐷2
𝐷3
𝐷4

} = {

0.00102
0.000163
0.00012
−0.0021

} (34) 

3.1.4. Calculation of Member Forces 

The computed system displacements are first transformed into the local coordinates (Figure 20), after which the 

derived member displacements are substituted in Equation 22 to determine the member forces, as indicated in Figure 21 

and Equations 35 and 36 respectively for the members AB and BC [52]. 

 

Figure 20. Transformation of system displacements to local coordinates, Case 1 

 

Figure 21. Member forces in free body diagram, Case 1 

{
 
 

 
 
𝑓1
𝑓2
𝑓3
𝑓4
𝑓5
𝑓6}
 
 

 
 

=

[
 
 
 
 
 
72 0 −360 −72 0 −360
0 100000 0 0 100000 0

−360 0 2400 360 0 1200
−72 0 360 72 0 360
0 100000 0 0 100000 0

−360 0 12000 360 0 2400]
 
 
 
 
 

{
 
 

 
 

0
0

0.00102
0.000163
0.000012
−0.0021}

 
 

 
 

=

{
 
 

 
 
0.373
−1.174
0

−0.373
1.174
−3.734}

 
 

 
 

  (35) 
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{
 
 

 
 
𝑓1
𝑓2
𝑓3
𝑓4
𝑓5
𝑓6}
 
 

 
 

=

[
 
 
 
 
 
125000 0 0 −125000 0 0

0 140.625 562.5 0 −140.625 562.5
0 562.5 3000 0 −562.5 1500

−125000 0 0 125000 0 0
0 −140.625 −562.5 0 140.625 −562.5
0 562.5 1500 0 −562.5 3000 ]

 
 
 
 
 

{
 
 

 
 
0.000163
0.000012
−0.0021

0
0
0 }

 
 

 
 

=

{
 
 

 
 
20.373
−1.174
−6.266
−20.373
1.174
−3.130 }

 
 

 
 

  (36) 

3.2. Case 2: L-Shaped Frame Supported by Pin and Fixed Supports at Two Ends with Member Loads 

3.2.1. Derivation of Member Stiffness Matrix 

Since the frame has similar geometry and flexural rigidity parameters as the Case 1 frame, the member stiffness 

matrices are the same, as presented in Equations 30 and 31. Therefore, 

𝐾𝐴𝐵 =

[
 
 
 
 
 
72 0 −360 −72 0 −360
0 100000 0 0 100000 0

−360 0 2400 360 0 1200
−72 0 360 72 0 360
0 100000 0 0 100000 0

−360 0 12000 360 0 2400]
 
 
 
 
 

; 𝐾𝐵𝐶 =

[
 
 
 
 
 
125000 0 0 −125000 0 0

0 140.625 562.5 0 −140.625 562.5
0 562.5 3000 0 −562.5 1500

−125000 0 0 125000 0 0
0 −140.625 −562.5 0 140.625 −562.5
0 562.5 1500 0 −562.5 3000 ]

 
 
 
 
 

 

3.2.2. Analysis and Transformation of Member Loads 

The member loads on the frame structures are analyzed to convert them to fixed end forces using Equation 28 for 

the imposed concentrated and distributed loads, and by substituting the defined parameters we obtain Equation 37. 

𝑝𝐴𝐵 =

{
 
 

 
 
0
8
20
0
8
−20}

 
 

 
 

; 𝑝𝐵𝐶 =

{
 
 

 
 
0
12
16
0
12
−16}

 
 

 
 

 (37) 

Furthermore, the derived Equation 37 is multiplied by the force transformation matrix (Q) to obtain the member 

fixed end forces as in Equation 38. Accordingly, the system force vector is presented in Equation 39 [53]. The calculated 

fixed end forces are thus displayed in a free body diagram, and based on support conditions, the reactions at the fixed 

supports are disregarded with the translational reaction in the pinned support, as demonstrated in Figure 22.  

𝑓𝐴𝐵 =

{
 
 

 
 
0
8
20
0
8
−20}

 
 

 
 

×

[
 
 
 
 
 
0 −1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 −1 0
0 0 0 1 0 0
0 0 0 0 0 1]

 
 
 
 
 

=

{
 
 

 
 
−8
0
20
−8
0
−20}

 
 

 
 

; 𝑓𝐵𝐶 =

{
 
 

 
 
0
12
16
0
12
−16}

 
 

 
 

×

[
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 

=

{
 
 

 
 
0
12
16
0
12
−16}

 
 

 
 

 (38) 

𝐹 = {

−20
8
−12
4

}  (39) 

 

Figure 22. Free body diagrams illustrating joint reactions due to member loads, Case 2 
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3.2.3. Assembling of System Matrix 

Similar to the assemblage of the global stiffness matrix for the Case 1 parametric study, the three DOF for the beam-

column element at the local coordinate were systematically associated with the derived four DOF at the global coordinate 

to assemble the global stiffness matrix, as mentioned in Equation 40 [54]. 

𝐾 = [

2400 360 0 1200
0 125072 0 360
0 0 100140.6 562.5

1200 360 562.5 5400

]  (40) 

3.2.4. Derivation of System Displacements 

Utilizing the derived system stiffness matrix and force vector and substituting in Equation 22, the displacements in 

the global coordinates are obtained in Equation 41. 

[

2400 360 0 1200
0 125072 0 360
0 0 100140.6 562.5

1200 360 562.5 5400

]{

𝐷1
𝐷2
𝐷3
𝐷4

} = {

−20
8
−12
4

};  {

𝐷1
𝐷2
𝐷3
𝐷4

} = {

−0.00981
0.0000838
−0.000136
0.00293

} (41) 

3.2.5. Calculation of Member Forces 

The computed system displacements are first transformed into the local coordinates in accordance with the 

numbering configuration of the frame structure at the global coordinate, as indicated in Figure 23. Furthermore, the 

derived member displacements are substituted in Equation 27 to determine the member forces, as depicted in Figure 24 

and Equation 42 and 43 for the members AB and BC, respectively [46]. 

 

Figure 23. Transformation of system displacements to local coordinates, Case 2 

 

Figure 24. Member forces in free body diagram, Case 2 
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{
 
 

 
 
𝑓1
𝑓2
𝑓3
𝑓4
𝑓5
𝑓6}
 
 

 
 

=

[
 
 
 
 
 
72 0 −360 −72 0 −360
0 100000 0 0 100000 0

−360 0 2400 360 0 1200
−72 0 360 72 0 360
0 100000 0 0 100000 0

−360 0 12000 360 0 2400]
 
 
 
 
 

{
 
 

 
 

0
0

−0.00981
0.0000838
−0.000136
0.00293 }

 
 

 
 

+

{
 
 

 
 
−8
0
20
−8
0
−20}

 
 

 
 

=

{
 
 

 
 
−5.53
13.63
0

−10.47
−13.63
−24.71}

 
 

 
 

  (42) 

{
 
 

 
 
𝑓1
𝑓2
𝑓3
𝑓4
𝑓5
𝑓6}
 
 

 
 

=

[
 
 
 
 
 
125000 0 0 −125000 0 0

0 140.625 562.5 0 −140.625 562.5
0 562.5 3000 0 −562.5 1500

−125000 0 0 125000 0 0
0 −140.625 −562.5 0 140.625 −562.5
0 562.5 1500 0 −562.5 3000 ]

 
 
 
 
 

{
 
 

 
 
0.0000838
−0.000136
0.00293

0
0
0 }

 
 

 
 

+

{
 
 

 
 
0
12
16
0
12
−16}

 
 

 
 

=

{
 
 

 
 
10.47
13.63
24.71
−10.47
10.37
−11.68}

 
 

 
 

  
(43) 

3.3. Case 3: One-Story Frame Constrained by Fixed Supports and Symmetrically Loaded 

3.3.1. Derivation of Member Stiffness Matrix 

Parameters for the vertical members AB and DC with similar geometry and flexural rigidity are provided in the 

following. 

𝛼 =
𝐸𝐴

𝐿
=

(200000000)(0.0095)

4
= 475000; 𝛽 =

𝐸𝐼

𝐿3
=

(200000000)(0.00033)

43
= 1031.25 

𝑐𝑜𝑠(𝜃) = 𝑐𝑜𝑠(90) = 0; 𝑠𝑖𝑛(𝜃) = 𝑠𝑖𝑛(90) = 1  

Consequently, Equation 44 is achieved by substituting the parameters into the member stiffness matrix formula. 

𝐾𝐴𝐵 = 𝐾𝐷𝐶 =

[
 
 
 
 
 
12375 0 −24750 −12375 0 −24750
0 475000 0 0 −475000 0

−24750 0 66000 24750 0 33000
−12375 0 24750 12375 0 24750

0 −475000 0 0 475000 0
−24750 0 33000 24750 0 66000 ]

 
 
 
 
 

  (44) 

Parameters for the member BC are demonstrated below. 

𝛼 =
𝐸𝐴

𝐿
=

(200000000)(0.0117)

7.5
= 31200; 𝛽 =

𝐸𝐼

𝐿3
=

(200000000)(0.00064)

7.53
= 303.41 

𝑐𝑜𝑠(𝜃) = 𝑐𝑜𝑠(0) = 1; 𝑠𝑖𝑛(𝜃) = 𝑠𝑖𝑛(0) = 0  

Moreover, by substituting the parameters into the member stiffness matrix formula we obtain Equation 45. 

𝐾𝐵𝐶 =

[
 
 
 
 
 
312000 0 0 312000 0 0

0 3641 13653 0 −3641 13653
0 13653 68267 0 −13653 34133

312000 0 0 312000 0 0
0 −3641 −13653 0 3641 −13653
0 13653 34133 0 −13653 68267 ]

 
 
 
 
 

  (45) 

3.3.2. Analysis and Transformation of Member Loads 

The member loads on the frame structures are analyzed to convert them to fixed end forces utilizing Equation 28 

which are shown in Figure 25 for the load applied at distance a from the left end and b from the right end with the beam 

length (L). Due to the loading configuration in the member, the principle of superposition is deployed to calculate the 

fixed end forces, as depicted in Figure 26 [51]. 

 

Figure 25. Fixed end forces due to applied concentrated load, Case 3 
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Figure 26. Application of principle of superposition to obtain fixed end forces, Case 3 

The derived fixed end forces for the member BC are given in the matrix form and multiplied by the force 

transformation matrix (Q), as reported in Equation 46. The free body diagram with the calculated fixed end forces is 

represented in Figure 27 [44, 55]. 

𝑝𝐵𝐶 =

{
 
 

 
 

0
−9
−13.2
0
−9
13.2 }

 
 

 
 

 𝑓𝐵𝐶 =

{
 
 

 
 

0
−9
−13.2
0
−9
13.2 }

 
 

 
 

×

[
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 

=

{
 
 

 
 

0
−9
−13.2
0
−9
13.2 }

 
 

 
 

 (46) 

 

Figure 27. Free body diagram illustrating calculated fixed end forces, Case 3 

3.3.3. Assembling of System Matrix 

The frame has six DOF which include the displacements and rotations at the joints B and C. The member stiffness 

matrices are added up to obtain the system stiffness matrix (global coordinate). The relative contributions of the members 

AB, BC, and DC to the global stiffness is displayed in Figure 28. The system stiffness matrix can be written numerically 

as in Equations 47 and 48 [56]. 

 

Figure 28. DOF of frame and global displacements, Case 3 

𝐾 =

[
 
 
 
 
 
 
𝑘𝐴𝐵
44 + 𝑘𝐵𝐶

11 𝑘𝐴𝐵
45 + 𝑘𝐵𝐶

12 𝑘𝐴𝐵
46 + 𝑘𝐵𝐶

13 𝑘𝐵𝐶
14 𝑘𝐵𝐶

15 𝑘𝐵𝐶
16

𝑘𝐴𝐵
45 + 𝑘𝐵𝐶

12 𝑘𝐴𝐵
55 + 𝑘𝐵𝐶

22 𝑘𝐴𝐵
56 + 𝑘𝐵𝐶

23 𝑘𝐵𝐶
24 𝑘𝐵𝐶

25 𝑘𝐵𝐶
26

𝑘𝐴𝐵
46 + 𝑘𝐵𝐶

13 𝑘𝐴𝐵
56 + 𝑘𝐵𝐶

23 𝑘𝐴𝐵
66 + 𝑘𝐵𝐶

33 𝑘𝐵𝐶
34 𝑘𝐵𝐶

35 𝑘𝐵𝐶
36

𝑘𝐵𝐶
14 𝑘𝐵𝐶

24 𝑘𝐵𝐶
34 𝑘𝐵𝐶

44 + 𝑘𝐷𝐶
44 𝑘𝐵𝐶

45 + 𝑘𝐷𝐶
45 𝑘𝐵𝐶

46 + 𝑘𝐷𝐶
46

𝑘𝐵𝐶
15 𝑘𝐵𝐶

25 𝑘𝐵𝐶
35 𝑘𝐵𝐶

45 + 𝑘𝐷𝐶
45 𝑘𝐵𝐶

55 + 𝑘𝐷𝐶
55 𝑘𝐵𝐶

56 + 𝑘𝐷𝐶
56

𝑘𝐵𝐶
16 𝑘𝐵𝐶

26 𝑘𝐵𝐶
36 𝑘𝐵𝐶

46 + 𝑘𝐷𝐶
46 𝑘𝐵𝐶

56 + 𝑘𝐷𝐶
56 𝑘𝐵𝐶

66 + 𝑘𝐷𝐶
66 ]
 
 
 
 
 
 

  (47) 

𝐾 =

[
 
 
 
 
 
324375 0 24750 −312000 0 0

0 478641 13653 0 −3641 13653
24750 13653 134267 0 −13653 34133
−312000 0 0 324375 0 24750

0 −3641 −13653 0 47841 −13653
0 13653 34133 24750 −13653 13427 ]

 
 
 
 
 

  (48) 
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3.3.4. Derivation of System Displacements 

Employing the calculated system stiffness matrix and fixed end forces (force vector) and substituting in Equation 

22, the joint displacements in the global coordinates are obtained in Equation 49. 

[
 
 
 
 
 
324375 0 24750 −312000 0 0

0 478641 13653 0 −3641 13653
24750 13653 134267 0 −13653 34133
−312000 0 0 324375 0 24750

0 −3641 −13653 0 47841 −13653
0 13653 34133 24750 −13653 13427 ]

 
 
 
 
 

{
 
 

 
 
𝐷1
𝐷2
𝐷3
𝐷4
𝐷5
𝐷6}
 
 

 
 

=

{
 
 

 
 

0
−9
−13.2
0
−9
13.2 }

 
 

 
 

;

{
 
 

 
 
𝐷1
𝐷2
𝐷3
𝐷4
𝐷5
𝐷6}
 
 

 
 

=

{
 
 

 
 
5.176666 × 10−6

−0.0000189474
−0.000133103

−5.176666 × 10−6

−0.0000189474
0.000133103 }

 
 

 
 

 (49) 

3.3.5. Calculation of Member Forces 

The derived system joint displacements are thus transformed into the local coordinates according to the numbering 

configuration of the frame structure at the global coordinate (Figure 29). However, these member displacements are 

substituted in Equations 22 and 27 to determine the member forces, as depicted in Figure 30 and Equations 50–52 for 

the members AB, BC, and DC, respectively [57]. 

 

Figure 29. Member displacements, Case 3 

 

Figure 30. Member forces in free body diagram, Case 3 

{
 
 

 
 
𝑓1
𝑓2
𝑓3
𝑓4
𝑓5
𝑓6}
 
 

 
 

=

[
 
 
 
 
 
12375 0 −24750 −12375 0 −24750
0 475000 0 0 −475000 0

−24750 0 66000 24750 0 33000
−12375 0 24750 12375 0 24750

0 −475000 0 0 475000 0
−24750 0 33000 24750 0 66000 ]

 
 
 
 
 

{
 
 

 
 

0
0
0

5.176666 × 10−6

−0.0000189474
−0.000133103 }

 
 

 
 

=

{
 
 

 
 
3.23
9

−4.26
−3.23
−9
−8.66}

 
 

 
 

  (50) 

{
 
 

 
 
𝑓1
𝑓2
𝑓3
𝑓4
𝑓5
𝑓6}
 
 

 
 

=

[
 
 
 
 
 
312000 0 0 312000 0 0

0 3641 13653 0 −3641 13653
0 13653 68267 0 −13653 34133

312000 0 0 312000 0 0
0 −3641 −13653 0 3641 −13653
0 13653 34133 0 −13653 68267 ]

 
 
 
 
 

{
 
 

 
 
5.176666 × 10−6

−0.0000189474
−0.000133103

−5.176666 × 10−6

−0.0000189474
0.000133103 }

 
 

 
 

+

{
 
 

 
 

0
−9
−13.2
0
−9
13.2 }

 
 

 
 

=

{
 
 

 
 
3.23
9
8.66
−3.23
9

−8.66}
 
 

 
 

  (51) 

{
 
 

 
 
𝑓1
𝑓2
𝑓3
𝑓4
𝑓5
𝑓6}
 
 

 
 

=

[
 
 
 
 
 
12375 0 −24750 −12375 0 −24750
0 475000 0 0 −475000 0

−24750 0 66000 24750 0 33000
−12375 0 24750 12375 0 24750

0 −475000 0 0 475000 0
−24750 0 33000 24750 0 66000 ]

 
 
 
 
 

{
 
 

 
 

0
0
0

5.176666 × 10−6

−0.0000189474
0.000133103 }

 
 

 
 

=

{
 
 

 
 
−3.23
9
4.26
3.23
−9
8.66 }

 
 

 
 

  (52) 
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4. Results and Discussion 

The beam-column element stiffness matrix was derived in this analytical study by the superposition of the truss and 

beam elements stiffness matrices to statically analyze indeterminate MDOF frames. Through the application of this 

derived matrix stiffness method, the three internal stresses, namely the bending moments and shear and axial forces, are 

computed, which are necessary to evaluate the effects of applied concentrated and distributed loads on statically 

indeterminate structures. To actualize this benefit, three parametric studies, which are frames with varying geometries 

subjected to joint and member loads, were examined for the technical emphasis in this study using the finite element 

stiffness matrix approach. The study is relevant to the application of the derived six-coefficient stiffness matrix to 

determine the three internal stresses of the bending moments and shear and axial forces at both ends of the members 

elements. This analytical approach was also synthesized in the MATLAB software to ensure the accurate computation 

and analysis of indeterminate frame structures [58]. 

The first parametric study (Case 1) involves an indeterminate inverted L-shaped frame subjected to joint concentrated 

load and moment values of 20 kN and 10 kNm, respectively. Taking the provided sectional and geometry properties of 

the structure, the stiffness matrices for the connecting frame members were derived. The applied loads were used to 

formulate the fixed end forces in line with the numbering sequence and orientation of the four global DOF. The 

developed frame members’ stiffness matrices were assembled to form the global stiffness matrix corresponding to the 

global DOF, taking the relationships between the six DOF of the beam-column element in the local coordinates into 

consideration. The assembled global stiffness matrix and the force vector, also known as fixed end forces, were utilized 

in the force-stiffness-displacement relationship to determine the system displacements, which are D1 = 0.00102 m, D2 = 

0.000163 m, D3 = 0.00102 m, and D4 = -0.0021 m. The member forces are then determined by first localizing the 

computed global displacements and then plugging back the derived member stiffness matrix values in the force-stiffness-

displacement formula. The calculated frame member forces showed that the effect of the joint forces on the inverted L-

shaped frame resulted in a compressive axial force of 20.373 kN on the horizontal member with a clockwise moment of 

6.266 kNm and 3.130 kNm on the left and right ends, respectively, and a tension force of 1.174 kN on the vertical 

members. 

The Case 2 frame is also an inverted L-shaped similar to Case 1, subjected to a uniformly distributed load of 3 kN/m 

on the vertical member and a concentrated load of 16 kN on the horizontal member. The frame members’ stiffness 

matrices were also calculated with the aid of their sectional and geometry properties. The subjected member loads on 

the frame structure were converted to fixed end forces using the associated formula and further transformed to the 

equivalent force vectors employing the force transformation matrix (Q). Similar to Case 1, the calculated frame 

members’ stiffness matrices were assembled to form the global stiffness matrix corresponding to the global DOF, 

considering the relationships between the six DOF of the beam-column element in the local coordinates. The global 

stiffness matrix and the computed force vector were taken into the force-stiffness-displacement formula to calculate the 

system displacements, which are D1 = -0.00981 m, D2 = 0.0000838 m, D3 = -0.000136 m, and D4 = 0.00293 m. The 

member forces were determined by first transforming the computed global displacements to the local coordinates and 

then analyzing the values with the aid of the force-stiffness-displacement formula. The computed results indicated 

compressive forces of 10.47 kN and 13.63 kN for the horizontal and vertical frame members, respectively. Moreover, 

there was a clockwise moment of 11.68 kNm on the left end and an anticlockwise moment of 10.47 kNm on the right 

end of the horizontal member [59]. 

Lastly, Case 3 is a one-bay frame structure with two columns (vertical members) and connected with one horizontal 

member which is subjected to two concentrated loads of 9 kN at distance 2 m each from the ends and 3.5 m apart. The 

members’ stiffness matrices were derived with the aid of the provided members’ flexural rigidity and cross-sectional 

area, after which the applied loads were analyzed and transformed to fixed end forces employing the associated formula. 

Furthermore, the calculated members’ stiffness matrices were assembled to achieve the global stiffness matrix 

conforming to the global DOF through the relationships between the beam-column element’s six DOF in the local 

coordinates. The global stiffness matrix and the computed force vector were taken in the force-stiffness-displacement 

formula to calculate the system displacements which are D1 = 5.176666×10-6 m, D2 = -0.0000189474 m, D3 = -

0.000133103 m, D4 = 5.176666×10-6 m, D5 = -0.0000189474 m, and D6 = -0.000133103 m. The member forces were 

determined by transforming the computed global displacements to the local coordinates and then analyzing the values 

with the aid of the force-stiffness-displacement formula. The computed results demonstrated compressive forces of 9 

kN and 3.23 kN for the vertical and horizontal members, respectively. In addition, an anticlockwise moment of 8.66 

kNm was calculated for the horizontal member, while clockwise and anticlockwise moments of 8.66 kNm and 3.23 

kNm were respectively computed for the vertical members. Based on the derived results it can be concluded that the 

proposed finite element model and methodology can accurately determine the internal forces of MDOF frames. This is 

consistent with previous studies such as Gao [21], Zhou et al. [22], and Panahi and Zahrai [38] which also applied FEA 

to assess the behavior of MDOF frames under different loading conditions. Overall, the derived internal stresses revealed 

that the shear force values for the horizontal members were the axial forces in the vertical members and vice versa. The 

present study contributes to the understanding of the behavior of MDOF frames and provide valuable information for 

the design and analysis of such structures which is in consonance with the numerical analysis findings of Lou et al. [35] 

and Nukala and White [19]. 
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4.1. Validation of Computed Results using SAP2000 

The computational steps of the structural analysis for the three studied cases were synthesized in the MATLAB 

software to enable the flexible application of the formula method [36]. Using SAP2000, the three cases deployed for the 

parametric studies were modeled and analyzed. The obtained reactions (the bending moments and shear and axial forces) 

diagrams for the frames under the study in Cases 1–3 are presented in Figures 31–33, respectively [60]. One of the 

benefits of deploying SAP2000 for the frame analysis is its ability to perform parametric study which allows users to 

investigate the effects of different design parameters such as section properties and member sizes on the structural 

response. This feature is particularly useful for the optimization of the design and ensuring that the structure meets the 

required performance criteria. The models were first created in SAP2000 by defining the geometry and material 

properties and boundary conditions, the next step was the definition of loads applied to the structure, and then the 

analysis of the structure utilizing the FEM solver. The analysis would help calculate the internal forces and deformation 

of the structure under the applied loads [61, 62]. The derived results from SAP2000 were compared statistically with 

the reactions calculated with the beam-column element matrix formula which are listed in Table 1 and using the analysis 

of variance (ANOVA) approach to evaluate the statistical significance between the compared sets of data. The ANOVA 

results are summarized in Tables 2–4 for Cases 1–3, respectively [63, 64]. 

  

Support Reactions Moment 

  

Shear Force Axial Force 

Figure 31. SAP2000 analysis results for Case 1 
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Support Reactions Moment 

  
Shear Force Axial Force 

Figure 32. SAP2000 analysis results for Case 2 

  
Support Reactions Moment 

 

 

Shear Force Axial Force 

Figure 33. SAP2000 analysis results for Case 3 
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Table 1. Calculated results compared with SAP2000 analysis results 

Case 1 

Internal Forces Calculated Results SAP2000 

Shear-AB1 0.373 0.37 

Axial-AB1 -1.174 -1.17 

BM-AB1 0 0 

Shear-AB2 -3.373 -0.37 

Axial-AB2 1.174 1.17 

BM-AB2 -3.734 -3.73 

Shear-BC1 -1.174 -1.17 

Axial-BC1 20.373 20.37 

BM-BC1 -6.266 -6.27 

Shear-BC2 1.174 1.17 

Axial-BC2 -20.373 -20.37 

BM-BC2 -3.13 -3.09 

Case 2 

Internal Forces Calculated Results SAP2000 

Shear-AB1 -5.53 -5.54 

Axial-AB1 13.63 13.59 

BM-AB1 0 0 

Shear-AB2 -10.47 -10.46 

Axial-AB2 13.63 -13.59 

BM-AB2 24.71 -24.57 

Shear-BC1 13.63 13.59 

Axial-BC1 10.47 10.46 

BM-BC1 24.71 24.57 

Shear-BC2 10.37 10.41 

Axial-BC2 -10.47 -10.46 

BM-BC2 -11.68 -11.86 

Case 3 

Internal Forces Calculated Results SAP2000 

Shear-AB1 3.23 3.79 

Axial-AB1 9 9 

BM-AB1 -4.26 -4.86 

Shear-AB2 -3.23 -3.79 

Axial-AB2 -9 -9 

BM-AB2 -8.66 -10.3 

Shear-BC1 9 9 

Axial-BC1 3.23 3.79 

BM-BC1 8.66 10.3 

Shear-BC2 9 9 

Axial-BC2 -3.23 -3.79 

BM-BC2 8.66 10.3 

Shear-DC1 -3.23 -3.79 

Axial-DC1 9 9 

BM-DC1 4.26 4.86 

Shear-DC2 3.23 3.79 

Axial-DC2 -9 -9 

BM-DC2 8.66 10.3 

BM = bending moment; superscripts 1 and 2 indicate member nodes. 
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Table 2. ANOVA results for Case 1 

Groups Count Sum Average Variance   

Calculated result 12 -16.13 -1.34417 80.76987   

SAP2000 12 -13.09 -1.09083 80.37437   

Source of Variation SS df MS F P-value Fcrit 

Between Groups 0.385067 1 0.385067 0.004779 0.94551 4.30095 

Within Groups 1772.587 22 80.57212    

Total 1772.972 23         

Table 3. ANOVA results for Case 2 

Groups Count Sum Average Variance   

Calculated result 12 73 6.083333 176.1653   

SAP2000 12 -3.86 -0.32167 215.2861   

Source of Variation SS df MS F P-value Fcrit 

Between Groups 246.1442 1 246.1442 1.257598 0.274198 4.30095 

Within Groups 4305.965 22 195.7257    

Total 4552.109 23         

Table 4. ANOVA results for Case 3 

Groups Count Sum Average Variance   

Calculated result 18 35.32 1.962222 47.97467   

SAP2000 18 38.6 2.144444 56.5299   

Source of Variation SS df MS F P-value Fcrit 

Between Groups 0.298844 1 0.298844 0.005719 0.94016 4.130018 

Within Groups 1776.578 34 52.25228    

Total 1776.876 35         

The obtained statistical results displayed that the calculated P-value was greater than the critical value of 0.05, with 

the calculated scores of 0.94551, 0.274198, and 0.94016 for Cases 1, 2, and 3, respectively, which signified that there is 

no significant difference between the sets of data under the investigation. The statistical analysis helps affirm the 

accuracy and performance of the computed results using the beam-column element matrix formula when compared with 

the analysis outcomes derived from SAP2000 [50, 65]. 

5. Conclusions 

The application of the stiffness matrix approach to finite elements was investigated in this study on indeterminate 

structures. The following conclusions can be drawn from the obtained results: 

 The study on the analysis of frame structures using FEM presents a convenient and systematic approach for 

analyzing the behavior of frame structures under different loading conditions, and the results achieved from the 

analysis can be used to design more efficient and cost-effective frame structures. 

 The superposition of the truss and beam elements stiffness matrices in order to formulate the member stiffness 

matrix of a beam-column element with six DOF at each of the two nodes of the member was essentially addressed 

to provide foundational background on the derivation and application of FEM. 

 The deployment of this matrix approach to analyze indeterminate frame structures with joint and member loads 

was further examined to derive the reactions (bending moments and shear and axial forces), and the computed 

results showed that the proposed approach was effective in predicting the internal forces in frame members. 

 For the purpose of emphasis, this matrix approach was used to analyze three different parametric study cases that 

featured frame structures with varying geometries and loading conditions. This was done to assess the adaptability 

and suitability of this formula for the analysis of indeterminate frames. The accuracy of the results was verified 

through comparison with previous studies, which demonstrated that the beam-column element was suitable for 

analyzing the behavior of frame structures. 
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 In order to evaluate the performance of this method, the results derived from the element stiffness matrix approach 

were compared with the results obtained from the finite element software (SAP2000) using the analysis of variance 

(ANOVA). The statistical results indicated a good correlation between the compared results with a P-value > 0.05 

to uncover the adequate performance for the derived beam-column element matrix formula method. 

 The study can contribute to the new knowledge in the field of structural engineering by presenting a practical 

approach for determining the internal forces in frame structures subjected to different loads compared with the 

traditional methods. This method can be used by engineers to optimize the design and analysis of frame structures 

for various applications such as buildings, bridges, and other infrastructural projects to improve their performance. 

6. Abbreviations and Parameters 

Q Force transformation matrix T Displacement transformation matrix 

Di System displacements  di Local displacements 

E Modulus of elasticity of material I Moment of inertia about axis of bending 

A Cross-sectional area of material  k Member stiffness matrix 

fi Member force vector DOF Degrees of freedom 

Fi Global force FEM Finite element method 

MDOF Multiple degrees-of-freedom kT Truss element stiffness matrix 

FEA Finite element analysis l Span length  

kB Beam element stiffness matrix w Uniformly distributed load 

p Concentrated applied load   
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