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Abstract: The emergence of Industry 4.0 has revolutionized the industrial sector, enabling the
development of compact, precise, and interconnected assets. This transformation has not only
generated vast amounts of data but also facilitated the migration of learning and optimization
processes to edge devices. Consequently, modern industries can effectively leverage this paradigm
through distributed learning to define product quality and implement predictive maintenance (PM)
strategies. While computing speeds continue to advance rapidly, the latency in communication has
emerged as a bottleneck for fast edge learning, particularly in time-sensitive applications such as PM.
To address this issue, we explore Federated Learning (FL), a privacy-preserving framework. FL entails
updating a global AI model on a parameter server (PS) through aggregation of locally trained models
from edge devices. We propose an innovative approach: analog aggregation over-the-air of updates
transmitted concurrently over wireless channels. This leverages the waveform-superposition property
in multi-access channels, significantly reducing communication latency compared to conventional
methods. However, it is vulnerable to performance degradation due to channel properties like noise
and fading. In this study, we introduce a method to mitigate the impact of channel noise in FL over-
the-air communication and computation (FLOACC). We integrate a novel tracking-based stochastic
approximation scheme into a standard federated stochastic variance reduced gradient (FSVRG).
This effectively averages out channel noise’s influence, ensuring robust FLOACC performance
without increasing transmission power gain. Numerical results confirm our approach’s superior
communication efficiency and scalability in various FL scenarios, especially when dealing with noisy
channels. Simulation experiments also highlight significant enhancements in prediction accuracy and
loss function reduction for analog aggregation in over-the-air FL scenarios.

Keywords: predictive maintenance; over-the-air federated learning; analog aggregation; low latency;
channel noise

1. Introduction

The pervasive connectivity of numerous devices and sensors, fueled by recent ad-
vancements in communication networks and Internet of Things (IoT) applications, has
resulted in the generation of immense volumes of data. The copious volume of data at hand
serves as the training datasets for machine learning (ML) algorithms that find utility across
various applications in industry, such as process optimization, defining product quality,
and PM, critical components within the purview of Industry 4.0 [1]. Conventionally, the
training process for these ML algorithms has followed a centralized approach, wherein
multiple devices transmit their raw and occasionally sensitive data to a PS possessing
robust computational resources dedicated to training tasks. Nevertheless, the data required
for training these ML algorithms are produced by numerous assets and devices in the
industry, which often necessitate privacy-preserving measures to safeguard data integrity.
Furthermore, the presence of bandwidth constraints poses a bottleneck when transmitting
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a massive amount of data from the devices to the PS [2]. For this reason, there has been
considerable focus on federated and distributed learning algorithms, primarily due to their
ability to train ML models in a fully decentralized manner.

FL algorithms have been proposed as an alternative scheme for privacy-preserving
distributed ML, where each device participates in the training process using exclusively
locally available data facilitated by a PS [3]. In the context of FL, devices communicate
with the PS by exchanging model parameters and their respective local updates, while
ensuring that the raw data remain localized on the devices. This approach offers not only
privacy advantages but also proves to be a compelling solution for wireless edge devices,
particularly when dealing with substantial dataset sizes. In the domain of PM applications,
the volume of data obtained from online sensors is significant. Consequently, it becomes
imperative to account for this substantial data volume when implementing federated
learning techniques for PM. Additionally, time sensitivity and temporal awareness are
essential attributes for the effective execution of PM activities. Therefore, time latency
should be considered for PM applications.

The migration learning from centralized clouds to the edge enables edge servers to
quickly obtain real-time data generated by edge devices, facilitating rapid AI model training.
As a result, distributing these models from servers to devices in close proximity enables
the devices to respond effectively to real-time events, making them well-suited for PM
applications. Despite the rapid advancement of computing speeds, wireless transmission
of large amounts of data by any device faces limitations due to limited radio resources and
the adverse conditions of wireless channels. This creates a communication bottleneck that
hinders fast-edge learning [4,5]. Hence, communication efficiency has been at the forefront
of FL, and the paramount objective is to achieve high model accuracy while minimizing
the number of communication rounds of resource usage. In the realm of cutting-edge
research, the fusion of digital twins and multi-access edge computing has gained significant
attention [6]. This innovative approach represents a crucial technology in the context of 6G
networks, primarily serving as a fundamental enabler for the Industrial IoT. The primary
objective of this research is to minimize the total task completion delay for IoT devices by
optimizing various parameters.

Communication schemes for FL can be categorized as digital or analog. Digital com-
munication, though burdensome for wireless networks, assigns communication resources
to each client’s ML model parameters. Analog communication reduces overhead by al-
lowing shared resources for transmitting FL models. Early research aimed to reduce
communication rounds or payload size. However, most FL literature assumes a perfect
communication channel shifting focus to ML design. Recent research addresses this gap
by emphasizing system design, especially for wireless FL [7–9]. Although early studies
have delved deeply into optimizing communication design for FL, the crucial and practical
matter of a noisy channel with over-the-air communication and computation (OACC) has
not been thoroughly investigated. Incorporating the impact of noisy channels in OACC
complicates convergence analysis due to noise propagation during each communication
round. Moreover, the collective impact of these noisy communications in OACC on the
final learning performance necessitates a comprehensive design and analysis approach.

This work addresses the impact of communication-induced noise during FL training
on the convergence and accuracy performance of the ML model, and then proposes robust
algorithms within the OACC framework that mitigate these effects and optimize client
resources concurrently. Our focus lies in analog communication for model updates [10–12]
and the exploration of new distributed algorithms capable of withstanding high levels of
channel noise and low signal-to-noise ratio (SNR) in industrial environments, in accordance
with PM applications.

1.1. Related Work

In recent years, substantial endeavors have been undertaken to implement the FL
framework over wireless networks, with its origins traced back to McMahan’s seminal
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works [13,14]. A comprehensive survey of FL has been conducted in [15], offering an
overview of this paradigm where statistical models are trained on distributed networks
at the edge. These studies explore the distinctive challenges and characteristics of FL
compared to traditional approaches while identifying open problems that necessitate inter-
disciplinary research efforts. However, these works overlook the practical implications of
channel effects and assume a seamless integration of FL algorithms into wireless networks.
Recently, there has been significant attention given to exploring methods for mitigating the
impact of these effects on FL algorithms [16–18].

This study primarily focuses on analog aggregation schemes for over-the-air transmis-
sion, which are driven by the inherent superposition property of signals in the wireless
multiple-access channel. Analog over-the-air aggregation is a highly promising technique
extensively used in Federated Averaging (FedAvg) due to the fact that the ps or clients
require only the sum of their local gradients or model parameters. These schemes have
been explored in various studies, including [2,19], and other relevant works.

In order to provide context and underscore the contributions of this article, we will
now discuss previous studies that have investigated FL in the presence of imperfect or
noisy communication. The main objective of [20] was to tackle the issue of noise in wireless
communications for federated learning. The paper addressed this challenge by formulating
the problem using an expectation-based model and a worst-case model. They introduced
a sampling-based successive convex approximation algorithm for solving the problem.
This approach successfully handles noise by incorporating it as a regularizer in the loss
function during the training process. Simulation results showcased improved prediction
accuracy and reduced loss function values, affirming the effectiveness of the proposed
methods in mitigating the impact of noise. In [21], Amiri et al. examined the impact of
a noisy channel on FedAvg. They determined that when dealing with noisy downlink
transmission, the presence of noise cannot be neutralized through step-size design, resulting
in an inability to ensure precise convergence. Consequently, addressing this fundamental
problem has necessitated imposing strict demands on the estimation noise associated with
the aggregated model weights.

In [22], researchers conducted an investigation into the influence of a noisy channel
in uplink and downlink analog transmission on the training process. The findings of
this analysis led the authors to conclude that for the FedAvg algorithm to converge, it
is necessary for the noise variance to decrease at a rate of O

(
1/k2), where k represents

the communication round. Consequently, in order to effectively mitigate the impact of
channel noise on the training procedure, the authors recommend two approaches. Firstly,
it is advised to employ an increased transmission power gain of O(k) in both uplink
and downlink transmissions. Alternatively, if the power gain remains fixed, extending
the transmission time to O(k) is suggested. The implementation of either of these
strategies is crucial for preserving the integrity of the training process when faced with
channel noise.

Another critical issue is analog transmission, which is widely used in over-the-air
aggregation within the wireless channel. It is extensively utilized and plays a crucial role
in enhancing spectral efficiency and reducing multi-access latency. Gau et al. [23] devel-
oped a hardware transceiver and application software to train a real-world FL task using
over-the-air analog aggregation. They focused on developing an over-the-air aggregation
solution for wireless FL based on orthogonal frequency-division multiplexing (OFDM).
The main challenge they faced was achieving perfect waveform superposition, which was
complicated by the presence of frame timing offset and carrier frequency offset. To tackle
these challenges, they proposed a two-stage waveform pre-equalization technique.

The focus of this study pertains to the exploration of algorithms aimed at resolving
optimization problems through over-the-air analog aggregation. While numerous papers
have discussed communication-efficient solutions for distributed learning problems, it is
of paramount importance to thoroughly investigate the optimization of analog FL prob-



Sensors 2023, 23, 7840 4 of 19

lems over noisy communication channels. This particular problem presents significant
importance and complexity, necessitating meticulous attention and consideration.

1.2. Our Contributions

The major contributions of this work are summarized as follows.

• We propose a hierarchical approach to PM, building upon our prior work [1]. The
key distinction lies in the utilization of OACC for the FL algorithm at the factory level.
This choice is motivated by the benefits of low latency, making it suitable for PM
applications while also improving spectral efficiency. At higher levels, such as fog
and cloud servers, occasional requests are made to the factory level for the aggregate
model, enabling averaging over multiple factory parameters, FedAvg. Our primary
emphasis is on the factory level, specifically investigating FLOACC as the focal point
of our research.

• We propose FSVRG-OACC as a distributed approach to solve the optimization prob-
lem for PM at the factory level based on OACC. FSVRG-OACC leverages analog
over-the-air aggregation, which enables it to effectively handle highly noisy communi-
cation channels and allows for improved convergence in minimizing the cost function
associated with the ML algorithm.

• FSVRG-OACC facilitates the transmission of local gradient updates by individual
agents, capitalizing on the advantages of computation over the air. This algorithm
effectively mitigates the impact of channel perturbations on convergence by incorpo-
rating the effects of the communication channel into the algorithm update process. The
utilization of FSVRG-OACC ensures that convergence is not compromised, enabling
efficient and robust optimization in the presence of varying channel conditions.

• The simulation results demonstrate the substantial reduction in convergence sensi-
tivity to noise achieved by our proposed algorithm. This finding holds significant
implications for the implementation of ML algorithms on analog over-the-air aggrega-
tion in highly noisy industrial environments.

The remainder of this paper is structured as follows. In Section 2, we introduce the
system model, starting with the description of FL over-the-air analog aggregation and
extending it to FLOACC. Section 3 presents our proposed algorithm, FSVRG-OACC, along
with a comparison to other stochastic gradient descent algorithms. Following that, in
Section 4, we evaluate the performance of FSVRG-OACC through a PM application and
present the corresponding experimental results. Finally, in Section 5, we provide concluding
remarks and discuss future research directions.

2. System Model
2.1. Federated Edge Learning System

We consider a distributed learning system specifically designed for a PM application
at the factory level. This system comprises a single parameter server and K edge nodes, as
depicted in Figure 1. Collaboratively, the edge nodes at each factory train a shared learning
process involving the global model w. Each machine collects a fraction of labeled training
data via the interaction with a local dataset, denoted as D1,D2, . . . ,DK. The local loss
function of the model vector w on Dk is given by

Fk(w) =
1
φk

∑
(xj ,yj)∈Dk

f
(
w, xj, yj

)
, (1)

where φk is the number of data points stored on data partition Dk and f (w, xj, yj) is the
loss function quantifying the prediction error of the model w for each data sample j, which
consists of the training sample xj and its ground true label yj. For convenience, we write
f (w, xj, yj) as f j(w) and assume uniform sizes for local datasets φk for all k. Table 1 presents
the typical loss function used in FL for various applications. In the specific case of anomaly
detection over edge nodes at the factory, the squared-SVM loss function has been employed
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in this study as a leading ML method that offers flexibility in modeling complex nonlinear
boundaries between normal and abnormal data points. With these definitions, the global
loss function on all the distributed datasets can be defined as

F(w) =
∑j∈∪kDk

f j(w)

∪kφk
=

1
K

K

∑
k=1

Fk(w), (2)

where |.| denotes the size of the datasets and each dataset satisfies Di ∩Dj = ∅ when i 6= j.
The training target is to minimize the global loss function F(w) according to the distributed
process to find w∗.

w∗ = arg min F(w) (3)

In this section, we begin by presenting the problem formulation of FL in the context
of a hierarchical PM scenario. Subsequently, we delve into the specific case of FL-OACC,
where all agents at the factory levels broadcast their updated models over the air, leveraging
the advantages of computation through analog communication.

Figure 1. FL edge system model for a hierarchical PM scenario at the factory level.

Table 1. Several examples of loss functions.

Model Loss Function

Linear regression
∥∥∥1− yjwT xj

∥∥∥2

Logistic regression − log
(

1 + exp
(
−yjwT xj

))
K-means minl

∥∥∥xj −wl

∥∥∥2

Cross-Entropy −∑ yc p(y = c | x, w)
Squared-SVM λ‖w‖2 + max 0; 1− yjwT xj

To compute F(w), one method involves directly uploading all local data, which raises
privacy concerns. To address this issue, the FL framework is employed to solve the problem
outlined in Equation (3) through a distributed approach. There are two approaches based
on FedAvg for solving this distributed optimization problem:

1. Model averaging: In this approach, each agent minimizes its local loss function and
transmits the model parameters to the PS for aggregation. In the second round of
iteration, the agent receives the updated model from the PS.

2. Gradient averaging: In this approach, each agent calculates the gradient of its loss
function and transmits the gradient to the PS for aggregation. In the second round of
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iteration, the agent can update its model based on the gradient averaging received
from the PS.

The agents generally employ a gradient descent (GD) algorithm or stochastic gradient
descent (SGD) algorithm to minimize the loss function described in Equation (1). A single-
step SGD for updating the model parameter for device K can be defined following the
model and gradient averaging, respectively.

wk[n + 1] = w[n]− α∇Fk(w[n]), (4)

wk[n + 1] = wk[n]− α∇F(w[n]), (5)

where α is the step size and∇ is the gradient operator. Hence, the only operation performed
by the PS is to compute the average of the model parameters or the gradients received from
the agents.

w[n + 1] =
1
K

K

∑
k=1

wk[n + 1], (6)

∇F(w[n]) =
1
K

K

∑
k=1
∇Fk(wk[n]). (7)

The learning process entails iterating between Equations (4) and (6) or
Equations (5) and (7) until the model converges. The averaging process on the PS serves
as a motivation for the low-latency FL scheme, utilizing FLOACC. Further details about
FLOACC are provided below.

2.2. Fl Over-the-Air Communication and Computation

In this section, we discuss the details of Federated Learning over-the-Air Commu-
nication and Computation, abbreviated as FLOACC. This method provides an efficient
multi-access scheme in a low-latency scenario, which is crucial for applications like PM
that require very fast and real-time task decision making. The idea of the over-the-air
computation model for FL has been examined in several previous works, such as [8,16].
Their approach was inspired by the PS’s lack of interest in individual model weight vectors.
Instead, the server solely needs the average of the model weights, which is automatically
provided by the wireless multiple-access channel in the form of their sum.

As depicted in Figure 2, the FLOACC enables simultaneous transmission of re-
sult vectors from all devices and assets at the factory level to the PS in an analog

manner. Let wk =
[
wk,1, · · · , wk,q

]T
denote q × 1 local model parameter vector and

∇Fk(w) =
[
∇Fk,1, · · · ,∇Fk,q

]T
be the local gradient vector of the loss function from the

k-th device. In FLOACC, it is assumed that the local gradient of each model is transferred
over an analog medium. In this scenario, the transmitted symbols are denoted by

{
∇̃Fk,i

}
and are normalized to have zero mean and unit variance E

(
∇̃Fk,i∇̃F∗k,i

)
= 1. By employing

OFDM, it becomes feasible to allocate each element of the gradient vector to a distinct
sub-carrier OFDM channel. This approach enables a significant reduction in the learning
process latency for FLOACC.

During each round n, all the local devices at a factory simultaneously transmit their
local gradient based on the distributed loss function as hk[n]pk[n]∇Fk(w[n]), where
hk[n] ∼ CN (0, 1) is the small-scale fading of the channel between the k-th device and
the PS, and pk[n] is the allocated transmission power for each device k. In particular,
the aggregated gradient in the n-th communication round, denoted by y[n], is expressed
as follows.

∇̂F(w[n]) =
K

∑
k=1

hk[n]pk[n]∇Fk(wk[n]) + Z[n], (8)
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where Z[n] ∼ CN (0, σ2
z I) is additive white Gaussian noise. Note that in over-the-air analog

aggregation, it is possible to transfer the model parameters as well. However, in FLOACC,
we only consider the local gradient during aggregation. This is because the aggregated
gradient is less sensitive in the optimization algorithms compared to the model parameters.
We will discuss this issue further in the next section.

Figure 2. FLOACC scenario at the factory level.

We assumed that, similar to the LTE system, there are common downlink reference
symbols in the radio resource block for the devices at the factory level to estimate the
channel fading coefficient. Then, the local devices can transmit the signal with the specific
power they calculated. The received signal at the PS has been depicted with gain blocks in
Figure 3, so the PS can estimate the aggregated gradient as follows:

y[n] =
K

∑
k=1

hk[n]pk[n]∇Fk(wk[n])√
η

+
Z[n]
√

η
, (9)

where η is a receiver scaling factor. Owing to the imposed physical constraints, the trans-
mission of each device is subject to a long-term transmission power constraint.

E

∣∣∣∣∣
[

N

∑
n=1
|p[n](h[n])|2

]∣∣∣∣∣ ≤ P0. (10)

Figure 3. Illustration of the system design for FLOACC using analog transmission over-the-air
aggregation.

2.3. Effective Noise and Definition of SNR in FLOACC

In order to keep the problem general, we adopt the effective noise model in analog
aggregation. We assume accurate channel state information at the transmitters. To meet
the aggregation requirement of FL, the local devices implement the channel inversion rule,
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which yields the instantaneous transmit power of user k during the communication round
n for gradient aggregation.

pk[n] =
hk[n]H

|hk[n]|
·
√

η

|hk[n]|
, (11)

where H is Hermitian transpose. Based on this definition, the received signal can be
formulated as follows.

y[n] =
K

∑
k=1
∇Fk(wk[n]) +

Z[n]
√

η
. (12)

η represents a scalar that signifies the average transmission power, based on which
the received SNR of the global gradient can be expressed as follows.

SNR[n] = E

∥∥∥∥∥ 1
K

q

∑
i=1

√
η ∑k∈K∇Fk(wk,i[n])

Zi[n]

∥∥∥∥∥
2

=
ηE‖∑k∈K∇Fk(wk[n])‖2

σ2
z K2 . (13)

It is evident that the received SNR is consistent across all users due to devices with
weaker channels compensating by transmitting at higher powers. In various studies, de-
vices with significantly weak channels are often excluded from training due to their inability
to pre-equalize their channels. Many research has been undertaken to optimize η to en-
hance model convergence over the wireless communication network. In [24,25], the optimal
selection of pk and η is determined by solving the corresponding optimization problem.

MSE = E

∥∥∥∥∥y[n]−
K

∑
k=1
∇Fk(wk[n])

∥∥∥∥∥
2

=
1

K2

K

∑
k=1

(
|hk|pk√

η
− 1
)2

+
σ2

z
ηK2 , (14)

min
p1,p2,...,pK ,η

1
K2

K

∑
k=1

( |hk|
√

pk√
η
− 1
)2

+
σ2

z
ηK2

s.t. pk ≤ Pmax, ∀k ∈ {1, 2, . . . , K}.
(15)

Extensive research has been conducted to optimize transmit power for the purpose of
achieving model convergence and mitigating the effects of existing noise in the wireless
transmission medium. However, to the best of our knowledge, no existing studies have in-
vestigated the comparison of convergence performance among different algorithms without
any transmission power control. In the upcoming section, we delve into various gradient
descent algorithms for ML optimization problems, considering the over-the-air scheme,
and provide an analysis of which algorithm demonstrates superior convergence properties.

3. Proposed Adaptive FSVRG-OACC Algorithm

In this section, our specific focus lies on algorithms suitable for solving problem (3)
within the context of over-the-air and analog aggregation. Firstly, in Section 3.1, we examine
baseline algorithms that are compatible with distributed problems and analog gradient
transmission (GT), while also highlighting the distinctions between model transmission
(MT) and GT. Next, in Section 3.2, we delve into randomized methods that, in an initial
approximation, integrate the advantages of cost-effective iterations from SGD with the
rapid convergence of GD. Many of these methods can be categorized into one of two
classes: dual methods of the randomized coordinate descent type and primal methods
of the stochastic gradient descent with variance reduction type. Our emphasis lies on
stochastic variance reduced gradient (SVRG), and we optimize this method for FL within
the framework of analog aggregation while considering the presence of white Gaussian
channel noise.
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3.1. Baseline Algorithms

A fundamental approach for solving a distributed optimization problem with the
structure (4) involves employing the GD algorithm, particularly when the functions f
possess smoothness and convexity characteristics. In a distributed setting, there are two
possible approaches: the GT method, where gradients are transmitted over the air and
an aggregated gradient signal is received, which is subject to noise for model updating
using GD, or the MT method, where the model is updated through GD iterations and then
transmitted for model aggregation. In the presence of noise, the convergence deteriorates
due to the elevated sensitivity of the loss function to the model parameters. Therefore, in
over-the-air distributed algorithms, the GT approach is preferred. This preference stems
from the lower sensitivity of the cost function to the aggregated gradient compared to
the individual model parameters. GD demonstrates a fast convergence rate. However,
each iteration has the potential to be computationally intensive on each local device. In
contrast, SGD selects a random data label and performs the update, which offers a more
efficient alternative.

3.2. Fsvrg-Oacc Algorithm

An additional algorithm within the SGD category is SVRG [26]. The SVRG algorithm
operates through two nested loops. The outer loop involves calculating the full gradient of
the entire function, ∇F(wt[n]), which is typically a computationally expensive operation
to be avoided whenever possible. In the inner loop, the update step is iteratively computed
as follows.

w[n + 1] = w[n]− α
[
∇Fi(w[n])−∇Fi(wt[n]) +∇F(wt[n])

]
, (16)

where∇Fi(w[n]) represents the stochastic gradient computed based on a randomly selected
data label, ∇Fi(wt[n]) denotes the stochastic gradient computed over the entire dataset,
and α is stepsize. This iteration is specific to a single device, and its fundamental concept
lies in utilizing stochastic gradients to estimate the gradient change from point wt to w,
rather than directly estimating the gradient itself.

Indeed, this algorithm is naturally suited for centralized implementations since it
necessitates computing the stochastic gradient over the complete dataset, thereby making
it well-suited for centralized scenarios. But a notable contribution was made in [27], where
they introduced FSVRG, which is particularly applicable in the context of distributed
optimization. They demonstrated that existing SVRG algorithms are not suitable for
distributed approaches and proposed the FSVRG algorithm, specifically designed for sparse
distributed convex problems. The pseudocode for FSVRG is provided in Algorithm 1. This
algorithm has been implemented and subjected to evaluation, and the results will be
presented in the experimental section. The findings indicate that this algorithm does not
demonstrate satisfactory convergence in the realm of FL for over-the-air analog aggregation,
specifically in relation to the absence of power transfer control.

Let us now elucidate the motivation behind considering a different algorithm suitable
for FL in the context of over-the-air analog aggregation. A crucial aspect that demands
attention is the significant variation in the number of available data points among different
devices, which may differ greatly from the average number of data points available to
any single device. It looks like a similar issue to FSVR, but it should be noted that in our
assumptions, analog communication is the sole communication type between local devices
and the PS. As a result, the PS lacks information regarding the number of data points and
the type of data distribution.

Additionally, this scenario frequently entails the local data being clustered around
a specific pattern, which renders it unrepresentative of the overall distribution we aim
to learn. Consequently, considering an aggregation on the entire gradient direction in
each iteration could be a promising approach that could be undertaken in the concept of
analog aggregation.
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Algorithm 1: Federated SVRG
Parameters: φ = number of data points, φk = number of data points store on
device k, α = stepsize, data partition {Dk}K

k=1.
for n = 0, 1, . . . do

Compute ∇F(wt[n]) = 1
φ ∑

φ
i=1∇Fi(wt[n]) » Overall iterations

for k = 1 to K do in parallel over device k do
Initialize: wk = wt and αk = α/φk » Distributed loop
Let {it}φk

t=1 be random permutation of Dk
for t = 1, . . . , φk do

wk[n + 1] = wk[n]− αk
[
∇Fit(wk[n])−∇Fit(wt[n]) +∇F(wt[n])

]
end

end
wt[n] = wt[n] + ∑K

k=1
φk
φ (wk[n]−wt[n]) » Model aggregation

end

From a practical perspective, in FSVRG-OACC, it is postulated that all devices
possess a randomly allocated initialization value for the parameter vector, wk. This
assumption holds significant importance in the practical execution of the algorithm.
The proposed algorithm involves two communication rounds, which results in increased
communication costs. However, it offers advantages in terms of the convergence algorithm.
Algorithm 2 introduces the FSVRG-OACC, a modified FSVRG variant tailored for over-the-
air analog aggregation.

During the initial communication round (distributed loop 1), all devices compute
the complete gradient of the entire function and subsequently determine the internal
gradient as gk =

[
∇Fit

k (w
t[n])−∇Fk(w[n])

]
, where it is sampled uniformly from the local

dataset Dk. These gradients are derived using SGD, rendering their computation relatively
inexpensive. The computed internal gradient is then transmitted over the air to the PS,
while the estimated aggregated internal gradient is sent back to the devices via the analog
medium, as shown in Figure 2.

ĝ =
1
K

K

∑
k=1

hk[n]pk[n]gk√
η

+
z[n]
√

η
. (17)

The estimated aggregated internal gradient, denoted as ĝ, compels all devices in the
second round of communication (Distributed loop 2) to move in the same direction. In
this communication round, the updated gradient is denoted as Ĝ, which was estimated
in the first round as Ĝ = ∇Fit(wk[n])− ĝ for device k. Subsequently, the PS aggregates
this gradient over the air from all devices and transmits it back to them for the remaining
iterations. Each device k uploads the following gradient over the air for aggregation.

Gk = ∇Fit(wk[n])− ĝ, (18)

Gk = ∇Fit(wk[n])−

 1
K

K

∑
k=1

hk[n]pk[n]
[
∇Fit

k (w
t[n])−∇Fk(w[n])

]
√

η
+

z[n]
√

η

. (19)

By aggregating the gradient Gk at the PS and transmitting it back to each device, a
uniform descent direction can be achieved across all devices.

Ĝ =
1
K

K

∑
k=1

h′k[n]p
′
k[n]Gk√
η′

+
z′[n]√

η′
, (20)
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Ĝ =
1
K

K

∑
k=1

h′k[n]p
′
k[n]

[
∇Fit(wk[n])−

[
1
K ∑K

k=1
hk [n]pk [n]

[
∇Fit

k (wt [n])−∇Fk(w[n])
]

√
η + z[n]√

η

]]
√

η′
+

z′[n]√
η′

.
(21)

Algorithm 2: FSVRG With Over-the-Air Communication and Computation
(FSVRG-OACC)

Parameters: φ = number of data points, φk = number of data points store on device
k, α = stepsize, data partition {Dk}K

k=1, Randomly initialize wk on each device.
for n = 0, 1, . . . do

» Overall iterations
for k = 1 to K do in parallel over device k do

1: Let {it}φk
t=1 be random permutation of Dk » Distributed loop 1

2: Compute ∇Fit
k (w

t[n])
3: Compute ∇Fk(w[n]) = 1

φk
∑

φk
i=1∇Fit

k (w
t[n])

4: Over-the-Air Gradient Aggregation: Each device k uploads
gk =

[
∇Fit

k (w
t[n])−∇Fk(w[n])

]
Over-the-Air.

end
Aggregated signal in PS (Server Side)

ĝ = 1
K ∑K

k=1
hk [n]pk [n]gk√

η + z[n]√
η » Model aggregation 1

Aggregated signal ĝ is received by all edge devices
for k = 1 to K do in parallel over device k do

1: Initialize: αk = α/φk » Distributed loop 2
2: Compute ∇Fit(wk[n])
3: Aggregated signal Ĝ is received by the edge device k

n = 0 –> randomly initialize Ĝ
for t = 1, . . . , φk do

wk[n + 1] = wk[n]− αkĜ
end
4: Over-the-Air Gradient Aggregation: Each device k uploads

Gk =
[
∇Fit(wk[n])− ĝ

]
Over-the-Air.

end
Aggregated signal in PS (Server Side)

Ĝ = 1
K ∑K

k=1
h′k [n]p

′
k [n]Gk√
η′

+ z′ [n]√
η′

» Model aggregation 2

end

This approach is motivated by the primary goal of maintaining gradient step consis-
tency among all clients by utilizing the aggregated gradient over-the-air signal in stochastic
first-order methods. Therefore, the algorithm’s complexity is exceptionally low due to the
simplicity of first-order gradient calculations at each step. The only cost involved is the
number of communication rounds.

In summary, the gradient update
[
∇Fit(wk[n])−∇Fit

k (w
t[n]) +∇Fk(wt[n])

]
is di-

vided into two parts for FSVRG-OACC. In the first distributed loop, the last two gradients
∇Fit

k (w
t[n]) and ∇Fk(wt[n]) are calculated, and afterward, the distance between these

two gradients is aggregated across all edge devices. In the second distributed loop, we
can access the aggregated value of

[
∇Fit

k (w
t[n])−∇Fk(wt[n])

]
for all devices. In the

first iteration of this loop (n = 1), we calculate the stochastic gradient for each edge de-
vice and subtract it from the aggregated gradient obtained from the first distributed loop[
∇Fit(wk[n])− aggregation(∇Fit

k (w
t[n])−∇Fk(wt[n]))

]
. This gives us Gk, the overall

gradient update for device k, which is then aggregated with all other gradients over the air.
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Starting from the second iteration (n = 2) and beyond, we can utilize the whole aggregated
gradient Ĝ to directly update the model parameters of each device.

4. Performance Evaluation of FSVRG-OACC

In this section, we evaluate the performance of the proposed algorithm on the task
of anomaly detection for a PM application in an FL manner with over-the-air analog
aggregation. It aims to investigate the convergence characteristics of four optimization
algorithms, GD, SGD, FSVRG, and FSVRG-OACC, in the context of over-the-air analog
aggregation. The primary focus is to analyze the performance of these algorithms in terms
of both model accuracy and convergence time, which are crucial performance metrics
in the field. Similar to prior research in the domain of Federated Machine Learning
Algorithm for Collaborative Predictive Maintenance [1], we employ the widely recognized
and benchmarked CMAPSS [28] dataset in this study.

The C-MAPSS model, developed by NASA and implemented in MATLAB/Simulink,
represents a nonlinear dynamic model of a commercial turbofan engine. By manipulating
the input parameters of this simulation model, it becomes possible to simulate diverse
degradation patterns under various engine conditions. In order to generate datasets
reflecting different fault modes, four distinct time series (FD001, FD002, FD003, FD004)
were produced using these simulation tools. These datasets comprise multivariate time
series, each of which is further divided into training and testing subsets. For the purpose of
this study, we selected and analyzed two datasets: FD003 and FD004. The FD003 dataset
comprises 100 test trajectories and 100 train trajectories, focusing on a single fault mode
and two types of degradation: high-pressure compressor degradation and fan degradation.
On the other hand, the FD004 dataset includes 248 test trajectories and 249 train trajectories,
covering six fault modes and two types of degradation. The time series data in each
dataset include 21 sensor observations, three operating settings, a trajectory ID, and a cycle
count. The Remaining Useful Life (RUL) of an engine is estimated based on the number of
operation cycles remaining before the engine fails.

4.1. Algorithm Implementation

In this study, a federated SVM model was employed to predict the RUL using the
provided time series data. Specifically, FD003 and FD004 datasets were distributed among
ten devices located at the factory site, with the purpose of participating in a collaborative
PM scenario. It is crucial to emphasize that the data distribution was non-independent and
not identically distributed (non-IID). This implies that the instances of failures were not
randomly distributed among the edge devices, and the data distribution was not evenly
spread across all edge devices. Instead, specific edge devices were linked to particular
types of failures, while others experienced different types. We intentionally opted for this
non-IID distribution as a worst-case scenario to thoroughly assess the effectiveness of our
proposed method. This collaboration aimed to achieve low latency through over-the-air
analog aggregation. During all the simulations, the optimizer parameters were configured
to achieve optimal performance. In particular, the learning is kept fixed at 0.01, and the
`2-regularization parameter λ is set to λ = 0.1. The momentum factor is kept equal to
0.9 and the number of local epochs is set to 1. The definition of the loss function for the
federated SVM is as follows.

f (w) =
1
φk

∑
j∈Dk

f j(w) + λ‖w‖2
2

f j(w) = max(0, 1− yjwTxj),

(22)

The input data, denoted as xj, are structured in a 2D format resembling an image,
where one dimension corresponds to the sequence length, and the other dimension repre-
sents the number of sensor measurements. The output variable, yj, indicates the condition
of the engine. Specifically, if the input data are associated with a particular condition whose
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RUL is below a specified threshold, the output value is assigned as {−1}, indicating the
detection of an anomaly. Conversely, if the RUL exceeds the threshold, the output value is
assigned as {1}. In all the conducted experiments, the reported convergence and accuracy
averaged over five independent runs were calculated over 500 communication rounds.

4.2. Performance of FSVRG-OACC
4.2.1. General Performance

We first conduct a comparison between FSVRG-OACC and standard FSRVG, SGD,
and GD methods to illustrate the notable enhancements in convergence rate and accuracy
achieved in the context of over-the-air analog aggregation with a noisy environment.
Throughout the experiments, we assessed the performance of each method and observed
the significant gains achieved by FSVRG-OACC. We assume the environment noise variance
to be σ2

z = 1 for Zk ∼ CN
(
0, σ2

z I
)
, and the probability of noise presence as p = 1. In

this study, our primary focus is not on the transmission policy. Therefore, we make the
assumption that the channel inversion policy is employed for estimation. Additionally, we
assume that each component of Z[n] has a zero mean and a variance of σ2

z .
The performance is demonstrated on the FD003 and FD004 datasets. In this experiment,

for all of K = 10 devices at the factory site, this implies that the transmitting power is set to
P = 300 mW and the receiving scale factor,

√
η, is set to 0.1. The accuracy formula used is

as follows:

accuracy =
µP + µN

µP + µN + ΓP + ΓN
, (23)

where µP represents the number of true positives, ΓP represents false positives, µN repre-
sents true negatives, and ΓN represents false negatives. The results have been plotted in
Figure 4 for FD003 and Figure 5 for FD004. We observed the following results.

1. In the case of FD003, it is evident that both the GD-MT and FSVRG algorithms fail
to converge under the given noise environment and transmission power settings.
Consequently, these algorithms are excluded from the accuracy analysis. On the other
hand, the GD-GT and SGD-GT algorithms demonstrate convergence, but they exhibit
significant fluctuations during the convergence phase. In contrast, our proposed
FSVRG-OACC method shows excellent convergence performance under the same
environmental conditions and noise levels.
As depicted in the accuracy plot for FD003, both SGD-DT and GD-GT algorithms ex-
perience a considerable drop in accuracy. However, our proposed algorithm achieves
an average accuracy of 91% and demonstrates higher stability compared to the
other algorithms.

2. In the case of FD004, we observed similar results, although this dataset presents
greater challenges due to its inclusion of six fault modes, making the prediction algo-
rithm significantly more complex compared to other CMAPSS datasets. Despite these
difficulties, our proposed FSVRG-OACC algorithm demonstrates robust convergence,
with only minimal fluctuations occurring after the convergence stage. These fluctua-
tions can be attributed to the estimation anomalies present in the most challenging
instances of the dataset.
In the accuracy plot, our proposed method achieved a commendable accuracy of 61%
on the model. In contrast, the average accuracy of the other two converged methods
is lower than that of the proposed method, and their accuracy values exhibited less
fluctuation during the communication rounds.

In conclusion, we provide the average local training runtime and accuracy of FSVRG-
OACC, SGD-GT, and GD-GT at the client level, as summarized in Table 2. It is noteworthy
to mention that the computational runtime is primarily governed by the computation of
gradients in all 500 iterations. Additionally, we assume that the communication round
is negligible in comparison to the gradient computation. As is evident, the runtime in
FSVRG-OACC exceeds that of the other algorithms. However, this method, employed in
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FLOACC, demonstrates substantial reduction in communication latency while achieving
commendable convergence and consistent accuracy.
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Figure 4. Convergence and accuracy versus communication round for different algorithms in Over-
the-Air analog aggregation (σ2

z = 1, p = 1, and dataset: FD003). The pale graphs represent the signal,
while the bold graphs depict the windowed average of the signal.
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Figure 5. Cont.
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Figure 5. Convergence and accuracy versus communication round for different algorithms in Over-
the-Air analog aggregation (σ2

z = 1, p = 1, and dataset: FD004). The pale graphs represent the signal,
while the bold graphs depict the windowed average of the signal.

Table 2. Performance analysis of different algorithms on FLOACC.

Dataset Evaluation Metrics
Optimizer

GD-GT SGD-GT FSVRG-OACC

FD003 Runtime 45.8 s 21.3 s 66.7 s
Final accuracy 76% 61% 91%

FD004 Runtime 70 s 20 s 105 s
Final accuracy 42% 41% 61%

We compared our results with a scenario where there is no communication noise.
In a previous study, we looked at how well the FL algorithm works for PM applications
when there is no communication interference. We summarized those results in Table 3.
As evident from the results, there is a significant disparity in accuracy between GD-GT
and SGD-GT when applied to FLOACC and noiseless communication settings. This
demonstrates that employing a power transmission policy can enhance the accuracy of
both GD and SGD in the context of FLOACC, bringing them closer to achieving results
similar to those in noiseless communication scenarios. It is worth noting that, for the
FSVRG-OACC method and FSVRG applied to noiseless communication, the difference in
accuracy remains minimal. This observation is particularly noteworthy in the case of FD003,
where the RUL prediction task is less challenging than FD004. These findings underscore
the robustness and effectiveness of our proposed approach, which achieves these results
without the need for any power transmission policies.

Table 3. Performance analysis of FL algorithm on noiseless communication channel [1].

Dataset Evaluation Metrics
Optimizer

GD-GT SGD-GT FSVRG

FD003 Runtime 69 s 20.5 s 161 s
Final accuracy 94.2% 92.2% 91.7%

FD004 Runtime 143.5 s 45.5 s 337 s
Final accuracy 78.4% 71.7% 86.6%

4.2.2. Performance of FSVRG-OACC with Varying Noise Level

In this section, we conduct an analysis to assess the robustness of the proposed al-
gorithms for Over-The-Air analog aggregation in the presence of varying levels of noise.
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The performance evaluation is conducted using a part of the FD003 dataset while system-
atically varying the noise level σz. Specifically, we consider noise levels σz from the set
{0.25, 0.75, 1.5, 2.5} to assess the algorithm’s performance under different noise conditions.
For the total of 10 local devices, the receiver scaling factor, denoted as

√
η, is varied across

different values {0.4, 0.13, 0.06, 0.04}. To investigate the impact of noise, we manipulate
the probability of noise presence, denoted as p, throughout the experiments. The set
{0.1, 0.25, 0.5, 1} is utilized to vary the probability of noise. The results for GD-GT and
SGD-GT have been plotted in Figures 6 and 7.

0 200 400 600
Communication round
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Effect of noise variance R=r^2,
 p is fixed at 0.5 GD_GT

r = 2.5
r = 1.5
r = 0.75
r = 0.25

0 200 400 600
Communication round

Effect of noise probability,
 R is fixed at 0.75^2 GD-GT

p = 1
p = 0.5
p = 0.25
p = 0.1

Figure 6. Convergence analysis for GD-GT by varying noise level r ≡ σz = {0.25, 0.75, 1.5, 2.5}, and
the probability of noise presence p = {0.1, 0.25, 0.5, 1}.

For both GD-GT and SGD-GT, as the noise level increases, there is a significant
degradation in performance, accompanied by amplified fluctuations in the loss function.
Additionally, we observe a parallel trend in the cost function when the probability of noise
presence is elevated. Furthermore, we conducted the same analysis on the FSVRG-OACC
method, and the corresponding results are presented in Figure 8. Notably, the proposed
algorithm demonstrates significantly enhanced robustness against higher noise levels and
increased probability of noise presence.

All of these analyses provide evidence supporting the suitability of the proposed
FSVRG-OACC method for analog aggregation and FL over the air. It is important to note
that all of these analyses were conducted under the same transmission power conditions.
However, we anticipate that employing a power control policy in communication with this
method would yield even more accurate results in convergence and model accuracy.

On the other hand, implementing our proposed approach in real-world industrial
settings has practical implications and challenges. A significant part of this approach
is adjusting the local gradients in large edge devices using an analog waveform and
sending them through the same wireless channels. Our main challenge is achieving
perfect waveform superposition, which is crucial for our algorithm’s success. This task is
complicated because of frame timing offset and carrier frequency offset. To overcome these
issues, we require high-performance devices with substantial computational capabilities.
Another important challenge emerges when we only have access to partial information,
resulting in some edge devices being unable to effectively join the FLOACC aggregation
process. This led to a deviation in the gradient descent regime. This deviation highlights
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the necessity for robust device selection and strategies to manage situations where certain
devices may have limited participation capabilities.
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Figure 7. Convergence analysis for SGD-GT by varying noise level r ≡ σz = {0.25, 0.75, 1.5, 2.5}, and
the probability of noise presence p = {0.1, 0.25, 0.5, 1}.
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Figure 8. Convergence analysis for FSVRG-OACC by varying noise level r ≡ σz = {0.25, 0.75, 1.5, 2.5},
and the probability of noise presence p = {0.1, 0.25, 0.5, 1}.

5. Conclusions

In this paper, our focus was on FL scenarios that leverage wireless transmission
channels for both communication and computation. The design presented capitalizes on the
waveform superposition property inherent in a multi-access channel, which enables efficient
update aggregation, optimizing the communication process. We specifically emphasized
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the potential of over-the-air analog aggregation in FL for hierarchical PM scenarios. Our
study focused on the factory site as the lower hierarchical component, recognizing the
criticality of meeting low-latency requirements for time-sensitive applications. We have
demonstrated that this challenge can be effectively addressed through the utilization of
analog aggregation.

Throughout our investigation, we thoroughly examined the impact of practical chan-
nel effects, including noise and fading, on the learning algorithm’s performance. To enhance
the robustness of learning algorithms against channel noise effects, we proposed a novel al-
gorithm called FSVRG-OACC. The effectiveness and superiority of the proposed algorithm
were demonstrated through the application of a distributed SVM for anomaly detection us-
ing the CMPASS dataset. The simulation results validate the effectiveness of FSVRG-OACC
in reducing aggregation distortion while operating at the same transmission power level.
Furthermore, the learning behavior of the proposed algorithm can be further enhanced by
incorporating power control and device selection policies into its design.
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