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Abstract

The availability of industrial machinery is crucial to any business operating in the man-

ufacturing sector. Mechanical failures halt production and unplanned downtime can

be disruptive and costly. Small failures can compound to serious failures which ex-

ponentially increases downtime and repair costs. Therefore Identifying a degradation

condition before reaching failure is key to maintaining machine availability. On the

other hand, it’s undesirable to spend resources performing maintenance that is not

required. For these reasons a large field of academic work is dedicated to analyzing

the health of a machine, it’s remaining life and in turn preventing failures.

This thesis analyses data from a tube straightening machine used in the steel industry

with the goal of implementing a condition monitoring strategy. The data comes from

a real world application provided by a multinational manufacturer of steel products.

It was obtained using the existing sensors and data acquisition system. The project

serves as a study of the existing infrastructure (available sensors) and it’s suitability for

implementing a condition monitoring strategy. The work is the first step in a larger

study and does not attempt to perform any implementation or fault identification. In

a broad sense the aim of the project is to identify relationships and patterns in the data

that could be varying with time as the machine degrades.

The data consists of twelve channels taken over a twoweek duration. It is prepossessed

to isolate periods where the machine is operating and separated into cycles. Each of

these is then further processed to extract time and frequency domain features. The

features within each channel are compared with each other using the R2 coefficient

of determination to find combinations that are correlated. A semi automated process

is used to select the feature combinations. The same process is performed between

signals for each feature.

A number of linear regression models are created based on the results from the cor-

related features as well as some multivariate models. These are then compared using

a goodness of fit metric, Normalized Root Mean Square Error (NRMSE). Potential

clustering of machine states are highlighted based on observations in the feature com-

binations. The conclusions drawn from this study include identification of correlations

between signals, potential non-linear relationships and suggestions for future data col-

lection and analysis going forward. No one feature was identified as correlated be-

tween all signals.
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1 Introduction

1.1 Background

Condition Monitoring (CM) is the process of predicting machine health through a

combination of sensor data and software. Sensors are used to measure parameters

(vibration, temperature, acoustic emissions etc.) which provide inputs to an algorithm

that outputs health metrics. This allows operators to gain an understanding of when

a machine is likely to fail and instead plan and perform preventative interventions.

The ability to monitor equipment health and predict remaining lifetime has valuable

benefits. Avoiding unplanned downtime allows the extraction of more value from

existing resources and less disruption to production schedules.

The application of CM and Predictive Maintenance (PM) is a large area of research in

the machine and manufacturing sector. Of course it is not only limited to machines,

being utilized on other engineering structures like bridges [1], process plants like in

the oil and gas industry [2] and also biological systems [3]. A common application of

CM and PM in manufacturing is the vibration analysis of rotating machines [4], [5].

Breakdowns in these types of machines are most commonly caused by failures in bear-

ing subsystems. The degradation of a bearing results changes in the vibration signal,

among others, which can be a indicator of bearing health and remaining life [6].

One such example of an industrial machine that uses roller bearings is a rotary tube

straightening machine [7]–[13]. These are used as a finishing process in the steel indus-

try for the manufacturing of metal tubes. They are crucial for straightening the tube

in the longitudinal direction and improving ovality of the product. Straightening ma-

chines, like many other industrial machines, are expensive to procure and down time

is costly. Performance may also be impacted by the machine being in poor condition

and in need of maintenance. Thus it is in the interest of operators to be able to schedule

planned maintenance instead of having unplanned failures and downtime.

While there is a vast array of research around bearing vibration and CM, all machines

have their nuances so one CM strategy is not necessarily suitable for all. No research

specifically involving CM on a straightening machine could be found. Unlike a simu-

lation study, CM requires real-world data which is not always readily available unless

employed by the company owing the machine. This study assesses real world data

from such a machine at a Swedish steel manufacturer, Alleima.

One of the challenges in implementing CM is that there are often huge amounts of data

to process and sift through. Feature extraction can be used to reduce the amount of the

data whilst preserving the information. By analyzing the features one can then select

the most relevant channels and reduce the dimensionality of the data by removing
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irrelevant, highly correlation or noisy signals. There exist many automated and non-

automated methods to select the best features and is a current area of research. This

study uses a semi-automated method using theR2 correlation coefficient to select the

most appropriate features.

CM often uses supervised learning which utilizes labeled data to perform classifica-

tion, i.e. data is labeled as normal or fault condition. Another difficulty with CM

research is the limited access to failure data meaning one is often forced to implement

unsupervised learning methods. It is common to have partially labeled or totally unla-

beled data and thus a different set of techniques exist for unsupervised learning. Here

the data analysis is geared towards pattern recognition and clustering since no failure

information is available to go with the data. This study has no access to fault or main-

tenance data and therefore has the goal of trying to find patterns in the data, identify

potential clustering opportunities and look for trends over time.

1.2 Project Aim

The aim of this project is to examine the existing data available for a tube straightening

machine and make some observations as to whether it is possible to perform CM and

PM for this machine. The first step is to analyze the available data that can be be

attained using the existing sensors and data acquisition system. The end goal is to begin

developing a strategy that will assist the company to know when the machine requires

maintenance. The specific goals of this project are summarized as follows:

• Understand what signals are related to each other.

• Understand the signals from a statistical point of view.

• Calculate signal features, identify which are related to each other and whether or

not they are useful for condition monitoring i.e. which features may represent

degradation conditions.

• Combine appropriate features to create data models and identify trends.
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2 System

Rotary straightening machines, figs. 1 and 2, are a type of finishing machine developed

to straighten and improve ovality of a metal pipes and tubes. A tube is fed through a

series of roller pairs and undergoes a sequence of bending moments which induce

controlled plastic deformations. Tubes are subjected to two types of straightening

forces, pressure straightening and bend (or offset) straightening. Hydraulic actuators

are used to precisely position the height of the rollers and at least some of the rollers are

driven by motors which grip and rotate the tube while feeding it through the machine.

A number of different configurations for this type of machine exist with six and 10

rolls being common.

The profile of the rollers is not the same as the tube radius but are hyperbolic in shape

and only contact the tube in 3 places. This shape allows it to accommodate different

tube diameters by adjusting the gap or height between the upper and lower rollers as

well as the angle between them and the tube. The rollers can be adjusted from parallel

to the pipe up to approximately 45 degrees, with the upper rollers being adjusted in

the opposite angle to lower rollers.

Modern straightening machines are equipped with sensors that monitor the amount of

force being applied, the deformation of the tube, and other relevant parameters [14].

This feedback allows the machine to make real-time adjustments to the straightening

process for optimal results. These sensors, while controlling the process itself can

also be used for condition monitoring purposes. Significant research exists on the

mechanical analysis of such machines [7]–[13] however no studies relating to condition

monitoring of such systems using real life data could be found.

(a) Straightening machine roller pro-

file [9] (b) 10 roller straightening machine layout [13]

Figure 1. Diagrams of straightening machines
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Figure 2. Image of a 10 roller straightening machine [13]

3 Theory

3.1 Feature Extraction

Machine learning algorithms suffer from high amounts of data and information re-

dundancy while requiring vast amounts of storage. Feature extraction, the process

of computing numerical values from raw signals, is one method that can be used to

combat these issues. By extracting signal features and deciding which are irrelevant

one can reduce the amount of data that needs to be stored and processed while still

retaining the essence of the signals.

Feature extraction techniques are commonly used to estimate degradation trends

in machines [15]–[17]. Features can include time domain, frequency domain, time-

frequency domain (temporal) andmodel basedmethods [18]. Some of themost widely

used and effective time domain indicators are mainly based on Root Mean Square

(RMS), crest factor, and kurtosis [19]. Time-frequency values are three dimensional

features which include wavelet analysis, spectrograms, scalograms, Wigner-Ville

distribution, and kurtograms [19]. [20] proposes a feature set built on experimen-

tal data from sensors plus results from building a simplified kinematic and dynamic

model.

Machine CM can utilize various form of sensors and signals including: vibration moni-

toring, acoustic emissionmonitoring, a fusion of vibration and acoustic, electric motor

current monitoring, oil analysis, thermography [21]. There is no one size fits all when

it comes to condition monitoring. For a slewing bearing, which is a large low-speed

heavy-load bearing, vibration signals are insufficient [22] and thus fusion models based

on torque, temperature and vibration are needed.
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3.2 Signal Features

A non exhaustive list of features, in particular the ones used in this project, are as

follows [23]:

The mean, x̄, is the average value of the signal,

x̄ =
∑N

i=1 xi

N
, (1)

where xi is the i:th element of the signal and N is the number of samples in the

signal.

The standard deviation, σ, is the square root of variance, and measures the dispersion

of a data set relative to its mean,

σ =
√√√√∑N

i=1(xi − x̄)2

(N − 1) . (2)

RMS is the square root of the mean squared,

xRMS =

√√√√√ 1
N

N∑
i=1

x2
i . (3)

Excessive variation in the RMS level usually means a change in health status and pos-

sible failure.

Shape factor is the root mean square divided by the mean of the absolute value,

xSF = xRMS
1
N

∑N
i=1 |xi|

. (4)

It is dependent on the signal shape and independent of the scale of the signal.

Kurtosis is derived from the statistical moment of the fourth order and is defined as

the ratio between the mean value of the signal raised to the power of 4 and the square

of its variance,

xkurt =
∑N

i=1(xi − x̄)4

(N − 1)σ4 . (5)

It is used to analyze the flattening of a distribution and observe the shape of the signal.

It is a statistical measure of the tailedness of a distribution and indicates the total degree

of outliers present. An increase in the number of outliers, and thus an increase in the

Kurtosis, can be a indication of an impending fault. For normal bearing operation,

kurtosis is close to 3 and increases rapidly with failure.
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Skewness is a measure of asymmetry in the probability density function,

xskew =
∑2

i=1(xi − m)3

(N − 1)σ3 . (6)

Faults can sometimes be revealed through asymmetric distribution.

The maximum value of a signal,

xp = max(xi), (7)

where xp is the peak value of a signal.

The maximum absolute value divided by the mean of absolute value,

xIF = xp
1
N

∑N
i=1 |xi|

, (8)

in other words a comparison of the height of the peak to the average value.

Crest Factor is found by dividing the maximum absolute value of a signal by the RMS

value,

xcrest = xp√
1
N

∑N
i=1 x2

i

. (9)

Faults can often be detected as a peakiness of signals before they become evident in

the energy (RMS). Other indicators have been developed based on the crest factor,

such as the K-factor, by multiplying the peak value by the rms value or the peak-to-

peak value, measuring the difference between the amplitudes of the upper and lower

peaks [19].

Clearance factor is the defined as the peak value divided by the squared mean value of

the square roots of the absolute values,

xclear = xp

( 1
N

∑N
i=1

√
|xi|)2

. (10)

For a healthy bearings this feature is maximum and decreases as faults develop.

The next features come from the frequency domain and one must first calculate the

Fast Fourier Transform (FFT) before computing the features themselves. Signal to

Noise Ratio (SNR) is the ratio of signal power to noise power in decibels,

SNR = 10log10
Psignal

Pnoise
, (11)

where Psignal is the average power of the signal and Pnoise is the average power of
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the noise.

Signal-to-noise and Distortion Ratio (SINAD) is the ratio of total signal power to total

noise-plus-distortion power,

SNR = 10log10
Psignal + Pnoise + Pdistortion

Pnoise + Pdistortion
, (12)

where Psignal is the average power of the signal, Pnoise is the average power of the

noise and Pdistortion the average power of the distortion.

Total Harmonic Distortion (THD) is calculated as the ratio of total harmonic power

to fundamental power,

THD = Ph

Pf
=

√
P 2

h2 + . . . + P 2
hN

P1
, (13)

where Pf is the power of the fundamental frequency and Ph is the power of the the

remaining harmonics. PN is the N :th harmonic of the FFT and MATLAB takes the

first five harmonics using amodified periodogram of the same length as the input signal.

The modified periodogram uses a Kaiser window.

3.3 Spectral Features

In order to compute spectral features one must first compute the power spectral den-

sity which indicates the distribution of power per unit frequency. MATLAB does this

via periodogram method. It then uses the command, ’findpeaks’, to locate the max-

imum values of the power spectrum. A local peak is classified as a sample which is

either larger than the two neighboring samples or is equal to infinity. Two features

come directly from the peak data 1) Peak Frequency is the value of the frequency

which has the highest peak and 2) Peak Amplitude is the height of this same peak on

the power spectrum. The Band Power is the area beneath the power spectral density

graph, within a selected frequency range. MATLAB uses the command, ’trapz’, to

compute the approximate integral of the signal via the trapezoidal method with unit

spacing.

3.4 R2 correlation

The coefficient of determination, orR2 correlation, is a measure of how well a model

predicts the actual output values. It is calculated as the one minus the Sum of Squared

Regression (SSR) divided by Total Sum of Squares (TSS),
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R2 = 1 − SSR

TSS
= 1 −

∑N
i=1(yi − ŷi)2∑N
i=1(yi − ȳ)2 , (14)

where yi is the i:th output, ŷi is the predicted value of the model and ȳ is the mean

of y [24]. An R2 value of 1 means that the two signals are perfectly identical expect

for a multiplicative constant and a value of zero means there is no linear relationship.

A value between 0 and 1 indicates some degree of linear relationship exists with the

degree of linearity increasing with the value.

3.5 Feature Selection

Once features have been calculated the challenge is to isolate the most useful and rel-

evant features. Often data sets contain irrelevant, highly correlated or noisy features

that can be removed without a significant loss of information. Ideally non-informative

and redundant features are removed to reduce complexity, makingmodels easier to in-

terpret. To this point, [3] argues that several widely used classification algorithms can

generate misleading feature rankings when the training datasets contain large groups of

correlated features. Considering all the research, there is no consensus on which fea-

ture/combination of features are best suited for the identification of and distinguishing

between faults.

A common method for selecting the most suitable features is forward or backward

step wise selection [24]. Forward selection begins with a null model and creates sim-

ple linear regressions for each feature on it’s own and the model with the lowest cho-

sen metric is selected. Using that model as a starting point for the next stage another

variable is added to create a number of 2 variable models with the lowest metric be-

ing selected to more forward. This process is continued until some stopping rule is

satisfied.

Principal Component Analysis (PCA) appears to be another popular technique used

in feature selection. In one study, PCA is used to fuse multiple features in order to

obtain a bearings state [25]. Another study uses a PCA-based approach to selecting the

most representative features for the classification of defective components and defect

severity in three types of rolling bearings [26].

Among other techniques [1] uses recursive feature elimination and feature correlation

clustering, the latter involves using thresholds and removing highly correlation fea-

tures. Usually some kind of goodness of fit metric is used to compare feature models,

Zang proposes a combination of correlation, monotonicity and robustness for feature

selection [6].
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3.6 Linear Regression Models

Once a subset of features has been selected linear models can be created between two

features,

Y = θX, (15)

whereX is the input vector (or the feature 1),Y is the output vector of the model (or

feature 2) and θ are the model values. By plotting one signal feature against another

signal feature, linear relationships in the data can be revealed. Not only linear relations

but quite possibly non-linear relationships too. The parameters,θ, of the linear model

are estimated using linear least squares,

θ̂ = (XTX)−1XTY, (16)

where θ̂ =


θ̂1
...

θ̂n

,X =


x1(1) . . . xk(1)
...

. . .
...

x1(n) . . . xk(n)

 andY =


y(1)
...

y(2)

 [24].

Equation 16 is used for multivariate models as well as two variable models. Once a

model has been calculated a normalized goodness of fit function [27], NRMSE, can be

used to assess the accuracy of the model,

NRMSE = 100 × 1 − ‖Y − Ŷ‖
‖Y − Ȳ‖

, (17)

where Y is an (N × 1) vector containing the the original feature signal selected as
the model output, Ŷ is an (N × 1) vector containing the model’s output, Ȳ is an

(N × 1) vector containing the mean value of Y and ||.|| denotes the Euclidean

norm.

3.7 Classification and Clustering

In a perfect world, data would be available for every kind of failure mode possible on a

machine. If this were true, supervised learning could be used to train an algorithm to

recognize all kinds of degradation conditions and faults. One could build a model that

predicts or estimates degradation metrics quite easily based on one or more inputs.

This is often not the case and a more likely situation is where a number inputs or

parameters exists but no quantitative outputs. However, one can still learn about

the relationships between signals and the structure from such data using unsupervised

learning. The aim here is to identify patterns in the input-output signals fromunlabeled

data. Thus, it is useful for modeling complex data for which prior knowledge is hard

to get [28].
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Unsupervised learning is more of an inference task rather than prediction. Techniques

such as auto-encoders, K-means clustering and sparse coding are used to find clusters

and patters. Once feature models have been created, one can often find different

clustering of data when a machine is in a degraded condition compared to a healthy

state.

Many studies are performed in the lab on specially constructed test rigs which are built

to run until destruction [19], [20], [22], [26]. This is not possible on an operational

asset since a company cannot afford to run the machine until it fails. For this rea-

son studies into CM of real life machines are often forced to implement unsupervised

learning as opposed to supervised.
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4 Data Processing

4.1 Description of Data

The data provided by Alleima consists of approximately a one hour period of data each

day over a 15 day duration. It is assumed that it was taken from the same period of

time each day. The data was captured by an Iba-DAQ data acquisition system with a

sampling time 0.02 seconds [29]. The list of channels provided are shown in Table

I.

Table I. Signal Names

Signal Index Signal Number Signal Name

1 21:07 Angle over rolls [deg]

2 21:10 Position over rolls [mm]

3 21:12 Actual moment over rolls [Nm]

4 21:17 Angle under rolls [deg]

5 21:20 Actual moment under rolls [Nm]

6 21:28 Vibration measurements [mm/s]

7 21:31 Width position [mm]

8 21:32 Height position [mm]

9 21:33 Error position for height [mm]

10 21:34 Error position for the width [mm]

11 21:35 Set point force [kN]

12 21:36 Actual force [kN]

4.2 Pre-processing

State detection for this application is performed using the Signal 5, 21:20 Actual mo-

ment under rolls. This was suggested by the team at Alleima, who have expert knowl-

edge with the system, as the most appropriate signal to use. When the machine is not

actively processing a tube this value is much less than when it is processing a tube.

When no tube is in the system there is none or minimal torque on this sensor and

when processing it experiences a much larger moment. The data is separated into

cycles using this signal to isolate the periods where the machine is in the act of pro-

cessing a part. A threshold of 500 samples, 10 seconds, was used to filter out short

pulses which aren’t believed to be full cycles.

Figure 3 shows the windows that were identified from each file where the 21.20 signal

was above the threshold. Two files, B_30_03 and B_04_04, contained no identified

pulses. In total 240 pulses were identified where the 21.20 signal crosses the thresh-

old. Any pulse under 500 samples was removed from the data for the next stage leaving

224 pulses to extract features from. This was done to filter out transitions where the
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value jumps briefly above the threshold then back below it. A value of 500 was chosen

based on intuition since there was a large gap in between the shortest pulse deemed

to be legitimate, 20 seconds, and the longest pulse deemed to not be legitimate, less

than 10 seconds.
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Figure 3. Signal 5 21:20 Actual moment under rolls and State Detection

Figure 4 shows one of the plots from fig. 3, B_02_04, in greater detail. This particular

file is the one with the highest number of pulses.
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Figure 4. State detection for signal 21:20 performed on file B_02_04

Figure 5 shows pulses or cycles for Signal 5, 21:20, in each of the fifteen files. As

mentioned earlier B_30_03 and B_04_04 show no pulses as all. All the pulses are

around 40 seconds in duration with similar shapes but varying profiles.

Figure 5. Identified pulses in each files for file

Figure 6 shows the signals for all 224 pulses with each sensor channel plotted in a
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different tile.
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Figure 6. Signal pulses for 224 cycles on each of the 12 channels

Using the identified pulses, one can look at all the other signals during the same pe-

riods. Signal 1, 21.07 Angle over rolls and 2, 21.10 Position over rolls are fairly

constant though contain some small deviations. Signal 7, 21:31Width position and 8,

21:32 Height position are also fairly constant but contain some information when the

scale is increased. Signal 21.35, Force Set Point is a 100% constant signal and contains

nothing but a single value. Considering the label, it can be assumed that this is a set

point that is controlled by the operator or control system and not as sensor on the ma-

chine providing feedback. Apart from using this signal for further separating the data

into different categories it’s likely not that useful for condition monitoring.
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Figure 7 shows the state detection Signal 5, Moment under rolls, in more detail. Visu-

ally one can see these are a type of pulse single with a small amplitude frequency com-

ponent. Signal 3, Moment over rolls looks like a very similar type of signal. Signals

6, 9, 10 and 11 contain some interesting information that can be used for characterize

the machine state. In this context, interesting means that the signals are not constant

values with minimal variance. They has different shapes, means, amplitudes, lengths,

frequencies etc. so there are a number of parameters to differentiate the signals on.

Constant signals can only really be differentiated in mean and length.

Figure 7. Signal 5 Pulses 21:20 Actual moment under rolls

5 Results

5.1 Signal Correlations

A comparison of the raw signals was performed using R2 values. This was not per-

formed for all files due to the long time taken to run the script, just the ones with the

most pulses. Table II shows the R2 values for each pair of signals for file 4, the day

with the most pulses, with the lower triangle being a replica of the upper triangle.

The column for Signal 35, Set Point Force, is minus infinity because of the perfectly

constant signal. Figure 8 plots all of the signals against each other for file 4 with theR2

values in the range of 0.2 to 0.9 printed on the plots. The colors used in the figure are

used to represent the time scale with the start of the time scale being blue and trending

towards red.

Starting with some basic observations from fig. 8, there are a few combinations that
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are extremely linear. Two pairs that are highly correlated are:

1. Signal 7, 21:31 Width position and Signal 10, 21:34 Error position for width.

2. Signal 8, 21:32 Height position and Signal 9, 21:33 Error position for height.

These data pairs appear to form a V shape with two straight lines meeting at a point.

Intuitively this makes sense because the error signals themselves are fairly constant

with very small variation. As the height/width position increases or decreases further

away from the set point the larger or smaller the error gets. Therefore these two pairs

should always be highly correlated.

Signal 3, 21:12 Actual moment over rolls and Signal 5, 21:20 Actual moment under

rolls are also highly linear. This would indicate that the torque on both dimensions of

the pipe are varying together.

One signal that is of interest is Signal 6, 21:28 Vibration Measurements, and two

combinations it forms with Signal 3, Actual moment over rolls and Signal 5, Actual

moment under rolls. Both these combinations have the same correlation value and

when looking at fig. 8 there appears to be a clear non-linear relationship.

Figure 9 shows more clearly what could be an exponential or cubic relationship be-

tween the vibrations and the torque values on the upper and lower rollers. The four

plots are of the four files with the most pulses and all appear to have similarities in

shape. This could be explained by the fact that the larger vibration of the rollers the

more torque is experienced or applied by the actuators to keep the rollers in place.

Figure 9a shows what could be a time dependent relationship since the colors trend

from red to blue on the right side of the plot but this is not really evident in the other

plants.

While fig. 9 plots the Signal 3, Moment over rolls, against Signal 6 it should be noted

that the plots for Signal 5, Moment under rolls look very similar but are not included

in the report. It is also worth to remember that File 1 and 6 contain no identified

pulses so theR2 tables for those two files, while not included in the report, look quite

different to the others and should be ignored.

Table II. R2 values for each signal vs. each other signal
07 10 12 17 20 28 31 32 33 34 35 36

07 1.00 0.07 0.00 0.01 0.00 0.02 0.04 0.45 0.46 0.03 -Inf 0.00

10 0.07 1.00 0.02 0.00 0.02 0.00 0.23 0.15 0.14 0.19 -Inf 0.00

12 0.00 0.02 1.00 0.02 1.00 0.47 0.02 0.00 0.00 0.01 -Inf 0.01

17 0.01 0.00 0.02 1.00 0.02 0.22 0.00 0.00 0.00 0.00 -Inf 0.01

20 0.00 0.02 1.00 0.02 1.00 0.46 0.01 0.00 0.00 0.01 -Inf 0.01

28 0.02 0.00 0.47 0.22 0.46 1.00 0.02 0.01 0.01 0.03 -Inf 0.00

31 0.04 0.23 0.02 0.00 0.01 0.02 1.00 0.17 0.15 0.99 -Inf 0.04

32 0.45 0.15 0.00 0.00 0.00 0.01 0.17 1.00 0.99 0.14 -Inf 0.00

33 0.46 0.14 0.00 0.00 0.00 0.01 0.15 0.99 1.00 0.13 -Inf 0.00

34 0.03 0.19 0.01 0.00 0.01 0.03 0.99 0.14 0.13 1.00 -Inf 0.04

35 -0.00 -0.00 -0.00 0.00 -0.00 0.00 -0.00 -0.00 0.00 0.00 -Inf -0.00

36 0.00 0.00 0.01 0.01 0.01 0.00 0.04 0.00 0.00 0.04 -Inf 1.00
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Figure 8. Plot of each signal vs every other signal withR2 values between 0.2 and 0.9
for File 4

17



(a) File 3 (b) File 4

(c) File 8 (d) File 13

Figure 9. Vibration vs Moment where color equates to time over approximately 1

hour

5.2 Feature Selection

Once the data has been pre-processed the feature values are calculated for each identi-

fied production cycle. For every channel, theR2 value for every pair of signal features

is computed and the pairs of data points for each cycle are plotted against each other

in a scatter plot. This is used as a first stage for filtering out irrelevant data. A small,

or zero,R2 value indicates that there is a very weak or no linear relationship between

that pair of features. On the other hand an R2 value of close to 1 indicates that the

two features are perfectly or close to perfectly linear.

Two threshold values are used to select a range of R2 correlated features with this

method. An upper and and a lower R2 threshold value are specified which reveals

feature pairs which are somewhat linear or varying in nature. These are the combina-

tions that are of interest to look for condition indicators.

A semi automated method is be used to narrow down on feature pairs of interest. A

script cycles through the table of R2 values and the features correlated to a number

of others can be isolated. Within that combination one can then remove those signals

from the groupwhich are highly correlatedwith each other. Not only can one compare
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pairs of features within the same signal but one can also look for relationships between

the same feature over multiple channels. A manual approach was then used to select

a few relationships of interest to include in the report.

MATLAB’sDiagnostic FeatureDesignerwas used calculate the features from the signal

pulse data with Table III showing the features that were extracted. Throughout the

remainder of the report some figures are labeled with a feature number instead of the

full text due to readability and space constraints. Use Table III to refer to which feature

the indexes represents.

Table III. Feature Names

1 Clearance Factor 9 SINAD

2 Crest Factor 10 Shape Factor

3 Impulse Factor 11 Skewness

4 Kurtosis 12 Standard Deviation

5 Mean 13 THD

6 Peak Value 14 Band Power

7 RMS 15 Peak Amplitude 1

8 SNR 16 Peak Frequency 1

5.3 Feature vs Feature Models

Figure 10 shows an example of plotting all features against one another. This was

repeated for all signals, one is shown in the main section of this report, the rest can be

found in Appendix B. Each number on the diagonal represents a feature from Table

III, starting with the signal features followed by the spectral features. Only the R2

values between 0.3 and 0.8 are printed on the relevant plots. The colors used in these

plots are used to represent a pseudo time scale. Since the data is only from 1 hour per

day the color spectrum is non linear however it may be useful in revealing any trends

over time.

Once a subset of features are chosen, equation 15 is used to create a model. If two

features are selected, for example kurtosis and mean, then the model is given by

Xkurtosis = θ′Xmean (18)

whereXkurtosis is an (N × 1) array, θ is a (2 × 1) array andX =


1 Xmean(1)
...

...

1 Xmean(N)

,
which is an (N × 2) matrix.

It can be noted in fig. 10 that Features 1, 2 and 3 all have very straight lines so here we

can say that these features (Clearance, Crest and Impulse Factor), are linearly corre-
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lated and thus need only include one of these in any model. This is the same situation

for Features 5, 6 and 7 (Mean, Peak Value and RMS). Looking at Feature 14, Band

Power, it can be seen that the R2 value is within the specified range when compared

with Features 10, Shape Factor and 12, Standard Deviation. Figure 11a shows these

three features plotted against one another for all cycles. As expected they are some-

what similar in pattern but not exactly the same. Linear regression models were cre-

ated, figs. 11b and 11c with the NRMSE value shown in the plots. Figure 11d shows a

three dimensional model for all three of those Features which looks extremely linear

apart from a few outlines. The NRMSE value is increased from the individual plots

which means it’s a pretty good fit. It’s also worth to note, while the figures are not

included in the report, Signal 5 21:20 Actual moment over rolls has the same char-

acteristics of Signal 3, Actual moment under rolls which means one can not make an

assumption that the variance is constant along the signal.

Figure 10. Feature vs Feature for Signal 3, 21:12 Actual moment over rolls
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(a) Feature values over time: Shape Fac-

tor (blue), Standard Deviation (blue) and
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0 5 10 15

BandPower 10
5

0

50

100

150

200

250

300

350

S
td

48.1

(c) Band power vs StandardDeviationwith

data points in color ordered in time and

linear model in red with NRMSE = 48.1.
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Figure 11. Signal 3, 21:12 Actual moment over rolls

The vibration features in fig. 12 shows an interesting relationship. Five of the features

are have correlation values within the specified range but one combination in particular

has a different relationship to the others. The Crest Factor vs Band Power exhibits a

relationship with an increasing variance.
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(a) Feature values over time: Crest Fac-

tor (blue), Mean (red), Shape Factor (blue

dashed), Skewness (blue dotted) and Band

power (blue dash-dotted).
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(b) Crest factor vs Band power with data

points in color ordered in time and linear

model in red with NRMSE = 33.7.

Figure 12. Signal 6, 21:28 Vibration measurements

Looking at the error for the height position, there is an an interesting pattern in the

data for Feature 7, RMS. Figure 13a shows a number of the correlated features drawn

on the same plot however the combination of RMS and Standard Deviation is the one

of interest. Figure 13b shows these two features plotted against each other and there

is a straight line clearly apparent however some other little clusters appear adjacent

to this line. The straight line could represent when the machine is working in a good

operating window and the clusters when it deviates from this.
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(a) Feature values over time: Clearance

Factor (blue), Peak Value (dotted blue),

RMS (red), Shape Factor (dashed red) and
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(b) RMS vs Standard Deviation with data

points in color ordered in time and linear

model in red with NRMSE = 17.9.

Figure 13. Signal 9, 21:33 Error position for height

Figure 14 shows the subset of features for Feature 11, Skewness. Two combinations

appear to show exponential relationships, Skewness vs Kurtosis fig. 14b and Skewness

vs Shape Factor fig. 14d.
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(a) Feature values over time: Kurtosis

(blue), Mean (red), Shape Factor (dashed

red), Skewness (dashed blue) and Peak

Frequency (dotted blue).
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(b) Skewness vs Kurtosis with data points

in color ordered in time and linear model

in red with NRMSE = 41.7.
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(c) Skewness vs Mean with data points in

color ordered in time and linear model in

red with NRMSE = 17.6.
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(d) Skewness vs Shape Factor with data

points in color ordered in time and linear

model in red with NRMSE = 44.7.

Figure 14. Signal 9, 21:33 Error position for height

Figure 15 plots two features for Signal 10,Width error. Figure 15b shows a clear non-

linear parabolic relationship between the Skewness and the Kurtosis. There could also

be a time varying relationship here since the left side of the data set appears to bemostly

red and moves to predominantly blue as the skewness increases.
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(b) Skewness vs Kurtosis with data points

in color ordered in time and linear model

in red with NRMSE = 16.6.

Figure 15. Signal 10, 21:34 Error position for width

Figure 16 shows two relationships of interest. Figure 16b appears to be a non-linear

exponential relationship where the variance is not constant, but increasing as both

values move away from 1. Figure 16c shows a week linear relationship but appears to

have two distinct clusters with one on either side of the plot. The 3Dmodel in fig. 16d

shows the combination of all three of these variables where there is a dense cluster of

data in the lower left of the plot and some clusters of outliers higher up.
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Figure 16. Signal 12, 21:36 Actual force

5.4 Signal vs Signal Models

Just as in the last section, where each feature was plotted against every other feature

within the same signal, the same thing can be done within a feature. For example we

can take the mean of all sensor channels and plot these against each other.

One feature that was chosen to include in the report is the Crest Factor, fig. 17. Fig-

ure 17a shows Signal 1 21:07 Angle over rolls vs Signal 6 21:28 Vibrations where the

linear model is very accurate close to the Y axis with increasing variance as the Crest

Factor of the Angle Over rolls increases.
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Figure 17. Feature 2 Crest Factor

Figure 18 shows the Kurtosis values for the Height vs the Height Error. It is interesting

to note in fig. 18b the there is again increasing variance as the the values increase, but

also that there appears to be a cluster of data the forms a very straight line in the lower

portion of the graph. This could indicate a certain operating condition and the rest of

the data indicates something else. Without maintenance data it is not known whether

this is normal operating condition or not. This linear model is valid for errors in Height

between 2 mm to 6 mm and height position between 2 to 10mm but outside of these

this is not enough data.
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Figure 18. Feature 4 Kurtosis

Figure 19b shows the peak frequency of the Actual Moment over rolls vs Actual mo-

ment under rolls. It can be noted that a majority of the data points follow the a linear

model very well. However, a subset of the available data appear to form another linear

relationship with a similar gradient but slightly lower intercept.
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Figure 19. Feature 16 Peak Frequency 1
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6 Discussion

This study aimed to find patterns in the data and give suggestions as to which signals and

signal features are of value for future condition monitoring studies and which are not.

Of the data provided, many of the signals were relatively constant showing minimal

variance. In particular, Signal 11, 21:35 Set point force is perfectly constant and is

not suitable for condition monitoring. The following signals are not overly useful

to condition monitoring as they are fairly constant in mean value and contain little

variability:

• Signal 1, 21:07 Angle over rolls

• Signal 2, 21:10 Position over rolls

• Signal 4, 21:17 Angle under rolls

• Signal 7, 21:31 Width position

• Signal 8, 21:32 Height position

• Signal 11, 21:35 Set point force

Excluding these signals from future studies already reduces the data by 50%. The

remaining signals are most useful for condition monitoring:

• Signal 3, 21:12 Actual moment over rolls

• Signal 5, 21:20 Actual moment under rolls

• Signal 6, 21:28 Vibration measurements

• Signal 9, 21:33 Error position for height

• Signal 10, 21:34 Error position for the width

• Signal 12, 21:36 Actual force

The strength in this study lies in using data from an operational machine with varying

scales and units. It would be worthwhile to inquire with the company about whether

what they have provided is the full set of available signals. Temperature and acoustic

emissions are also highly effective types of sensors for condition monitoring so if there

was in fact additional data these would be of interest. If none of these sensors exist per-

haps it might be a good consideration add one or more of these types of measurements

to complement existing infrastructure.

The data supplied for the project is from a two week period which probably does

not give a good insight into the life cycle of the machine. No maintenance data was

provided. Perhaps maintenance is only required on a yearly cycle, thus the data is not
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fully representative of the machine degradation over time. Perhaps a better selection

of data would include a snippet of data every 1-2 weeks over a year long period and

thus one could get a better view of how the machine degrades over a year.

A system that has been operating for a long period of time will undergo changes due to

the natural wear of the system. Ideally, data over the lifespan of a machine would be

available. It is not known whether the current data is normal operating data. It could

be right at the beginning of the life cycle or could be just at the end of the machines

life cycle.

Throughout the report a color spectrum was used to indicate the time order of pulses

in an attempt to reveal degradation conditions. It’s worth remembering that this ma-

chine processes different sized tubes and thus one could confuse clustering in time

with clustering in product sizes. This is where more data broken down in to different

product sizes could be better at revealing degradation over time.

This study utilizes relatively simple methods to in comparison to the types of methods

mentioned in earlier sections of the report. An analysis of such data can be expanded

exponentially but one can only look at so much. It is also beneficial to, at least begin

with, simple things like two variable linear regression and perhaps this is all that is

required to identify a indicator of degradation state.

The subject matter, methods and results used in this report are inline with target 9.5

of the 2030 Agenda for sustainable development[30]. Hopefully this work will up-

grade technology capabilities in industrial sectors and will assist workers in the field of

research and development.

6.1 Future Work

This report has identified patterns in the data and potential clusters based on visual

observations. However, no attempts were made to implement any clustering algo-

rithms. This would be the logical next step, to apply machine learning techniques, in

trying to identify degradation and failure states.

The straightening machine in this study produces tubes of different diameters. At least

one of the signals, Height and/orWidth Position, can be used to indicate the diameter.

This could be used to classify the data further into different tube widths. A suggestion

for future studies is to perform an additional prepossessing step to separate data into

periods where the machine is producing tubes with certain diameters. Some of the

clustering suggestions or relationships given in this study could just be identifyingwhen

the machine is producing a tube of a certain width. Separating data into pipe widths

and focusing on only one tube width would remove any chance of this. A method

like this would have been challenging since only 224 pulses were identified to begin
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with and thus a further reduction might result in not enough data to make meaningful

observations.

As mentioned previously, the data for this study was taken over a two week period

with no data on maintenance. For the next set of data might it might be beneficial to

request periods of data with longer intervals between them. Ideally, obtaining some

data before a known maintenance task and after might assist in identify clusters which

are indicative of the machine degradation state.

While this report highlighted some non-linear relationship it made no attempt at mod-

eling them. This could be a worthwhile endeavor for the next iteration of work.
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7 Conclusion

A study of the available data on a steel tube straightening machine was conducted with

an eye to using the existing infrastructure for condition monitoring. R2 correlation

was useful for identifying relationships between the sensor channels and between fea-

tures. Range thresholds of around 0.2 to 0.9 were a good choice for narrowing down

the signals to a manageable number.

The most promising signals for condition monitoring are the two torque moments

(under and over rolls), the two error positions (height and width), the vibration mea-

surement and the actual force. This already reduces the data by 50%. No one feature

stood out above all others for condition monitoring suitability.

Specific relationships recommended for further investigations are:

• RMS vs Standard Deviation of Signal 9, 21:33 Error position for height.

• Skewness vs Kurtosis of Signal 10, 21:34 Error position for width.

• Clearance Factor vs Shape Factor of Signal 12, 21:36 Actual Force.

• Moment under vs Moment over rolls for Feature 16, Peak Frequency 1.

Potential non-linear relations were identified in:

• Signal 10, 21:34 Error position for width - Skewness vs Kurtosis.

• Signal 12, 21:36 Actual force - Clearance Factor vs Shape Factor.
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Appendix A Matlab Code
1 %{
2 Date: 2023/08/23
3 Filename: LoadRawData.m
4 Author: Paul Barron
5 Description: Loads the raw data from files and create labels for sensor
6 channels
7 %}
8 %%
9 clear;
10 close all;
11 warning off;
12 saveFigures = false;
13

14 Ts = 0.02; % Sampling interval for data
15 fs = 1 / Ts;
16 dataSubfolder = "../SMT_data_20220520/";
17

18 filenames = [ "B_30_03" "B_31_03" "B_01_04" "B_02_04" ...
19 "B_03_04" "B_04_04" "B_05_04" "B_06_04" ...
20 "B_07_04" "B_08_04" "B_09_04" "B_10_04" ...
21 "B_11_04" "B_12_04" "B_13_04" ];
22 numOfFiles = size(filenames , 2);
23

24 % Names of the signals in the data
25 sensorNames = [ "21:07 Angle over Rolls [deg]"...
26 "21:10 Position over Rolls [mm]"...
27 "21:12 Actual moment over Rolls [Nm]"...
28 "21:17 Angle under roll [deg]"...
29 "21:20 Actual moment under Rolls [Nm]"...
30 "21:28 Vibration measurements [mm per s]"...
31 "21:31 Width position [mm]"...
32 "21:32 Height position [mm]"...
33 "21:33 Error position for height [mm]"...
34 "21:34 Error position for the width [mm]"...
35 "21:35 Set point force [kN]"...
36 "21:36 Actual force [kN]"];
37 numOfSignals = size(sensorNames , 2);
38

39 % Names of the signals in the data
40 sensorUnits = [ "Angle over [deg]"...
41 "Pos over [mm]"...
42 "Moment over [Nm]"...
43 "Angle under [deg]"...
44 "Moment under [Nm]"...
45 "Vibration [mm/s]"...
46 "Width position [mm]"...
47 "Height position [mm]"...
48 "Error height [mm]"...
49 "Error width [mm]"...
50 "SP force [kN]"...
51 "Act force [KN]"];

1 function [pulses, mask, flag, maxPulseLength] = fnStateDetection(
dataArrayLocal , threshold , minPulseTimeThreshold , signalNumber)

2 %{
3 Date: 2023/03/19
4 Filename: fnStateDetction.m
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5 Author: Paul Barron
6 Description:
7 pulses: numOfPulses x numOfSignals x pulseNumOfSamples
8 mask: array that is 1 x length (numOfSamples)
9 flag: array that is 1 x numOfPulses , true = number of samples in pulse

is less than min threshold to be considred a real pulse
10 maxPulseLength: integer for the max number of samples in the longest

pulse
11 %}
12

13 % Extract signal #5 (Signal 20)
14 signal20 = dataArrayLocal(signalNumber ,2);
15 signal20 = cell2mat(signal20);
16

17 % Extract number of samples and sensors
18 [numOfDataSamples , ~] = size(signal20);
19 [numOfSensors , ~] = size(dataArrayLocal);
20 mask = zeros(1, numOfDataSamples);
21

22 % Loop through the data and record transitions from below 600 to above
23 % and visa versa
24 startValues = [];
25 endValues = [];
26 startLow = false;
27 for i=2:numOfDataSamples
28 if signal20(i) > threshold
29 mask(i) = threshold;
30 end
31

32 if signal20(i) > threshold & signal20(i-1) <= threshold
33 startValues(end+1) = i;
34 startLow = true;
35 end
36

37 if signal20(i) < threshold & signal20(i-1) >= threshold & startLow
38 endValues(end+1) = i;
39 end
40 end
41

42

43 [~, numOfPulses] = size(startValues); % Calculate number of pulses
depending on number of positive transitions

44 pulses = {};
45 for i = 1:numOfPulses
46 signalArray = zeros(endValues(i)-startValues(i)+1, 12);
47 for j = 1:numOfSensors
48 arrayData = cell2mat(dataArrayLocal(j,2));
49 columnToAdd = arrayData( startValues(i):endValues(i) );
50 signalArray(:,j) = columnToAdd;
51 end
52 pulses{i} = signalArray;
53 end
54

55

56 % Check whether we think any of the pulses are not valid
57 pulseLengths = endValues - startValues;
58 flag = false(numOfPulses);
59 medianPulseLength = median(pulseLengths);
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60 for i = 1:numOfPulses
61 sprintf("Median %d Length: %d", medianPulseLength , pulseLengths(i));
62 if pulseLengths(i) < minPulseTimeThreshold
63 flag(i) = true;
64 end
65 end
66

67 if (size(pulseLengths) <= 0)
68 maxPulseLength = 0;
69 else
70 maxPulseLength = max(pulseLengths);
71 end
72 end

1 %{
2 Date: 2023/08/23
3 Filename: PreprocessData.mlx
4 Author: Paul Barron
5 Description: This script performs the state detection to extract the

pulse data. It calls uses the function fnStateDetection which does
the processing. Here the data is combined into in an array and the
pulses that are too short to be real pulses are discarded.

6 %}
7 %%
8 saveFigures = false;
9 pulseThreshold = 600; % Threshold for state detection given by company
10 minPulseTimeThreshold = 500; % Samples
11

12 % Loop through the files, load the data the perform the state detection
13 % Extract the pulses for each sensor signal based on Signal 20
14 signalNumberForDetection = 5;
15 signalNumberToPlot = 5; % This is signal 21:20
16 [~,numOfFiles] = size(filenames);
17 mask = {numOfFiles};
18 flag = {numOfFiles};
19 pulseData = {numOfFiles};
20 rawDataArray = {numOfFiles};
21 totalPulses = 1;
22 numOffalsePulses = 0;
23

24 for fileIndex=1:numOfFiles
25 % Load the data for the current file
26 rawDataStruct = load(dataSubfolder + filenames(fileIndex) + ".mat");
27 rawDataArray{fileIndex} = struct2array(rawDataStruct);
28

29 %pulses is a 2D array with dimensions (1 * numOfPulses)
30 [pulseData{fileIndex}, mask{fileIndex}, flag{fileIndex}, maxPulseLengths

(fileIndex)] = fnStateDetection(rawDataArray{fileIndex},
pulseThreshold , minPulseTimeThreshold , signalNumberForDetection);

31

32 % Plot the extracted Signal 20 pulses for this particular file
33 subplot(4, 4, fileIndex);
34 hold on;
35 [~, numOfPulses] = size(pulseData{fileIndex});
36 for pulseIndex=1:numOfPulses
37 x = pulseData{fileIndex}{pulseIndex}(:, signalNumberToPlot);
38 t = 0 : Ts : (Ts * size(x, 1) - Ts);
39 plot(t, x);
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40 end
41 title(filenames(fileIndex), 'Interpreter', 'none');
42 xlabel("Time [s]");
43 axis([0 50 pulseThreshold 2000])
44

45 % Combine the pulse data for this file with all the others
46 for pulseIndex = 1:numOfPulses
47 if flag{fileIndex}(pulseIndex) == false % Only include pulses that

aren't marked as potential false ones
48 for sensorIndex = 1:numOfSignals % Add data for each sensor
49 tempData = pulseData{fileIndex}{pulseIndex}(:, sensorIndex);
50 pulseData_Timetable_Standard{totalPulses , sensorIndex} =

timetable(tempData , 'SampleRate', 1/Ts, 'VariableNames',
sensorNames(sensorIndex));

51 end
52 totalPulses = totalPulses + 1;
53 else
54 numOffalsePulses = numOffalsePulses + 1;
55 end
56 end
57 end
58 %%
59 if saveFigures
60 print -depsc '..\Latex Document\figures\IdentifiedPulsesFig';
61 end
62 %%
63 %% Remove DC Offset
64 %% Pad to the length of longest pulse
65 maxPulseLength = max(maxPulseLengths) + 1;
66 for fileIndex = 1:numOfFiles
67 for pulseIndex = 1:size(pulseData{fileIndex},2)
68 temp = pulseData{fileIndex}{pulseIndex};
69 numSamplesUnderMax = maxPulseLength - size(temp, 1);
70 pulseData_DcRemoved{fileIndex}{pulseIndex} = temp - mean(temp, 1);
71 pulseData_Padded{fileIndex}{pulseIndex} = padarray (temp,

numSamplesUnderMax , 12, "post");
72 temp2 = pulseData_Padded{fileIndex}{pulseIndex};
73 pulseData_DcRemovedPadded{fileIndex}{pulseIndex} = temp2 - mean(

temp2, 1);
74 end
75 end
76 clear temp;
77 clear temp2;
78

79 %% Combine the data for all padded pulses
80 totalPulses = 1;
81 for fileIndex=1:numOfFiles
82 for pulseIndex = 1:size(pulseData{fileIndex},2)
83 if flag{fileIndex}(pulseIndex) == false % Only include pulses that

aren't marked as potential false ones
84 for sensorIndex = 1:numOfSignals % Add data for each sensor
85 tempData = pulseData_Padded{fileIndex}{pulseIndex}(:,

sensorIndex);
86 pulseData_Timetable_Padded{totalPulses , sensorIndex} =

timetable(tempData , 'SampleRate', 1/Ts, 'VariableNames',
sensorNames(sensorIndex));

87 tempData = pulseData_DcRemoved{fileIndex}{pulseIndex}(:,
sensorIndex);
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88 pulseData_Timetable_DcRemoved{totalPulses , sensorIndex} =
timetable(tempData , 'SampleRate', 1/Ts, 'VariableNames',
sensorNames(sensorIndex));

89 tempData = pulseData_DcRemoved{fileIndex}{pulseIndex}(:,
sensorIndex);

90 pulseData_Timetable_DcRemovedPadded{totalPulses , sensorIndex
} = timetable(tempData , 'SampleRate', 1/Ts, '
VariableNames', sensorNames(sensorIndex));

91 end
92 totalPulses = totalPulses + 1;
93 end
94 end
95 end
96 clear fileIndex;
97 clear pulseIndex;
98 clear tempData;
99 %% Plot DC Removed data
100

101 figure();
102 fig = tiledlayout(4, 4);
103 for fileIndex=1:numOfFiles
104 nexttile; hold on;
105 for pulseIndex = 1:size(pulseData_DcRemoved{fileIndex},2)
106 plot(pulseData_DcRemoved{fileIndex}{pulseIndex}(:,5));
107 title(pulseIndex);
108 end
109 end
110 %% Plot padded data
111

112 figure();
113 fig = tiledlayout(4, 4);
114 for fileIndex=1:numOfFiles
115 nexttile; hold on;
116 for pulseIndex = 1:size(pulseData_Padded{fileIndex},2)
117 plot(pulseData_Padded{fileIndex}{pulseIndex}(:,5));
118 title(pulseIndex);
119 end
120 end
121 %% Plot padded data
122

123 figure();
124 fig = tiledlayout(4, 4);
125 for fileIndex=1:numOfFiles
126 nexttile; hold on;
127 for pulseIndex = 1:size(pulseData_Padded{fileIndex},2)
128 plot(pulseData_DcRemovedPadded{fileIndex}{pulseIndex}(:,5));
129 title(pulseIndex);
130 end
131 end
132 %%
133 clear fileIndex;
134 clear pulseIndex;
135 clear fig;
136 %% Plot the state detection signal vs 21:20 Actual Moment under Rollers
137

138 figure();
139 fig = tiledlayout(4, 4);
140 %title(fig, 'State detection signal 21:20 Actual Moment under Rollers ');
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141 for fileIndex=1:numOfFiles
142 nexttile; hold on;
143 x = cell2mat(rawDataArray{fileIndex}(signalNumberToPlot , 2));
144 t = 0 : Ts / 3600 : (Ts * size(x, 1) - Ts) / 3600;
145 plot(t, x');
146 plot(t, mask{fileIndex});
147 title(filenames(fileIndex), 'Interpreter', 'none');
148 xlabel("Time [H]");
149 ylabel("Nm");
150 end
151 if saveFigures
152 print('..\Latex Document\figures\StateDetectionFig', '-depsc');
153 end
154 filename = "..\Latex Document\figures\StateDetectionFig.png";
155 export_fig(filename , '-svg');
156 %%
157 figure(); hold on;
158 x = cell2mat(rawDataArray{4}(signalNumberToPlot , 2));
159 t = 0 : Ts / 3600 : (Ts * size(x, 1) - Ts) / 3600;
160 plot(t, x');
161 plot(t, mask{4});
162 xlabel("Time [H]");
163

164 if saveFigures
165 print -depsc '..\Latex Document\figures\StateDetectionFig_B_02_04';
166 end
167 %%
168 numOfPulses = totalPulses - 1;
169 for signalIndex = 1:numOfSignals
170 figure(); hold on;
171 for pulseIndex=1:numOfPulses
172 plot(pulseData_Timetable_Standard{pulseIndex , signalIndex}, 1, '

LineWidth', 0.2);
173 end
174 filename = "..\Latex Document\figures\SignalPulse" + signalIndex;
175 if (saveFigures == true)
176 print(filename ,'-depsc','-tiff')
177 end
178 filename = "..\Presentation\SignalPulse" + signalIndex;
179 print(filename ,'-dsvg')
180 end
181 %%
182 fig = tiledlayout(4, 3);
183 for signalIndex = 1:numOfSignals
184 nexttile; hold on;
185 str1 = char(sensorNames(signalIndex));
186 str2 = sensorUnits(signalIndex);
187 title (str1(1:5) + " " + str2);
188 for pulseIndex=1:numOfPulses
189 t = pulseData_Timetable_Standard{pulseIndex , signalIndex};
190 tt = timetable2table(t ,'ConvertRowTimes',false);
191 tVec = 0:Ts:Ts * ( size(t.Variables ,1) - 1);
192 plot(tVec', tt.Variables , 'LineWidth', 0.05);
193 end
194 ylabel("");
195 xlabel("Time [s]");
196 end
197
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198 width = 10;
199 height = 10;
200 fontsize = 6;
201 set(gcf,'paperunits','centimeters')
202 set(gcf, 'PaperPositionMode', 'manual');
203 set(gcf,'papersize',[width,height])
204 set(gcf,'paperposition',[0,0,width,height])
205 set(gcf, 'renderer', 'painters');
206 set(findall(gcf,'-property','FontSize'),'FontSize',5);
207 filename = "..\Latex Document\figures\SignalPulses";
208 if saveFigures
209 print(filename ,'-depsc','-tiff')
210 end
211 %%
212 fig = tiledlayout(3, 4);
213 for signalIndex = 1:numOfSignals
214 nexttile; hold on;
215 str1 = char(sensorNames(signalIndex));
216 str2 = sensorUnits(signalIndex);
217 title (str1(1:5) + " " + str2);
218 for pulseIndex=1:numOfPulses
219 t = pulseData_Timetable_Standard{pulseIndex , signalIndex};
220 tt = timetable2table(t ,'ConvertRowTimes',false);
221 tVec = 0:Ts:Ts * ( size(t.Variables ,1) - 1);
222 plot(tVec', tt.Variables , 'LineWidth', 0.05);
223 end
224 ylabel("");
225 xlabel("Time [s]");
226 end
227

228 width = 16;
229 height = 10;
230 fontsize = 6;
231 set(gcf,'paperunits','centimeters')
232 set(gcf, 'PaperPositionMode', 'manual');
233 set(gcf,'papersize',[width,height])
234 set(gcf,'paperposition',[0,0,width,height])
235 set(gcf, 'renderer', 'painters');
236 set(findall(gcf,'-property','FontSize'),'FontSize',5);
237 export_fig(filename , '-svg');
238 %%
239 fig = tiledlayout(4, 3);
240 for signalIndex = 1:numOfSignals
241 nexttile; hold on;
242 str1 = char(sensorNames(signalIndex));
243 str2 = sensorUnits(signalIndex);
244 title (str1(1:5) + " " + str2);
245 for pulseIndex=1:numOfPulses
246 t = pulseData_Timetable_DcRemoved{pulseIndex , signalIndex};
247 tt = timetable2table(t ,'ConvertRowTimes',false);
248 tVec = 0:Ts:Ts * ( size(t.Variables ,1) - 1);
249 plot(tVec', tt.Variables , 'LineWidth', 0.05);
250 end
251 ylabel("");
252 xlabel("Time [s]");
253 end
254

255 width = 10;
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256 height = 10;
257 fontsize = 6;
258 set(gcf,'paperunits','centimeters')
259 set(gcf, 'PaperPositionMode', 'manual');
260 set(gcf,'papersize',[width,height])
261 set(gcf,'paperposition',[0,0,width,height])
262 set(gcf, 'renderer', 'painters');
263 set(findall(gcf,'-property','FontSize'),'FontSize',5);
264 filename = "..\Latex Document\figures\SignalPulsesDcRemoved";
265 if saveFigures
266 print(filename ,'-depsc','-tiff')
267 end
268 %%
269 fig = tiledlayout(4, 3);
270 for signalIndex = 1:numOfSignals
271 nexttile; hold on;
272 str1 = char(sensorNames(signalIndex));
273 str2 = sensorUnits(signalIndex);
274 title (str1(1:5) + " " + str2);
275 for pulseIndex=1:numOfPulses
276 t = pulseData_Timetable_Padded{pulseIndex , signalIndex};
277 tt = timetable2table(t ,'ConvertRowTimes',false);
278 tVec = 0:Ts:Ts * ( size(t.Variables ,1) - 1);
279 plot(tVec', tt.Variables , 'LineWidth', 0.05);
280 end
281 ylabel("");
282 xlabel("Time [s]");
283 end
284

285 width = 10;
286 height = 10;
287 fontsize = 6;
288 set(gcf,'paperunits','centimeters')
289 set(gcf, 'PaperPositionMode', 'manual');
290 set(gcf,'papersize',[width,height])
291 set(gcf,'paperposition',[0,0,width,height])
292 set(gcf, 'renderer', 'painters');
293 set(findall(gcf,'-property','FontSize'),'FontSize',5);
294 filename = "..\Latex Document\figures\SignalPulsesPadded";
295 if saveFigures
296 print(filename ,'-depsc','-tiff')
297 end
298 %%
299 % clear x;
300 % clear t;
301 % clear signalNumberToPlot;
302 % clear maxPulseLength;
303 % clear maxPulseLengths;
304 % clear minPulseTimeThreshold;
305 % clear fig;
306 % clear fileIndex;
307 % clear numSamplesUnderMax;
308 % clear tVec;
309 % clear width;
310 % clear tt;
311 % clear height;
312 % clear flag;
313 %%
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314 [FullPath ,Filename ,ext]=fileparts(matlab.desktop.editor.getActiveFilename);
315 currentFile = strcat(Filename, ext);
316 path = export(currentFile , Format="m", OpenExportedFile=false);

1 %{
2 Date: 2023/08/23
3 Filename: LoadFeatures.m
4 Author: Paul Barron
5 Description: This script loads the features calculated by Matlab's

Diagnostic Feature Designer
6 %}
7

8 % Time Tables are equivelant to the Signal Numbers i.e. TimeTable = 21.07
9 signalNames_Time = [
10 "TimeTable_sigstats/"...
11 "TimeTable1_sigstats/"...
12 "TimeTable2_sigstats/"...
13 "TimeTable3_sigstats/"...
14 "TimeTable4_sigstats/"...
15 "TimeTable5_sigstats/"...
16 "TimeTable6_sigstats/"...
17 "TimeTable7_sigstats/"...
18 "TimeTable8_sigstats/"...
19 "TimeTable9_sigstats/"...
20 "TimeTable10_sigstats/"...
21 "TimeTable11_sigstats/"
22 ];
23 numOfSignals = size(signalNames_Time , 2);
24

25 % Time domain features produced by Matlab DFD
26 featureNames_Time = [
27 "ClearanceFactor"... %1
28 "CrestFactor"... %2
29 "ImpulseFactor"... %3
30 "Kurtosis"... %4
31 "Mean"... %5
32 "PeakValue"... %6
33 "RMS"... %7
34 "SNR"... %8
35 "SINAD"... %9
36 "ShapeFactor"... %10
37 "Skewness"... %11
38 "Std"... %12
39 "THD" %13
40 ];
41 numOfFeatures_Time = size(featureNames_Time , 2);
42

43 % Time Tables are equivelant to the Signal Numbers i.e. TimeTable = 21.07
44 signalNames_Freq = [
45 "TimeTable_ps_spec/"...
46 "TimeTable1_ps_spec/"...
47 "TimeTable2_ps_spec/"...
48 "TimeTable3_ps_spec/"...
49 "TimeTable4_ps_spec/"...
50 "TimeTable5_ps_spec/"...
51 "TimeTable6_ps_spec/"...
52 "TimeTable7_ps_spec/"...
53 "TimeTable8_ps_spec/"...
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54 "TimeTable9_ps_spec/"...
55 "TimeTable10_ps_spec/"...
56 "TimeTable11_ps_spec/"
57 ];
58

59 % Time domain features produced by Matlab DFD
60 featureNames_Freq = [
61 "BandPower"... %1
62 "PeakAmp1"... %2
63 "PeakFreq1"... %3
64 ];
65 numOfFeatures_Freq = size(featureNames_Freq , 2);
66

67 %% Load features from .mat files
68 load("DFD_FeatureTable_TimeDomain_Standard.mat");
69 load("DFD_FeatureTable_FreqDomain_Standard.mat");
70

71 load("DFD_FeatureTable_TimeDomain_DcRemoved.mat");
72 load("DFD_FeatureTable_FreqDomain_DcRemoved.mat");
73

74 load("DFD_FeatureTable_TimeDomain_Padded.mat");
75 load("DFD_FeatureTable_FreqDomain_Padded.mat");
76

77 load("DFD_FeatureTable_TimeDomain_DcRemovedPadded.mat");
78 load("DFD_FeatureTable_FreqDomain_DcRemovedPadded.mat");
79

80 %% Convert DFD output from Timetables to array
81 % Combine time domain features with frequency domain features
82 % Output is an array numOfPulses x numOfSignals x numOfFeatures
83 numOfTimeFeatures = size(featureNames_Time , 2);
84 numOfFreqFeatures = size(featureNames_Freq , 2);
85 numOfPulses = size(pulseData_Timetable_Standard , 1);
86 totalFeatures = numOfTimeFeatures + numOfFreqFeatures;
87 featureArray_Standard = zeros(numOfPulses , totalFeatures , numOfSignals);
88 featureArray_DcRemoved = zeros(numOfPulses , totalFeatures , numOfSignals);
89 featureArray_Padded = zeros(numOfPulses , totalFeatures , numOfSignals);
90 featureArray_DcRemovedPadded = zeros(numOfPulses , totalFeatures ,

numOfSignals);
91

92 %% Take data from the time and freq domain features and combine them into an
93 % array
94 for signalIndex = 1 : numOfSignals
95 for featureIndex = 1 : numOfTimeFeatures
96 featureArray_Standard(:, featureIndex , signalIndex) =

DFD_FeatureTable_TimeDomain_Standard.(signalNames_Time(
signalIndex) + featureNames_Time(featureIndex));

97 featureArray_DcRemoved(:, featureIndex , signalIndex) =
DFD_FeatureTable_TimeDomain_DcRemoved.(signalNames_Time(
signalIndex) + featureNames_Time(featureIndex));

98 featureArray_Padded(:, featureIndex , signalIndex) =
DFD_FeatureTable_TimeDomain_Padded.(signalNames_Time(signalIndex
) + featureNames_Time(featureIndex));

99 featureArray_DcRemovedPadded(:, featureIndex , signalIndex) =
DFD_FeatureTable_TimeDomain_DcRemovedPadded.(signalNames_Time(
signalIndex) + featureNames_Time(featureIndex));

100 end
101 for featureIndex = 1 : numOfFreqFeatures
102 featureArray_Standard(:, featureIndex + numOfTimeFeatures ,
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signalIndex) = DFD_FeatureTable_FreqDomain_Standard.(
signalNames_Freq(signalIndex) + featureNames_Freq(featureIndex))
;

103 featureArray_DcRemoved(:, featureIndex + numOfTimeFeatures ,
signalIndex) = DFD_FeatureTable_FreqDomain_DcRemoved.(
signalNames_Freq(signalIndex) + featureNames_Freq(featureIndex))
;

104 featureArray_Padded(:, featureIndex + numOfTimeFeatures , signalIndex
) = DFD_FeatureTable_FreqDomain_Padded.(signalNames_Freq(
signalIndex) + featureNames_Freq(featureIndex));

105 featureArray_DcRemovedPadded(:, featureIndex + numOfTimeFeatures ,
signalIndex) = DFD_FeatureTable_FreqDomain_DcRemovedPadded.(
signalNames_Freq(signalIndex) + featureNames_Freq(featureIndex))
;

106 end
107 end
108

109 FeatureNames_Combined = [featureNames_Time featureNames_Freq];
110 numOfFeatures_Combined = size(FeatureNames_Combined ,2);

1 function [] = fnPlotSignals(rawDataArray , fileNum, signalIndex1 ,
signalIndex2 , sensorNames)

2 %{
3 Date: 2023/08/23
4 Filename: fnPlotSignals.m
5 Author: Paul Barron
6 Description: This function plots one signal against another signal
7 %}
8 figure();
9 numpoints = size(cell2mat(rawDataArray{fileNum}(1, 2)), 1);
10 pointidx = 1 : numpoints;
11 sig1 = cell2mat(rawDataArray{fileNum}(signalIndex1 , 2));
12 sig2 = cell2mat(rawDataArray{fileNum}(signalIndex2 , 2));
13 scatter(sig1, sig2, 3, pointidx , 'filled');
14 colormap jet
15 colorbar
16 xlabel(char(sensorNames(signalIndex1)));
17 ylabel(char(sensorNames(signalIndex2)));
18 filename = "..\Latex Document\figures\File" + fileNum ...
19 + "_Signal" + signalIndex1 ...
20 + "vSignal" + signalIndex2;
21 print(filename ,'-depsc','-tiff');
22 filename = "..\Presentation\File" + fileNum ...
23 + "_Signal" + signalIndex1 ...
24 + "vSignal" + signalIndex2;
25 export_fig(filename , '-svg');
26 end

1 function [] = fnPlotCorrelations(rawDataArray , r2Values, fileNum, lowerBound
, upperBound , signalName , sensorNames)

2 %{
3 Date: 2023/08/23
4 Filename: fnPlotCorrelations.m
5 Author: Paul Barron
6 Description: This function plots the signals against each other as well
7 as printing the R2 values on the plots which are within the specified
8 range.
9 %}
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10 figure();
11 tiledlayout(12,12,'TileSpacing','None', 'Padding','tight');
12 numOfSignals = size(signalName , 2);
13 numpoints = size(cell2mat(rawDataArray{fileNum}(1, 2)), 1);
14 pointidx = 1 : numpoints;
15 for signalIndex1 = 1:numOfSignals
16 for signalIndex2 = signalIndex1:numOfSignals
17 if signalIndex1 ~= signalIndex2
18 sig1 = cell2mat(rawDataArray{fileNum}(signalIndex1 , 2));
19 sig2 = cell2mat(rawDataArray{fileNum}(signalIndex2 , 2));
20 nexttile((signalIndex1 -1) * numOfSignals + signalIndex2);
21 scatter(sig1, sig2, 2, pointidx , 'filled');
22 colormap jet;
23 xticklabels({});
24 yticklabels({});
25 DataX = interp1( [0 1], xlim(), 0.5 );
26 DataY = interp1( [0 1], ylim(), 0.5 );
27 r2Val = r2Values(fileNum, signalIndex1 , signalIndex2);
28 if r2Val > lowerBound && r2Val < upperBound
29 text(DataX, DataY, num2str(r2Val, 2), '

HorizontalAlignment','center');
30 end
31 end
32 end
33 end
34 % Add labels for signal names on the diagonals
35 for i = 1:size(sensorNames , 2)
36 nexttile((i-1) * numOfSignals + i);
37 str = char(sensorNames(i));
38 text(0.5, 0.5, str(1:5), HorizontalAlignment='center',

VerticalAlignment='middle');
39 xticklabels({});
40 yticklabels({});
41 end
42 end

1 %{
2 Date: 2023/08/23
3 Filename: SignalCorrelation.mlx
4 Author: Paul Barron
5 Description: This script calculates correlations of the raw original
6 signals and then plots all the combinations of signals within that
7 file.
8 %}
9 %%
10 % Calculat the R2 values for each combination of signals in each file
11 warning('off','all')
12

13 rawDataArray = {numOfFiles};
14 for fileIndex = 1 : numOfFiles
15 % Load the data for the current file
16 rawDataStruct = load(dataSubfolder + filenames(fileIndex) + ".mat");
17 rawDataArray{fileIndex} = struct2array(rawDataStruct);
18 end
19

20 r2Val = zeros(numOfSignals , numOfSignals);
21 r2Values = zeros(numOfFiles , numOfSignals , numOfSignals);
22 for fileIndex = 1 : numOfFiles
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23 for sensorIndex1 = 1 : numOfSignals
24 for sensorIndex2 = 1 : numOfSignals
25 sig1 = rawDataArray{fileIndex}{sensorIndex1 ,2};
26 sig2 = rawDataArray{fileIndex}{sensorIndex2 ,2};
27 mdl = fitlm(sig1, sig2);
28 R2 = mdl.Rsquared.Ordinary;
29 r2Val(sensorIndex1 , sensorIndex2) = R2;
30 r2Values(fileIndex , sensorIndex1 , sensorIndex2) = R2;
31 end
32 end
33 end
34 %%
35 % Print one of the matrices to Latex file
36 addpath('C:\Users\PaulBarron\Dropbox\Thesis\matrix2latex')
37 fileNum = 4;
38 M = r2Values(fileNum, :, 1)';
39 for i = 2:size(r2Values ,3)
40 M = [ M r2Values(fileNum ,:, i)' ];
41 end
42

43 rowLabels = { '07', '10', '12', '17', '20', '28', '31', '32', '33', '34', '
35', '36' };

44 columnLabels = rowLabels;
45

46 matrix2latex(M, "..\Latex Document\tables\correlationTable" + fileNum + ".
tex", 'rowLabels', rowLabels , 'columnLabels', columnLabels , 'alignment',
'c', 'format', '%-6.2f', 'size', 'tiny');

47 %% Plot table for the correlation of each raw signal in a particular file
48

49 arr = [1:1:12];
50 labels = arrayfun(@num2str, arr, 'UniformOutput', 0);
51 for fileIndex = 1:numOfFiles
52 fprintf("Filenumber #%i", fileIndex)
53 arrTable = array2table(squeeze(r2Values(fileIndex , :, :)), '

VariableNames', labels)
54 end
55 %% File 3
56

57 fileNum = 3;
58 arrTable = array2table(squeeze(r2Values(fileNum, :, :)), 'VariableNames',

labels)
59 %%
60 %fnPlotCorrelations(rawDataArray , r2Values , fileNum, 0.2, 0.90, sensorNames ,

sensorNames);
61 filename = '..\Latex Document\figures\RawSignalCorrelationsFile' + fileNum;
62 %print(filename ,'-depsc','-tiff');
63 %%
64 figure();
65 fileNum = 3;
66 signalIndex1 = 3;
67 signalIndex2 = 6;
68

69 numpoints = size(cell2mat(rawDataArray{fileNum}(1, 2)), 1);
70 pointidx = 1 : numpoints;
71 sig1 = cell2mat(rawDataArray{fileNum}(signalIndex1 , 2));
72 sig2 = cell2mat(rawDataArray{fileNum}(signalIndex2 , 2));
73 scatter(sig1, sig2, 3, pointidx , 'filled');
74 colormap jet
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75 colorbar
76 xlabel(char(sensorNames(signalIndex1)));
77 ylabel(char(sensorNames(signalIndex2)));
78 filename = "..\Latex Document\figures\File" + fileNum ...
79 + "_Signal" + signalIndex1 ...
80 + "vSignal" + signalIndex2;
81 print(filename ,'-depsc','-tiff');
82 export_fig(filename , '-svg');
83 %%
84 figure();
85 fileNum = 3;
86 signalIndex1 = 5;
87 signalIndex2 = 6;
88

89 numpoints = size(cell2mat(rawDataArray{fileNum}(1, 2)), 1);
90 pointidx = 1 : numpoints;
91 sig1 = cell2mat(rawDataArray{fileNum}(signalIndex1 , 2));
92 sig2 = cell2mat(rawDataArray{fileNum}(signalIndex2 , 2));
93 scatter(sig1, sig2, 3, pointidx , 'filled');
94 colormap jet
95 colorbar
96 xlabel(char(sensorNames(signalIndex1)));
97 ylabel(char(sensorNames(signalIndex2)));
98 filename = "..\Latex Document\figures\File" + fileNum ...
99 + "_Signal" + signalIndex1 ...
100 + "vSignal" + signalIndex2;
101 print(filename ,'-depsc','-tiff');
102 export_fig(filename , '-svg');
103 %%
104 figure();
105 fileNum = 3;
106 signalIndex1 = 7;
107 signalIndex2 = 8;
108

109 numpoints = size(cell2mat(rawDataArray{fileNum}(1, 2)), 1);
110 pointidx = 1 : numpoints;
111 sig1 = cell2mat(rawDataArray{fileNum}(signalIndex1 , 2));
112 sig2 = cell2mat(rawDataArray{fileNum}(signalIndex2 , 2));
113 scatter(sig1, sig2, 3, pointidx , 'filled');
114 colormap jet
115 colorbar
116 xlabel(char(sensorNames(signalIndex1)));
117 ylabel(char(sensorNames(signalIndex2)));
118 filename = "..\Latex Document\figures\File" + fileNum ...
119 + "_Signal" + signalIndex1 ...
120 + "vSignal" + signalIndex2;
121 %print(filename ,'-depsc','-tiff');
122 %% File 4
123

124 fileNum = 4;
125 arrTable = array2table(squeeze(r2Values(fileNum, :, :)), 'VariableNames',

labels)
126 %%
127 %fnPlotCorrelations(rawDataArray , r2Values , fileNum, 0.2, 0.90, sensorNames ,

sensorNames);
128 filename = "..\Latex Document\figures\RawSignalCorrelationsFile" + fileNum;
129 %print(filename ,'-depsc','-tiff');
130 %%
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131 fnPlotSignals(rawDataArray , fileNum, 3, 6, sensorNames);
132 %%
133 fnPlotSignals(rawDataArray , fileNum, 1, 7, sensorNames);
134 %%
135 fnPlotSignals(rawDataArray , fileNum, 1, 8, sensorNames);
136 %%
137 fnPlotSignals(rawDataArray , fileNum, 1, 9, sensorNames);
138 %% File 5
139

140 fileNum = 5;
141 arrTable = array2table(squeeze(r2Values(fileNum, :, :)), 'VariableNames',

labels)
142 %%
143 %fnPlotCorrelations(rawDataArray , r2Values , fileNum, 0.2, 0.90, sensorNames ,

sensorNames);
144 filename = '..\Latex Document\figures\RawSignalCorrelationsFile' + fileNum;
145 %print(filename ,'-depsc','-tiff');
146 %%
147 fnPlotSignals(rawDataArray , fileNum, 3, 6, sensorNames);
148 %% File 8
149

150 fileNum = 8;
151 arrTable = array2table(squeeze(r2Values(fileNum, :, :)), 'VariableNames',

labels)
152 %%
153 %fnPlotCorrelations(rawDataArray , r2Values , fileNum, 0.2, 0.90, sensorNames ,

sensorNames);
154 filename = '..\Latex Document\figures\RawSignalCorrelationsFile' + fileNum;
155 %print(filename ,'-depsc','-tiff');
156 %%
157 fnPlotSignals(rawDataArray , fileNum, 3, 6, sensorNames);
158 %% File 13
159

160 fileNum = 13;
161 arrTable = array2table(squeeze(r2Values(fileNum, :, :)), 'VariableNames',

labels)
162 %%
163 %fnPlotCorrelations(rawDataArray , r2Values , fileNum, 0.2, 0.90, sensorNames ,

sensorNames);
164 filename = '..\Latex Document\figures\RawSignalCorrelationsFile' + fileNum;
165 %print(filename ,'-depsc','-tiff');
166 %%
167 fnPlotSignals(rawDataArray , fileNum, 3, 6, sensorNames);
168 %%
169 [FullPath ,Filename ,ext]=fileparts(matlab.desktop.editor.getActiveFilename);
170 currentFile = strcat(Filename, ext);
171 path = export(currentFile , Format="m", OpenExportedFile=false);

1 function [R2] = fnPlotFeatureVsFeature_Array(featureArray , lowerBound ,
upperBound , signalIndex , featureNames , sensorNames)

2 %{
3 Date: 2023/08/23
4 Filename: fnPlotFeatureVsFeature.m
5 Author: Paul Barron
6 Description: This function plots all the features against each other
7 and prints the R2 values on the charts which are within the specified
8 range.
9 %}
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10 figure();
11 numpoints = size(featureArray , 1);
12 numOfFeatures = size(featureArray , 2);
13 tiledlayout(numOfFeatures , numOfFeatures , 'TileSpacing','None', 'Padding

','tight');
14 fprintf("Signal %i: %s", signalIndex , sensorNames(signalIndex));
15 R2 = zeros(numOfFeatures , numOfFeatures);
16 pointidx = 1 : numpoints;
17 % Loop through features #1
18 for featureIndex1 = 1:numOfFeatures
19 % Loop through features #2
20 for featureIndex2 = featureIndex1+1:numOfFeatures
21 sig1 = featureArray(:, featureIndex1 , signalIndex);
22 sig2 = featureArray(:, featureIndex2 , signalIndex);
23

24 mdl = fitlm(sig1, sig2);
25 R2(featureIndex1 , featureIndex2) = mdl.Rsquared.Ordinary;
26

27 nexttile((featureIndex1 -1) * numOfFeatures + featureIndex2);
28 scatter(sig1, sig2, 3, pointidx , 'filled');
29 colormap( jet(numpoints) );
30 xticklabels({});
31 yticklabels({});
32

33 DataX = interp1( [0 1], xlim(), 0.5 );
34 DataY = interp1( [0 1], ylim(), 0.5 );
35

36 if R2(featureIndex1 , featureIndex2) > lowerBound && R2(
featureIndex1 , featureIndex2) < upperBound

37 text(DataX, DataY, num2str(R2(featureIndex1 , featureIndex2),
2), 'HorizontalAlignment','center');

38 end
39 end
40 end
41 for featureIndex = 1 : numOfFeatures
42 nexttile((featureIndex -1) * numOfFeatures + featureIndex);
43 text(0.5, 0.5, int2str(featureIndex), HorizontalAlignment='center',

VerticalAlignment='middle');
44 xticklabels({});
45 yticklabels({});
46 R2(featureIndex , featureIndex) = 1;
47 end
48 end

1 function [R2] = fnPlotSignalVsSignal(FeatureTable , lowerBound , upperBound ,
featureIndex , featureNames , signalName , sensorNames)

2 %{
3 Date: 2023/08/23
4 Filename: fnPlotSignalVsSignal.m
5 Author: Paul Barron
6 Description: This function plots each signal against every other signal
7 for a particular feature
8 %}
9 figure();
10 tiledlayout(12,12,'TileSpacing','None', 'Padding','tight');
11 numpoints = size(FeatureTable.(signalName(1) + featureNames(1)), 1);
12 pointidx = 1 : numpoints;
13 numOfSignals = size(signalName , 2);
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14 R2 = zeros(numOfSignals , numOfSignals);
15 for signalIndex1 = 1:numOfSignals
16 for signalIndex2 = signalIndex1:numOfSignals
17 if signalIndex1 ~= signalIndex2
18 sig1 = FeatureTable.(signalName(signalIndex1) + featureNames

(featureIndex));
19 sig2 = FeatureTable.(signalName(signalIndex2) + featureNames

(featureIndex));
20 nexttile((signalIndex1 -1) * numOfSignals + signalIndex2);
21 scatter(sig1, sig2, 3, pointidx , 'filled');
22 colormap( jet(numpoints) );
23 xticklabels({});
24 yticklabels({});
25

26 mdl = fitlm(sig1, sig2);
27 R2(signalIndex1 , signalIndex2) = mdl.Rsquared.Ordinary;
28

29 DataX = interp1( [0 1], xlim(), 0.5 );
30 DataY = interp1( [0 1], ylim(), 0.5 );
31 if R2(signalIndex1 , signalIndex2) > lowerBound && R2(

signalIndex1 , signalIndex2) < upperBound
32 text(DataX, DataY, num2str(R2(signalIndex1 , signalIndex2

), 2), 'HorizontalAlignment','center');
33 end
34 end
35 end
36 end
37 % Add labels for signal names on the diagonals
38 for i = 1:size(sensorNames , 2)
39 nexttile((i-1) * numOfSignals + i);
40 str = char(sensorNames(i));
41 text(0.5, 0.5, str(1:5), HorizontalAlignment='center',

VerticalAlignment='middle');
42 xticklabels({});
43 yticklabels({});
44 R2(signalIndex1 , signalIndex1) = 1;
45 end
46 end

1 %{
2 Date: 2023/08/23
3 Filename: FeatureVsFeature_Combined.mlx
4 Author: Paul Barron
5 Description:
6 %}
7 %%
8 saveFigures = true;
9 FeatureNames = FeatureNames_Combined;
10 for signalIndex = 1 : numOfSignals
11 R2 = fnPlotFeatureVsFeature_Array(featureArray_Standard , 0.3, 0.8,

signalIndex , FeatureNames , sensorNames);
12 filename = "..\Latex Document\figures\FeatureVsFeatureCombinedSignal" +

signalIndex;
13 if (saveFigures == true)
14 print(filename ,'-depsc','-tiff');
15 end
16 end
17 %%
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18 [FullPath ,Filename ,ext]=fileparts(matlab.desktop.editor.getActiveFilename);
19 currentFile = strcat(Filename, ext);
20 path = export(currentFile , Format="m", OpenExportedFile=false);

1 %{
2 Date: 2023/08/23
3 Filename: SignalVsSignal.mlx
4 Author: Paul Barron
5 Description:
6 %}
7 %%
8 warning('off','all');
9 Features = DFD_FeatureTable_TimeDomain_Standard;
10 saveFigures = true;
11 for featureIndex = 1:numOfFeatures_Time
12 fprintf("Feature %i: %s", featureIndex , FeatureNames_Combined(

featureIndex));
13 fnPlotSignalVsSignal(Features , 0.2, 0.9, featureIndex , featureNames_Time

, signalNames_Time , sensorNames);
14 filename = "..\Latex Document\figures\SignalVsSignalFeatureTime" +

featureIndex;
15 if saveFigures
16 %export_fig(filename , '-eps', '-depsc ');
17 print(filename ,'-depsc','-tiff');
18 end
19

20 %fnPlotSignalVsSignal(DFD_FeatureTable_TimeDomain_DcRemoved , 0.2, 0.9,
featureIndex , FeatureNames , signalName , sensorNames);

21 %fnPlotSignalVsSignal(DFD_FeatureTable_TimeDomain_Padded , 0.2, 0.9,
featureIndex , FeatureNames , signalNames , sensorNames);

22 %fnPlotSignalVsSignal(DFD_FeatureTable_TimeDomain_DcRemovedPadded , 0.2,
0.9, FeatureIndex , featureNames , signalNames , sensorNames);

23 end
24 %%
25 Features = DFD_FeatureTable_FreqDomain_Standard;
26 for featureIndex = 1:numOfFeatures_Freq
27 featureIndex
28 fnPlotSignalVsSignal(Features , 0.2, 0.9, featureIndex , featureNames_Freq

, signalNames_Freq , sensorNames);
29 filename = "..\Latex Document\figures\SignalVsSignalFeatureFreq" +

featureIndex;
30 if saveFigures
31 %export_fig(filename , '-eps', '-depsc ');
32 print(filename ,'-depsc','-tiff');
33 end
34

35 %fnPlotSignalVsSignal(DFD_FeatureTable_TimeDomain_DcRemoved , 0.2, 0.9,
featureIndex , FeatureNames , signalName , sensorNames);

36 %fnPlotSignalVsSignal(DFD_FeatureTable_TimeDomain_Padded , 0.2, 0.9,
featureIndex , FeatureNames , signalNames , sensorNames);

37 %fnPlotSignalVsSignal(DFD_FeatureTable_TimeDomain_DcRemovedPadded , 0.2,
0.9, FeatureIndex , featureNames , signalNames , sensorNames);

38 end
39 %%
40 [FullPath ,Filename ,ext]=fileparts(matlab.desktop.editor.getActiveFilename);
41 currentFile = strcat(Filename, ext);
42 path = export(currentFile , Format="m", OpenExportedFile=false);
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1 function [beta] = fnPlotModel(Y, X1, txtTitle , labelY, labelX1)
2 %{
3 Date: 2023/08/23
4 Filename: SignalVsSignal.mlx
5 Author: Paul Barron
6 Description: This function calculates a linear model using least
7 squares and calculates the normalized FIT value. It plot the data using
8 a scatter plot and then plots the linear model over the top of the
9 data.
10 %}
11 n = size(Y, 1);
12 X = [ones(n,1) X1];
13 k = size(X, 2) - 1; % Number of parameters for model
14 beta = inv(X' * X) * (X' * Y);
15

16 Y_est = X * beta;
17 RSS = sum((Y_est - Y).^2);
18 RSS = var(Y_est - Y) / var(Y);
19

20 figure(); hold on;
21 pointidx = 1 : n;
22 scatter(X1, Y, 10, pointidx , 'o', 'filled');
23 colormap( jet(n) );
24 interval = max(X1) - min(X1);
25 x1fit = min(X1):interval:max(X1);
26 yfit = beta(1) + beta(2).*x1fit;
27 plot(x1fit, yfit);
28 xlabel(labelX1, 'Interpreter', 'none');
29 ylabel(labelY, 'Interpreter', 'none');
30

31 % Fit equation from compare function
32 FitValue = 100 * (1-norm(Y-Y_est)/norm(Y-mean(Y)));
33 stringValue = sprintf('%.1f', FitValue);
34 annotation('textbox', [0.2 0.8, 0.1, 0.1], ...
35 'String', convertStringsToChars(stringValue), ...
36 HorizontalAlignment= 'center', ...
37 VerticalAlignment='middle', ...
38 FitBoxToText='on');
39 end

1 function [Y_est] = fnModelPlot3D(Y, X1, X2, txtTitle , labelY, labelX1,
labelX2)

2 %{
3 Date: 2023/08/23
4 Filename: SignalVsSignal.mlx
5 Author: Paul Barron
6 Description: This function calculates a 3D model plus the normalized
7 FIT value. It then plots the original data, the model and the FIT
8 value.
9 %}
10 n = size(Y, 1);
11 X = [ones(n,1) X1 X2];
12 beta = inv(X' * X) * (X' * Y);
13

14 Y_est = X * beta;
15 %RSS = sum((Y_est - Y).^2);
16 %RSS = var(Y_est - Y) / var(Y);
17
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18 figure();
19 scatter3(X1,X2,Y,'filled');
20 hold on;
21

22 interval1 = (max(X1) - min(X1))/20;
23 x1fit = min(X1):interval1:max(X1);
24 interval2 = (max(X2) - min(X2))/20;
25 x2fit = min(X2):interval2:max(X2);
26 [X1FIT,X2FIT] = meshgrid(x1fit, x2fit);
27

28 YFIT = beta(1) + beta(2).*X1FIT + beta(3).*X2FIT;
29 %YFIT = b(1) + b(2)*X1FIT + b(3)*X2FIT + b(4)*X1FIT.*X2FIT;
30 mesh(X1FIT, X2FIT, YFIT);
31

32 xlabel(labelX1, 'Interpreter', 'none');
33 ylabel(labelX2, 'Interpreter', 'none');
34 zlabel(labelY, 'Interpreter', 'none');
35 fprintf("%s", txtTitle);
36

37 % Fit equation from compare function
38 FitValue = 100 * (1-norm(Y-Y_est)/norm(Y-mean(Y)));
39 stringValue = sprintf('%.1f', FitValue);
40 annotation('textbox', [0.1 0.8, 0.1, 0.1], ...
41 'String', convertStringsToChars(stringValue),...
42 HorizontalAlignment= 'center', ...
43 VerticalAlignment='middle');
44 end

1 %{
2 Date: 2023/08/23
3 Filename: MultivariateModel_FeatureVsFeatureArray_Signal3.mlx
4 Author: Paul Barron
5 Description: This script calls the function that plots the signal
6 features against each other for every signal
7 %}
8 %%
9 lowerR2 = 0.3;
10 upperR2 = 0.8;
11 r2ReducedThreshold = 0.9;
12 selectedSignal = 3; %21:12 Actual moment over Rolls (Nm)
13 saveFigures = true;
14 R2 = fnPlotFeatureVsFeature_Array(featureArray_Standard , lowerR2, upperR2,

selectedSignal , FeatureNames_Combined , sensorNames);
15 %%
16 disp(num2str(R2, '%.2f '));
17 %% Combination 1
18

19 selectedFeature = 1;
20 [selectedFeatureArray , selectedFeatureData , numOfSelectedFeatures] =

fnSelectFeatures( ...
21 selectedSignal , selectedFeature , featureArray_Standard ,R2, upperR2,

lowerR2, r2ReducedThreshold , true);
22 %%
23 fig = figure(); hold on;
24 sensorNames(selectedSignal)
25 xlabel("Pulses");
26 ylabel("Feature value");
27 leg = {numOfSelectedFeatures};
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28 secondaryAxisArrayIndex = [2 3];
29 legendAxis = [];
30 for i = 1:numOfSelectedFeatures
31 if ismember(i, secondaryAxisArrayIndex)
32 yyaxis right;
33 ha = plot(selectedFeatureData{i});
34 legendAxis = [legendAxis ha];
35 else
36 yyaxis left;
37 hb = plot(selectedFeatureData{i});
38 legendAxis = [legendAxis hb];
39 end
40 leg{i} = char(FeatureNames_Combined(selectedFeatureArray(i)));
41 end
42 hold off;
43 lgnd = legend(legendAxis , leg);
44 set(lgnd,'color','none');
45 if (saveFigures == true)
46 filename = "..\Latex Document\figures\Models_Signal" + selectedSignal +

"Feature" + selectedFeature;
47 print(filename ,'-depsc','-tiff')
48 %export_fig(filename , '-eps', '-depsc');
49 end
50 %%
51 figure(); hold on;
52 x1 = selectedFeatureData{1};
53 x2 = selectedFeatureData{2};
54 x3 = selectedFeatureData{3};
55 t = 1:numOfPulses;
56 hl1 = line(t,x1,'Color','r');
57 ax1 = gca;
58 set(ax1,'XColor','r','YColor','r')
59 ax2 = axes('XAxisLocation','top',...
60 'YAxisLocation','right',...
61 'Color','none',...
62 'XColor','k','YColor','k');
63 hl2 = line(t,x2,'Parent', ax2, 'Color','k');
64 hl3 = line(t,x3,'Parent', ax2, 'Color','k');
65 %%
66 xx = (1:numOfPulses)';
67 plotyyy(xx, selectedFeatureData{1}, xx, selectedFeatureData{2}, xx,

selectedFeatureData{3}, leg);
68 sensorNames(selectedSignal)
69 xlabel("Pulses");
70 %%
71 selectedFeatureIdx = find(selectedFeatureArray == selectedFeature);
72 linearModelNum = 1;
73 for index = 1 : numOfSelectedFeatures
74 if selectedFeatureArray(index) ~= selectedFeature
75 fnPlotModel(selectedFeatureData{index}, ...
76 selectedFeatureData{selectedFeatureIdx}, ...
77 sensorNames(selectedSignal), ...
78 FeatureNames_Combined(selectedFeatureArray(index)), ...
79 FeatureNames_Combined(selectedFeature));
80 if (saveFigures == true)
81 filename = "..\Latex Document\figures\Models_Signal" +

selectedSignal ...
82 + "Feature" + selectedFeature ...
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83 + "_Linear" + linearModelNum;
84 export_fig(filename , '-eps', '-depsc');
85 linearModelNum = linearModelNum + 1;
86 end
87 end
88 end
89 %%
90 multivariateModelNum = 1;
91 if numOfSelectedFeatures > 2
92 for index1 = 1 : numOfSelectedFeatures
93 for index2 = index1+1 : numOfSelectedFeatures
94 if selectedFeatureArray(index1) ~= selectedFeature &&

selectedFeatureArray(index2) ~= selectedFeature
95 Y_est = fnPlotModel3D( ...
96 selectedFeatureData{selectedFeatureIdx}, ...
97 selectedFeatureData{index1}, ...
98 selectedFeatureData{index2}, ...
99 sensorNames(selectedSignal), ...
100 FeatureNames_Combined(selectedFeatureArray(

selectedFeatureIdx)), ...
101 FeatureNames_Combined(selectedFeatureArray(index1)), ...
102 FeatureNames_Combined(selectedFeatureArray(index2)));
103 if (saveFigures == true)
104 filename = "..\Latex Document\figures\Models_Signal" +

selectedSignal ...
105 + "Feature" + selectedFeature ...
106 + "_Multivariate" + multivariateModelNum;
107 export_fig(filename, '-eps', '-depsc');
108 multivariateModelNum = multivariateModelNum + 1;
109 end
110 end
111 end
112 end
113 end
114 %%
115 [FullPath ,Filename ,ext]=fileparts(matlab.desktop.editor.getActiveFilename);
116 currentFile = strcat(Filename, ext);
117 path = export(currentFile , Format="m", OpenExportedFile=false);

1 %{
2 Date: 2023/08/23
3 Filename: MultivariateModel_SignalVsSignal_TimeFeature2.mlx
4 Author: Paul Barron
5 Description: This script calls the function that plots the signal
6 features against each other for every feature
7 %}
8 %%
9 Features = DFD_FeatureTable_TimeDomain_Standard;
10 SignalNames = signalNames_Time;
11 FeatureNames = featureNames_Time;
12 lowerR2 = 0.3;
13 upperR2 = 0.8;
14 r2ReducedThreshold = 0.9;
15 selectedFeature = 2; % Crest Factor
16 saveFigures = true;
17 R2 = fnPlotSignalVsSignal(Features, lowerR2, upperR2, selectedFeature ,

FeatureNames , SignalNames , sensorNames);
18 %%
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19 disp(num2str(R2, '%.2f '));
20 %% Combination 1
21

22 selectedSignal = 1;
23 [selectedSignalArray , selectedSignalData , numOfSelectedSignals] =

fnSelectSignals(...
24 selectedSignal , selectedFeature , featureArray_Standard , R2, upperR2,

lowerR2, r2ReducedThreshold , true);
25 %%
26 figure(); hold on;
27 FeatureNames(selectedFeature);%title(FeatureNames(selectedFeature));
28 xlabel("Pulses");
29 ylabel(FeatureNames_Combined(selectedFeature));
30 secondaryAxisArrayIndex = [2];
31 for i = 1:numOfSelectedSignals
32 if ismember(i, secondaryAxisArrayIndex)
33 yyaxis right;
34 else
35 yyaxis left;
36 end
37 plot(selectedSignalData{i});
38 leg{i} = char(sensorNames(selectedSignalArray(i)));
39 end
40 legend(leg);
41 if (saveFigures == true)
42 filename = "..\Latex Document\figures\Models_Feature" + selectedFeature

...
43 + "Signal" + selectedSignal;
44 %print(filename ,'-depsc','-tiff');
45 export_fig(filename , '-depsc');
46 end
47 %%
48 selectedSignalIdx = find(selectedSignalArray == selectedSignal);
49 linearModelNum = 1;
50 for index = 1 : numOfSelectedSignals
51 if selectedSignalArray(index) ~= selectedSignal
52 fnPlotModel(selectedSignalData{selectedSignalIdx}, ...
53 selectedSignalData{index}, ...
54 FeatureNames_Combined(selectedFeature), ...
55 sensorNames(selectedSignalArray(index)), ...
56 sensorNames(selectedSignal));
57 if (saveFigures == true)
58 filename = "..\Latex Document\figures\Models_Feature" +

selectedFeature ...
59 + "Signal" + selectedSignal ...
60 + "_Linear" + linearModelNum;
61 %export_fig(filename , '-eps', '-depsc');
62 print(filename , '-depsc');
63 linearModelNum = linearModelNum + 1;
64 end
65 end
66 end
67 %%
68 multivariateModelNum = 1;
69 if numOfSelectedSignals > 2
70 for index1 = 1 : numOfSelectedSignals
71 for index2 = index1+1 : numOfSelectedSignals
72 if selectedSignalArray(index1) ~= selectedSignal &&
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selectedSignalArray(index2) ~= selectedSignal
73 Y_est = fnPlotModel3D( ...
74 selectedSignalData{selectedSignalIdx}, ...
75 selectedSignalData{index1}, ...
76 selectedSignalData{index2}, ...
77 FeatureNames(selectedFeature), ...
78 sensorNames(selectedSignalArray(selectedSignalIdx)), ...
79 sensorNames(selectedSignalArray(index1)), ...
80 sensorNames(selectedSignalArray(index2)));
81

82 if (saveFigures == true)
83 filename = "..\Latex Document\figures\Models_Feature" +

selectedFeature ...
84 + "Signal" + selectedSignal ...
85 + "_Multivariate" + multivariateModelNum;
86 export_fig(filename, '-eps', '-depsc');
87 multivariateModelNum = multivariateModelNum + 1;
88 end
89 end
90 end
91 end
92 end
93 %%
94 [FullPath ,Filename ,ext]=fileparts(matlab.desktop.editor.getActiveFilename);
95 currentFile = strcat(Filename, ext);
96 path = export(currentFile , Format="m", OpenExportedFile=false);
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Appendix B Feature vs Feature Plots

Figure B.1. Feature vs Feature for Signal 1
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Figure B.2. Feature vs Feature for Signal 2

Figure B.3. Feature vs Feature for Signal 3
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Figure B.4. Feature vs Feature for Signal 4

Figure B.5. Feature vs Feature for Signal 5
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Figure B.6. Feature vs Feature for Signal 6

Figure B.7. Feature vs Feature for Signal 7
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Figure B.8. Feature vs Feature for Signal 8

Figure B.9. Feature vs Feature for Signal 9
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Figure B.10. Feature vs Feature for Signal 10

Figure B.11. Feature vs Feature for Signal 11
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Figure B.12. Feature vs Feature for Signal 12
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