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Abstract

Industry 4.0 represents a significant shift in the industrial landscape, aimed at
improving efficiency, productivity, and competitiveness. This shift involves the
digitalization of industries, impacting manufacturing and maintenance processes.
A pivotal element of this transformation is the development of Cyber-Physical
Systems (CPS) that seamlessly connect the physical factory floor with the
digital realm. These systems monitor real-time data from the physical world
and prepare feedback from the digital space, necessitating the harmonious
integration of computation and communication, especially through wireless
technology. Simultaneously, Machine Learning (ML) methods are advancing
across various domains. The proliferation of wireless sensors and the Internet
of Things, particularly within the CPS framework, generates substantial data.
To address challenges such as latency, device resource limitations, and privacy
concerns associated with centralized cloud processing, there is a shift towards
edge computing, enabling distributed learning algorithms.

This dissertation tackles these challenges with four innovative methods that
combine wireless technology, control systems, and distributed ML in the
context of Industry 4.0. These methods aim to harness the potential of this
digital transformation, making Predictive Maintenance (PdM) in industries
smarter and more efficient. The first method, parallel event-triggering, is
designed for multi-agent systems in industrial environments. It utilizes
distributed event-based state estimation to enhance control performance and
reduce network resource consumption. The second and third methods are
developed for collaborative PdM using wireless communication in a federated
approach. The second method focuses on real-time anomaly detection while
preserving asset privacy at the edge level, and the third method optimizes
remaining useful life prediction from sequential data within a federated
learning framework. Both federated approaches enhance efficiency, simplify
communication, and improve local model convergence. The fourth method
introduces an innovative approach to collaborative PdM, utilizing over-the-air
computation at the edge level. This approach offers low latency and improved
spectral efficiency. The optimization challenges at the edge level are addressed
by using a modified gradient descent approach, which effectively handles noisy
communication channels and improves the convergence of ML algorithms. All
four methods proposed in this thesis underwent a comprehensive evaluation,
and the experimental findings demonstrate their effectiveness in achieving their
intended objectives.
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Sammanfattning

Industri 4.0 representerar en betydande förändring i det industriella landskapet i
syfte att förbättra effektivitet, produktivitet och konkurrenskraft. Denna
förändring innebär en digital transformation av industrier, vilket påverkar
tillverknings- och underhållsprocesser. En central del av denna transformation
är utvecklingen av Cyber-fysiska system (CFS) som sömlöst kopplar samman
det fysiska fabriksgolvet med den digitala världen. Dessa system övervakar
realtidsdata från den fysiska världen och analyser från den digitala sfären,
vilket kräver harmonisk integration av beräkning och kommunikation, särskilt
genom trådlös teknik. Samtidigt utvecklas maskininlärningsmetoder inom olika
områden. Spridningen av trådlösa sensorer och Internet of Things, särskilt inom
CFS-ramverket, genererar betydande data. För att hantera utmaningar som
latens, begränsade resurser hos lokala enheter och integritetsbekymmer
kopplade till centraliserade molntjänster sker en övergång till beräkningar på
nätverkets kant, även kallat edge computing, vilket möjliggör distribuerade
inlärningsalgoritmer.

Denna avhandling tacklar dessa utmaningar med fyra innovativa metoder
som kombinerar trådlös teknik, styrsystem och distribuerad maskininlärning
inom ramen för Industri 4.0. Dessa metoder syftar till att utnyttja potentialen i
denna digitala transformation och göra prediktivt underhåll i industrier smartare
och effektivare. Den första metoden, parallell händelseutlösning, är utformad
för fleragentssystem i industriella miljöer. Den använder distribuerad
händelsebaserad tillståndsestimering för att förbättra reglerprestanda och
minska förbrukning av nätverksresurser. De andra och tredje metoderna är
utvecklade för att prediktivt underhåll och trådlös kommunikation skall
samarbeta med ett federativt tillvägagångssätt. Den andra metoden fokuserar på
avvikelsedetektering i realtids samtidigt som dataintegriteten bevaras på
edge-nivå, och den tredje metoden optimerar förutsägelse av kvarvarande
användbar livslängd från sekventiella data inom en federativ inlärningsram.
Båda federativa tillvägagångssätten förbättrar effektiviteten, förenklar
kommunikationen och förbättrar lokalt konvergensen av modeller. Den fjärde
metoden introducerar ett innovativt tillvägagångssätt för samarbetsbaserat
prediktivt underhåll, där over-the-air beräkningar används på edge-nivån.
Denna metod erbjuder låg latens och effektivare utnyttjande av frekvensband.
De utmaningar som finns på edge-nivån hanteras genom att använda en
modifierad gradient descent metod, som effektivt hanterar brusiga
kommunikationskanaler och förbättrar konvergensen av ML-algoritmer. Alla
fyra metoder som föreslås i denna avhandling genomgick en omfattande
utvärdering, och de experimentella resultaten visar deras effektivitet för att
uppnå sina avsedda mål.
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1 Introduction

In the rapidly evolving landscape of today’s industrial sector, the convergence
of digital technology and manufacturing processes has ushered in a
transformative era known as Industry 4.0. This paradigm shift, driven by the
relentless pursuit of efficiency, productivity, and competitiveness, has given rise
to the digitalization of industries across the globe. Industry digitalization
encompasses a multifaceted approach that affects not only manufacturing but
also maintenance, ultimately redefining how industrial businesses operate in the
modern world. As part of these efforts, digital models of physical components
and machines are developed, commonly known as Cyber-Physical Systems
(CPS) (Stark et al., 2017). These systems monitor and synchronize information
from various aspects, bridging the gap between the physical factory floor and
the digital computational space. In general, a CPS encompasses the real-time
acquisition of data from the physical world and the feedback of information
from cyberspace. This necessitates the seamless integration of computation and
communication in the digital realm with actions in the physical world. In
accordance with the CPS framework, wireless communication will be
employed, particularly impacting the real-time dimension. The incorporation of
this dimension into the system model leads to the designation of Wireless
Networked Control Systems (WNCS) (Park et al., 2017). In parallel with the
recent progress in wireless communications, contemporary Machine Learning
(ML) methods have led into remarkable advancements across various domains
of science and technology. The growing number of wireless sensors and
Internet of Things (IoT), especially in the CPS paradigm, is generating vast
amounts of data. Current centralized approaches to process this data in the
cloud face challenges like latency, limited device resources, and privacy
concerns. To address these issues, there’s a shift towards bringing intelligence
to the network edge, where devices can collaborate and implement distributed
learning algorithms (Eldar et al., 2022).

In this chapter, the exploration of contextual information and illustrative
application examples takes place. Additionally, emphasis is given to the
relevance of CPS and WNCS to these examples. Unlocking the full capabilities
of future CPS and WNCS requires addressing various challenges, which will be
explored in Section 1.2. Subsequently, an examination of related works that
have attempted to address these problems is conducted. The research objectives,
contributions, and methodology will be discussed in the following sections:
Section 1.4, Section 1.5, and Section 1.6, respectively. Finally in Section 1.7,
we provide an overview of the thesis outline.
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1.1 Background
Digitalization holds a central position within the industrial strategies of various
nations, notably exemplified by Germany’s Industry 4.0 initiative. While the
early achievements within these initiatives are promising, it is important to note
that many successful projects are conducted within recently established
manufacturing facilities, a context that deviates from the prevailing conditions
in the broader industrial landscape. Established industrial facilities often
encompass a blend of both contemporary and legacy technologies, thereby
introducing novel complexities and challenges in the context of digitalization.

Recent advancements in the manufacturing industry have paved the way for
the systematic deployment of CPS. These systems facilitate the close
monitoring and synchronization of information from various perspectives,
bridging the gap between the physical factory floor and the digital
computational domain (Lee et al., 2015). Furthermore, through the application
of advanced information analytics, interconnected machines can operate with
enhanced efficiency, collaboration, and resilience. In essence, a CPS comprises
two principal functional components: (i) advanced connectivity, which ensures
real-time data acquisition from the physical environment and information
exchange with the digital realm, and (ii) intelligent data management, analytics,
and computational capabilities, which collectively form the foundation of the
digital space. Hence, in the future, CPS are expected to independently function
in the physical world, using embedded computers and networks for both
computation and communication (Ma et al., 2018). Herein, we highlight two
instances of CPS that are anticipated to exert significant influence.

Autonomous vehicle. Today, the futuristic concepts of autonomous
vehicles, such as self-driving capabilities, automated parking, and intelligent
obstacle detection and avoidance, have materialized into reality. Autonomous
driving, when integrated with WNCS and CPS, represents a paradigm shift in
transportation. It leverages the power of connectivity, real-time data exchange,
and intelligent decision-making to create a safer and more efficient
transportation ecosystem. As depicted in Figure 1a, the realization of the full
potential of autonomous driving hinges solely on vehicles’ ability to share
information with each other. This convergence paves the way for more efficient
and intelligent mobility solutions with the potential to reduce accidents, reduce
fuel consumption, alleviate traffic congestion, and usher in new forms of
transportation services (Elefteriadou, 2020). However, it also raises challenges
related to network reliability and cybersecurity that must be addressed to realize
its full potential.

Smart Manufacturing. It is a prominent application area for CPS, which
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(a) Autonomous vehicles [MQTT, Inc]. (b) Smart manufacturing [ScaleOut Software, Inc].

Figure 1. Examples of CPS

promises a transformative change in industrial production. Unlike traditional
manufacturing setups where machines operate in isolation, often supervised by
human operators, smart manufacturing represents a vision where machines
seamlessly communicate with each other, enabling production optimization
based on dynamic demand. This shift from mass production to highly
customized manufacturing aligns with the growing demand for customized
products. As smart manufacturing continues to gain traction, it is likely to be
early adopters of CPS technologies that will change the future of manufacturing
by increasing efficiency, agility, and product customization while presenting
new challenges in automation, data management, and cybersecurity (Rawat
et al., 2017).

Smart manufacturing, in conjunction with predictive maintenance (PdM),
represents a revolutionary approach to industrial operations. This synergy
leverages advanced technologies, such as IoT sensors, machine learning, WNCS,
and AI, to monitor the real-time performance of machinery and equipment in
manufacturing plants. Predictive maintenance systems can anticipate potential
equipment failures by analyzing data streams from these sensors, enabling
timely repairs and preventive measures. This proactive approach not only
reduces downtime and maintenance costs but also extends the lifespan of critical
assets, ensuring uninterrupted production and ultimately improving overall
efficiency and competitiveness in the manufacturing sector (Chien and Chen,
2020).

1.2 Problems Statement
The preceding discussion highlights essential application areas of wireless
CPS, but existing technology faces significant challenges in realizing their
full potential. The fundamental requirement for all CPS applications is the
acquisition of accurate and reliable data from machines, requiring wireless
communication between devices. However, wireless communication introduces
inherent challenges, including transmission delays, unreliable transmission,
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and limited bandwidth. Wireless systems, often designed to operate under
additive white Gaussian noise (AWGN), face distinct difficulties when exposed
to impulsive interference, resulting in different communication effects. In the
context of CPS, real-time data acquisition from the physical world is paramount,
and this thesis focuses on the impact of wireless communication on real-time
aspects, particularly in applications involving devices with complex dynamics
and challenging tasks.

One approach to address the complexity of both device dynamics and task
requirements is through AI and learning-based techniques, which can facilitate
machine analysis and intelligence for various applications. However, the
conventional approach of centralizing data processing on cloud servers
encounters hurdles such as communication latency, device resource constraints,
privacy issues, and low information density in collected data. To address these
challenges, this thesis investigates a promising solution: the decentralization of
intelligence to the network edge, with a particular focus on its application to
PdM within smart manufacturing. This approach empowers wireless devices to
implement distributed and collaborative learning algorithms, enhancing data
processing efficiency and effectively addressing the specific challenges posed
by time-sensitive applications such as PdM. In the following, we will provide a
more detailed and tangible description of the specific problems that have been
tackled within this thesis.

1.2.1 Control Over Wireless Network

WNCS are a subset of networked control systems in which sensors, controllers,
and actuators exchange information through a wireless digital communication
network. In wireless CPS, the primary focus is often on ensuring the safety
of critical devices, such as autonomous vehicles, where maintaining system
reliability is of utmost importance. For instance, the ability to transmit sudden
braking information to following vehicles can help prevent accidents. To address
this, leveraging wireless communication is a potential solution. However, it is
important to note that wireless channels inherently carry the risk of transmission
delays, packet loss, and network congestion, which can significantly affect
the real-time performance of critical systems (Park et al., 2017). Traditional
control theory assumes flawless communication to guarantee system stability,
but this assumption does not hold in the realm of wireless CPS. Ensuring system
stability in wireless CPS poses a challenge due to imperfect communication.
This challenge becomes even more complex when we encounter correlated
message loss, especially in cyberattack situations.

In this section, our primary aim is to create a resilient and flexible testing
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environment that can accurately emulate real-world scenarios. This is crucial
as it provides the opportunity to gather valuable insights into the impact of
wireless communication on real-time processes. These insights will serve as
the foundation for a deeper comprehension of these dynamics, facilitating the
development of strategies aimed at enhancing the effectiveness of time-sensitive
applications in wireless environments. Therefore, the first problem statement
addressed in this thesis pertains to understanding the influence of wireless
communication on real-time aspects and implementing stable control methods
over wireless networks.

In the future wireless CPS, we envision a landscape where numerous agents
are interconnected through a common network. Recent years have witnessed
significant research attention directed toward addressing consensus challenges
in the context of controlling multi-agent systems within WNCSs (Xu et al.,
2021; Guinaldo et al., 2014; Li et al., 2022). This surge in interest is driven by
the proliferation of diverse systems across engineering and scientific domains,
including drone swarms, autonomous vehicles, and hierarchical production
processes such as steel manufacturing and building automation, among others.
The communication networks embedded within these systems assume a pivotal
role in effectively coordinating the agents, thereby facilitating the attainment of
shared objectives or enhancing overall system performance.

The core challenge in multi-agent systems lies in structuring communication
among the agents to ensure their eventual convergence to a common state,
tracking a synchronized trajectory, or accomplishing collaborative tasks. Our
primary focus centers on multi-agent systems characterized by
interdependencies among the agents, necessitating the periodic update of their
states during various processes. However, owing to the nature of wireless
network communication and the shared bandwidth among nodes, it becomes
imperative to judiciously utilize communication resources. Consequently, each
agent must employ these resources sparingly, reserving communication only
when it is essential. Moreover, wireless communication introduces variables
such as packet loss, communication latency, and packet disorder due to
environmental factors, all of which demand consideration during controller
design.

Hence, the second problem statement revolves around the development of
a control algorithm capable of accommodating communication imperfections
where periodic information exchange is not achievable among all agents.
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1.2.2 Collaborative PdM for Smart Manufacturing

The challenges mentioned earlier become even more intricate when dealing
with high-dimensional systems, which are frequently encountered in fields such
as smart manufacturing and PdM, the primary focus of this thesis. Given the
dynamic nature of many components within these systems, there is a critical
need to automatically construct dynamic models for these components using
sensor data. On the other hand, machine learning (ML) has made significant
strides in recent years, providing valuable advancements that can be applied in
these domains.

In the pursuit of effective PdM, a substantial volume of data is collected
from machines, undergoes processing, and is subjected to analysis employing
various ML algorithms. In the context of developing global PdM models for
assets, the machines involved are typically regarded as edge devices. These
devices transmit their data wirelessly to cloud infrastructure for processing
and modeling, ultimately culminating in the creation of a unified PdM model.
However, the transmission of substantial data volumes between edge devices
and the cloud entails notable drawbacks, including high costs, increased delays,
and privacy concerns. These issues hold particular significance within the
context of future smart manufacturing and PdM within large-scale enterprises.

Consequently, the third problem statement central to this thesis revolves
around the development of a comprehensive PdM model for assets and the
strategic application of edge computing and collaborative PdM. This endeavor
seeks to address data transmission cost reduction on wireless networks, enhance
processing speed, and establish a global PdM model tailored for smart factories
on a global scale. To achieve this, we intend to employ federated learning (FL),
a collaborative machine learning approach that trains a global model using data
from various devices without centralizing the data, thereby safeguarding data
privacy and conserving network bandwidth (Konečnỳ et al., 2015, 2016; Yang
et al., 2019b). In FL, models often perform less effectively compared to those
trained in a centralized fashion, particularly when the training data differ
significantly across local devices. This is a frequent occurrence in PdM
applications due to the diverse anomalies present at edge devices and the
variability introduced by human involvement in maintenance and reporting.
Resolving this challenge is crucial in the context of FL for collaborative PdM.

1.2.3 Fast-Edge Learning for Collaborative PdM

In the field of PdM applications, the volume of data obtained from online sensors
is substantial. As a result, it becomes imperative to consider this significant data
volume when implementing FL techniques for PdM applications. Additionally,
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time sensitivity and temporal awareness are crucial attributes for the effective
execution of PdM activities. Therefore, it is essential to take into account time
latency in PdM applications.

Migrating the learning process from centralized clouds to the edge allows
edge servers to rapidly acquire real-time data generated by edge devices,
facilitating the swift training of AI models. Consequently, distributing these
models from servers to nearby devices enables these devices to effectively
respond to real-time events, making them well-suited for PdM applications.
However, despite the rapid advancement of computing speeds, wireless
transmission of large data volumes by any device faces limitations due to
restricted radio resources and the challenging conditions of wireless channels.
This limitation creates a communication bottleneck that hampers fast-edge
learning (Liu et al., 2021; Peng et al., 2022).

Communication schemes for FL can be categorized as digital or analog.
Digital communication, though burdensome for wireless networks, assigns
communication resources to each client’s ML model parameters. Analog
communication reduces overhead by allowing shared resources for transmitting
FL models. However, incorporating the impact of noisy channels in analog
communication complicates convergence analysis due to noise propagation
during each communication round. Moreover, the collective impact of these
noisy communications in the FL model aggregation on the final learning
performance necessitates a comprehensive design and analysis approach.

Hence, the fourth problem statement revolves around understanding the
impact of communication-induced noise during FL training on the convergence
and accuracy performance of the ML model and how we can mitigate these
effects and optimize client resources concurrently. In essence, we need to study
and gain a better understanding of how noisy channels impact cyber twins in
fast-edge analog FL.

1.3 Related Work
CPS has been gaining more and more attention in academic and industrial
circles because they are believed to offer benefits for society, the economy, and
the environment (Shi et al., 2011; Kim and Kumar, 2012; Liu et al., 2017). One
of the key areas where CPS is applied is in autonomous driving (Lu et al., 2014;
Parkinson et al., 2017) and smart manufacturing (Tao et al., 2019; Zhou et al.,
2021). To realized these applications, several problems need be addressed.
Therefore, this section lays the groundwork for the topic and briefly discusses
the current state of knowledge. It focuses on the most important methods in
WNCSs, which aims to tackle wireless communication imperfections and
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Figure 2. Development of Control System Structures. Physical system with sensor (S) and actuator
(A) is connected to a controller, a traditional wired connection (left), a filed bus connection (middle),
or a wireless network connection (right)

reduce bandwidth usage. We examine existing literature that discusses the
challenge of controlling systems over wireless channels characterized by
unreliable communication. It then goes on to describe potential approaches for
implementing collaborative PdM on smart manufacturing using FL algorithms.
Finally, it explores the use of FL for low-latency applications like PdM over the
air.

1.3.1 Wireless Networked Control System

Before we dive into the research about WNCSs, let’s briefly look back at how
wireless control systems came into existence, even though they come with
significant challenges when compared to traditional control setups (Antsaklis
and Baillieul, 2007; Baillieul and Antsaklis, 2007). In the past, sensors and
actuators were linked to a controller using direct wires (Figure 2, left). Later, a
bus network system was introduced, which worked well for distributed systems
and is still commonly used in automation and control (Figure 2, middle). In the
present era, modern communication technology facilitates information sharing
among system components, Actuators, sensors, and controllers, thereby
enhancing overall system performance. Wireless connections enable the
exchange of data from anywhere and facilitate advanced control technology for
mobile objects (Figure 2, right). Traditional control theory makes the
assumption that a system’s components are connected through a perfect
communication channel, assuming things like consistent data sampling,
minimal communication delays, and no loss of information. In contrast,
wireless networked control theory looks at how data is sent over imperfect
channels, where transmission delays can change, and data loss can happen. In
the following discussion, we will talk about how experts in control and
communication have dealt with these issues and introduce methods that aim to
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design control and communication systems together to overcome these
challenges.

Numerous studies have previously investigated the design and stability
analysis of various architectures, including delay models and processes
involving message loss. These studies aimed to tackle the challenges arising
from unreliable communication channels in sensor networks, with the ultimate
objective of enhancing navigation and tracking applications (Sinopoli et al.,
2004; Zhang et al., 2001; Xiong and Lam, 2007; Donkers et al., 2011). In the
realm of real-time applications, delays play a crucial role. Numerous studies
have been carried out to develop new protocols specifically designed to
overcome the challenges of ensuring the reliable delivery of data packets within
tight time constraints in low-power wireless networks (Zimmerling et al., 2017;
Lu et al., 2015).

Research into the combined design of control and communication has been
conducted through simulations in two separate studies. The first study (Li et al.,
2016) investigates how routing choices affect control performance, while the
second study (Ma et al., 2018) focuses on adapting the network protocol in
real-time to respond to changes in the physical system’s condition. This part of
the thesis primarily emphasizes the design of a robust controller to withstand
the impact of communication on control. In a section of Chapter 3, we will
delve further into this topic. In today’s industrial context, a major concern is the
reliability of wireless communication. Building trust in wireless
communication requires a combination of theoretical analysis and practical
experiments conducted on a real-world CPS testbed. Therefore, practical
initiatives related to wireless control will be elaborated upon in the subsequent
sections.

We place our emphasis on the existing testbeds from both a structural
perspective and in terms of execution techniques. These testbeds generally
consist of three main components: simulation-based, hardware-based, and
hybrid platforms. In this study, we particularly concentrate on hybrid platform
testbeds, which incorporate physical components in the real world and link
them with cyber components to facilitate communication within a virtual
environment. This method has been adopted by several research groups, such
as in the case of multi-agent vehicle system testbeds (Zhou et al., 2014; Jiang
et al., 2015), automation robot testbeds in industrial settings (Damgrave and
Lutters, 2019; Zhao et al., 2019; Kaczmarczyk et al., 2018), and Unmanned
Aerial Vehicle (UAV) system testbeds (Saeed et al., 2014; Jamshidi et al.,
2011).

In (Zhou et al., 2014), a platform was created involving several smart agents
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with vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
communication to assess a real connected vehicle testbed. However, this
testbed has a drawback as it lacks a digital replica of the system for virtual
environment testing. Another approach, in (Jiang et al., 2015), introduced a
system of connected vehicles resembling a complex CPS. They used
hardware-in-loop simulation technology, incorporating ZigBee and Wi-Fi radio
modules for V2V and V2I communication. They also used a wireless network
simulator to build a multi-vehicle testbed for cross-layer cooperative
communication simulation. This testbed, developed by the University of
Waterloo, aimed to validate various cooperative scenarios and collaborative
interactions in indoor laboratory settings. Nonetheless, it also revealed
limitations, such as the need to create a virtual link between the virtual and
physical testbeds and issues with the accuracy of indoor positioning systems.

The testbed described in (Saeed et al., 2014) is created to simplify the control
of physical components in UAV-related CPS experiments, making them more
manageable and cost-effective. This testbed uses a single camera positioned at
the center of the setup, which tracks drones with unique color tags to determine
their positions. The UAV controller’s job is to move the drones to specific x, y
coordinates based on feedback from the positioning system. In (Jamshidi et al.,
2011), a cyber-physical control system for UAVs offers a testbed for evaluating
multi-vehicle cooperative control algorithms and studying the impact of time
delays in network communication. Depending on the architecture of the CPS,
this testbed can be either centralized if the algorithm runs on a base station or
decentralized if the algorithm operates on each UAV. At the simulation level
of this testbed, UAVs can maintain a predefined altitude using fuzzy rules and
adaptive control.

In a recent analysis of the Swedish-German Testbed for Smart Production,
the development of a testbed designed to facilitate smart manufacturing and
model-based analytics through cloud-based applications is examined. This
testbed functions as a validation platform specifically tailored to the powertrain
manufacturing of heavy vehicles, thereby addressing the demand for
cross-location development in the realm of Industry 4.0 and smart production.
It comprises an integrated hardware and software interface that connects a
network of interlinked machine tools to data generated by sensors and
connectors. This data is subsequently stored within a digital twin, allowing for
real-time visualization of the production process.

In the context of future wireless CPS, we have interconnected systems that
work together. Consequently, there’s a clear need for a specialized testbed that
simulates a network of these wireless CPS systems. This testbed should mimic
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complex systems with rapid dynamic changes and effectively integrate wireless
communication and control methods. Its importance lies in its capacity to allow
for testing different situations, enabling a comprehensive evaluation of wireless
CPS, including both network and control elements. Creating such a testbed is
essential for improving our understanding and capabilities in this critical field.

1.3.2 Control system Under Limited Bandwidth

Ongoing research in WNCSs explores the use of event-triggered control (ETC)
as an alternative to traditional time-triggered control (TTC). In TTC, data is
periodically gathered from sensors and transmitted to the controller. In contrast,
ETC relies on event-triggered systems, where data transmission occurs when
specific event conditions related to system states or control parameters are met.
This approach, which is not reliant on a fixed schedule, transmits data only
when it contains valuable information, reducing the load on the communication
network. ETC and event-triggered state estimation (ETSE) algorithms have
gained significance due to their potential to deliver high-performance control in
resource-limited systems. For comprehensive insights, you can refer to related
literature (Pan et al., 2022; Cao et al., 2022; Xu et al., 2022; Cao et al., 2023)
for control and (Shi et al., 2016; Trimpe and Campi, 2015; Schmitt et al., 2022;
Zhong et al., 2023) for state estimation.

Many researchers have recently emphasized the significance of a network
control system and the attainment of high-performance control on
resource-constrained systems with ETC. This is evident in various studies, such
as (Guinaldo et al., 2015; Rong and Wang, 2021; Tan et al., 2020), which
address the control of multi-agent systems through event-based communication.
Additionally, (Trimpe and Baumann, 2019; Zhu et al., 2023; Liang et al., 2019)
discusses the use of Kalman filtering as an estimator in the design of
event-based state estimation systems, while (Schenato, 2008; Leong et al.,
2016; Li and Peng, 2018) explores optimal state estimation in the context of
networked control systems, particularly in the presence of packet drops.

State estimations and predictions play a pivotal role in an event-based
triggering system, primarily centered around calculating states with a minimum
mean square error (Wu et al., 2012; Martı́nez-Rey et al., 2015). Researchers
have introduced various approaches to adapt Kalman filtering under conditions
of wireless communication imperfections, such as data packet drops (Zhong
and Liu, 2021; Feng et al., 2019; Nie et al., 2021). Given the distributed nature
of WNCSs, recent investigations have concentrated on distributed Kalman
filtering. In this context, each agent within a WNCS computes local state
estimations and predictions using Kalman filtering based on its own sensor data
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and the information exchanged with other agents (Qin et al., 2020; Zhang et al.,
2019a; Yang et al., 2020). These studies have put forward several algorithms
addressing consensus issues, and many of them are rooted in different forms of
Kalman filtering, aimed at devising novel methods for event-based triggering in
WNCSs.

The ETC method traditionally requires continuous agent sampling to assess
whether the ET condition has been met. To overcome these constraints, the
concept of self triggered control has been introduced (Chen et al., 2020a; Cui
et al., 2023). With this approach, it becomes possible to predict the need for
future sampling and determine the next triggering time at the previous trigger
event. However, both approaches necessitate setting a lower bound on the trigger
interval to prevent Zeno behavior which is a phenomenon in hybrid systems
where an infinite number of discrete transitions occur within a finite time interval.
To address these issues, periodic event-triggered control has been proposed for
synchronizing discrete-time linear stochastic dynamic systems. Several research
studies have explored the application of periodic event triggering to consensus
problems in multi-agent systems, which can be found in (Garcia et al., 2016;
Liu et al., 2020a).

Numerous control design approaches have been developed for multi-agent
systems that rely on wireless communication for coordination and addressing
consensus challenges. For instance, in (Pan et al., 2017; Xiong et al., 2022),
there is a focus on state feedback control in multi-agent systems when dealing
with data packet drops. Additionally, in (Zheng et al., 2016; Qiang et al., 2022), a
distributed model predictive control algorithm is introduced, tailored for diverse
multi-agent systems featuring directional and unidirectional network topologies.
Furthermore, (Wang et al., 2019) presents an event-triggered consensus strategy
that incorporates state feedback for linear multi-agent systems, accounting for
the impact of random packet losses.

1.3.3 Federated Learning for Anomaly Detection and PdM

To achieve effective PdM, substantial volumes of data need to be collected,
processed, and subsequently analyzed by a ML algorithm. Edge and fog
computing can process this data through the utilization of distributed
algorithms, offering opportunities to reduce data transfer costs and enhance
processing speed, particularly in PdM applications (Teoh et al., 2021). In
(De Donno et al., 2019), three primary techniques have been introduced, which
employ distributed machine learning algorithms and data processing on
intermediary nodes. These techniques are classified based on where the data is
processed: Edge, Fog, and Cloud. As edge computing has become a vital
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paradigm for IoT-based systems, endeavors are being directed towards utilizing
devices situated at the edge of the network for performing computations
whenever feasible, rather than relying solely on the cloud for data processing
(Zeng et al., 2020).

FL offers a collaborative approach to PdM at the edge level, utilizing
cross-company data from various manufacturing sites or across multiple
organizations. This method is designed to share failure pattern data related to a
specific asset without revealing sensitive raw data. In reference (Mohr et al.,
2021), a novel distributed PdM algorithm integrating FL and blockchain
mechanisms is proposed. One challenge with implementing FL in PdM
applications is that certain edge devices may lack sufficient computational
resources to train the global model promptly. These resource-constrained
clients can cause delays in model aggregation and may even disconnect during
training iterations, hindering efficient collaborative learning among edge
devices. To address this issue, the Split Pred framework for collaborative PdM
is introduced in (Bharti and Mcgibney, 2021), enabling cross-device FL to
facilitate reliable model training on edge devices.

Reference (Park et al., 2018) introduces a real-time fault detection system
for edge computing, using a two-layer architecture with a real-time fault
detector based on Long Short-Term Memory (LSTM) recurrent neural
networks. A system architecture for edge-based PdM applications in IoT-based
manufacturing has been presented in (Chen et al., 2018). It emphasizes the
advantages of distributed learning in edge computing, particularly regarding
low latency response for edge control and bandwidth optimization. The
cooperation among edge, fog, and cloud computing resources is discussed to
illustrate their functionality. An empirical study on failure prediction in the
production line using FL has been conducted in (Ge et al., 2022). They develop
federated Support Vector Machine (SVM) and random forest algorithms for
horizontal and vertical FL scenarios. Their analysis demonstrates that the
distributed FL algorithm can effectively replace centralized methods for failure
and maintenance prediction.

An important aspect of PdM is anomaly detection, and some research has
focused on deploying FL algorithms in this context. For instance, in (Sater and
Hamza, 2021), a novel FL algorithm for the LSTM framework is introduced
and evaluated for anomaly detection in sensor behavior in smart building
applications. This approach involves a local LSTM model on sensor edge
devices and a global model on fog that aggregates weights, updates parameters,
and distributes them among the sensor edge devices. Results indicate that this
method converges twice as fast as the centralized LSTM model during training.
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Similarly, in (Liu et al., 2020c), authors propose a communication-efficient FL
algorithm for sensing time-series data in distributed anomaly detection
applications. They introduce an attention mechanism-based Convolutional
Neural Network Long Short-Term Memory (AMCNN-LSTM) model to
accurately detect anomalies by capturing essential features using CNN and
predicting future time-series data using LSTM.

1.3.4 Federated Learning Over the Air Communication and

Computation

In light of the importance of addressing wireless channel effects in FL, recent
research has focused on methods aimed at mitigating these effects (Zhu et al.,
2019; Yang et al., 2019a; Chen et al., 2020b). These studies delve into the
intricacies of analog aggregation techniques designed for over-the-air
transmission, harnessing the inherent property of signal superposition in the
wireless multiple-access channel. Analog over-the-air aggregation stands out as
a highly promising technique that significantly enhances spectral efficiency and
reduces multi-access latency. Its widespread use in Federated Averaging
(FedAvg) is due to its ability to enable participating devices to share only the
sum of their local gradients or model parameters. These methods have been
extensively explored in various investigations, as evidenced in works such as
(Amiri and Gündüz, 2020; Krouka et al., 2021).

However, it is crucial to acknowledge that noisy channels can have a
detrimental impact on analog over-the-air communication and computation,
especially when working with analog over-the-air aggregation. In (Ang et al.,
2020), the primary focus of the research was on addressing noise in wireless
communications for federated learning. The approach involved the creation of
an expectation-based model and a worst-case model. The study introduced a
sampling-based successive convex approximation algorithm to tackle the
problem effectively, by incorporating noise as a regularizer in the loss function
during the training process. The outcomes of this approach were evident in
improved prediction accuracy and reduced loss values, showcasing its
effectiveness in mitigating the impact of noise.

Furthermore, the influence of a noisy channel on the performance of the
FedAvg algorithm was examined in (Amiri et al., 2021). The study’s findings
revealed that, particularly in the case of noisy downlink transmission, noise
could not be effectively mitigated solely through step-size design, making
it challenging to ensure precise convergence. Consequently, addressing this
fundamental issue necessitates the imposition of strict requirements on the
estimation of noise associated with aggregated model weights. These insights
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emphasize the significance of accounting for and addressing the challenges
posed by noisy channels in the context of analog over-the-air aggregation within
the realm of FL.

1.4 Research Objectives and Questions
In response to the research gaps identified and comprehensively examined in
Sections 1.2 and 1.3, this dissertation outlines four specific research objectives.
These objectives are pursued through the formulation of pivotal research
questions, which are outlined below:

Objective I: To investigate the impact of wireless communication on real-
time system performance and aiming to develop strategies for mitigating these
effects. The following questions are addressed to accomplish this objective:

• RQ1: In what way can communication imperfections be investigated
within a WNCS?

• RQ2: In what way can cyber twins be developed in order to be effective
and applicable for industrial use?

Objective II: To enhance control algorithms in order to make them resilient
to communication imperfections and disruptions, ensuring robust system
operation in wireless communication environments. The following questions
are addressed to achieve this objective:

• RQ3: In what way can WCNS jointly optimize communication and
control algorithms?

• RQ4: In what ways can WNCS be designed to address the challenges
posed by harsh environmental conditions, particularly burst packet drops?

Objective III: To design and develop user-friendly cyber twins specifically
tailored for PdM operations, facilitating PdM tasks in industrial settings. The
following questions are addressed to attain this objective:

• RQ5: In what way a global FL model for PdM applications can be
designed?

• RQ6: How do imperfections in wireless communications impact cyber
twins’ performance, especially in global PdM applications?

Objective IV: To conduct a comprehensive study on the influence of
communication loss on PdM cyber twins and explore methods for further
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improving their performance and reliability in the presence of noisy channel.
The following questions are addressed to achieve this objective:

• RQ7: How can communication delays be minimized in time-sensitive
applications like global PdM??

• RQ8: How a system that minimizes the effects of communication
imperfections can be constructed?

1.5 Research Contributions
Four new methods have been developed and proposed for this PhD thesis. One
method addresses objectives one and two, two methods pertain to objective
three, and the final method relates to objective four. These newly developed
methods have been published in five scientific papers, which are listed at the
beginning of this thesis. In the following sections, we present the contributions
of these methods. Figure 3 illustrates the connections between the scientific
articles, research objectives, contributions, and associated questions.

Figure 3. Mapping between the scientific articles, research objectives, contributions, and research
questions

• Contribution 1: A multi-vehicle testbed for cooperative driving
scenarios within a Wireless Cyber-Physical System of Systems (Wireless
CPSoS) has been proposed. The testbed, comprising four robot vehicles
equipped with Raspberry Pi microprocessors and sensory components,
facilitates the verification and validation of cooperative driving

16



algorithms involving WNCS. To address the challenge of wireless
communication imperfections, the method employed for achieving the
research objective involves Model Predictive Control (MPC) with a state
observer based on a Kalman Filter (KF). This testbed offers a practical
platform for testing and evaluating advanced cooperative driving
scenarios, laying the foundation for future research and development in
the realm of wireless technology and control systems.

• Contribution 2: A novel Event-Triggering (ET) mechanism has been
proposed which is tailored for distributed multi-agent systems operating
in the presence of packet drop imperfections within WNCS. Our
event-triggering mechanism adopts a parallel approach and utilizes
Distributed Event-Based State Estimation (DEBSE) to design a parallel
event-triggering algorithm capable of handling high packet drop
probability conditions typically encountered in industrial environments.
The primary goal is to sustain control performance at the desired level in
consensus problems within multi-agent systems. By incorporating this ET
algorithm into WNCS, we achieve a significant reduction in network
resource usage. Although our proposed Parallel Event-Triggering (PET)
algorithm slightly increases network resource utilization compared to ET,
it consistently maintains satisfactory control performance in multi-agent
consensus problems, even under challenging packet drop conditions.

• Contribution 3: Explores the application of distributed event-triggered
control techniques to address leader-follower consensus problems in
vehicular platoons, particularly in challenging environments with a high
probability of burst packet drops in communication channels.

• Contribution 4: A new federated model called FedSVM has been
introduced. It is a federated SVM model designed for PdM applications
within a FL framework. FedSVM specializes in anomaly detection while
safeguarding the privacy of individual assets at the edge level. It includes
a preprocessing step that employs a moving average strategy on sensor
data, optimizing memory usage and making it well-suited for real-time
PdM applications. This method substantially enhances the efficiency of
online PdM operations.

• Contribution 5: A new federated model called FedLSTM has been
proposed. It is a federated LSTM model designed for PdM applications
within a FL framework. FedLSTM specializes in predicting the remaining
useful life (RUL) of assets by effectively learning from sequential data at
the edge level. The incorporation of a moving average strategy reduces
consecutive data blocks, significantly enhancing the training efficiency
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of the model at the fog level. This approach contributes to streamlined
communication and more rapid local model convergence in the context of
collaborative PdM.

• Contribution 6: A hierarchical approach to PdM has been proposed,
building upon contributions four and five. The key feature of our
approach is the utilization of Over-the-Air Analog Computation and
Communication (OACC) for the FL algorithm at the edge level. This
choice is motivated by the advantages of low latency, making it
well-suited for PdM applications while also enhancing spectral efficiency.
Our proposal includes Federated Stochastic Variance Reduced Gradient
Over-the-Air Communication and Computation (FSVRG-OACC), which
is a distributed approach to address the optimization challenge for PdM at
the edge level, leveraging OACC. FSVRG-OACC employs analog
over-the-air aggregation, enabling effective handling of highly noisy
communication channels and contributing to improved convergence in
minimizing the cost function associated with the ML algorithm.

1.6 Research Methodology
The flowchart in Figure 4 shows the system overview of the methodology used
in this thesis. After conducting a literature review and formulating research
questions, the primary focus of this thesis, which is the development of Wireless
CPS in the presence of wireless imperfections, was executed. Initially, we set
up a testbed for a Wireless CPSoS by deploying four robot vehicles capable
of implementing cooperative driving algorithms within a WNCS. To control
the platooning of these vehicles in the presence of wireless imperfections, we
implemented an MPC with a state observer based on the KF. The results from
these implementations successfully verify the feasibility of our approach.

The second aspect of this thesis is dedicated to the development of a
distributed ET algorithm for multi-agent systems operating in wireless
networks characterized by a high likelihood of packet drops. This ET approach
adopts a parallel framework and integrates the DEBSE technique to formulate a
PET algorithm. To assess its efficacy, the algorithm has been subjected to
simulation testing, where it was employed to control a mathematical model of
vehicle platooning, resembling the conditions of the wireless CPSoS testbed,
operating over a wireless network with a significant rate of message drops.

The third dimension of this thesis revolves around developing a distributed
ML solution for collaborative PdM. The new methods were approached
through a combination of theoretical evaluation using mathematical and
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Figure 4. Methodology followed in the thesis

statistical models, as well as practical testing using a renowned dataset. In the
context of RUL prediction, we chose to work with the widely recognized and
benchmark CMAPSS dataset from NASA, which simulates a commercial
modular aero-propulsion system. To address the collaborative PdM, we
deployed mathematical models in a distributed manner and implemented the
FedSVM and FedLSTM algorithms. The distributed RUL prediction and
anomaly detection outcomes were thoroughly scrutinized and compared against
other centralized approaches.

The fourth facet of this study focuses on leveraging OACC for the FL
algorithm at the edge level within collaborative PdM. FSVRG-OACC has been
proposed and implemented. We adopted a hierarchical approach to PdM,
integrating FLOACC over the CMAPSS dataset. To assess its performance, we
compared the results with those obtained using the FedSVM algorithm. Figure
5 shows how the proposed methods are connected to the scientific papers where
the related results have been published.

In the final phase of the research methodology, we summarized the major
discoveries and conclusions drawn from this study.
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Figure 5. Relation between the proposed methods and the scientific papers

1.7 Thesis Outline

Figure 6. Relationship between the scientific papers and Chapters 3 to 5.

This thesis addresses the fundamental research problems outlined in Section
1.2, with contributions encompassing wireless control, ML over wireless
networks, and stochastic distributed models for collaborative PdM applications.
The thesis is structured into two main parts. Part I summarizes the study and the
remainder is organized as follows. Chapter 2 briefly overviews the fundamental
concepts and algorithms that form the foundation of this research. This chapter
delves into WNCS, exploring topics such as the control implications in wireless
networks, ET mechanisms, and predictive triggering. It continues to focus on
ML over wireless networks, FL in PdM applications, OACC, and Over-the-Air
Distributed ML. Chapters 3 to 5 elucidate the developed methods and their
performance, presented in the form of five scientific papers. In particular,
Chapter 3 describes the implemented Wireless CPSoS testbed and explains the
distributed ET algorithm for Multi-Agent Systems over a wireless network,
Chapter 4 details the FedSVM and FedLSTM for collaborative PdM, while
Chapter 5 delves into Over-the-Air FL in a noisy industrial environment,
emphasizing its application for low-latency collaborative PdM. Figure 6
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illustrates the link between Chapters 3 to 5 and the scientific papers. Finally,
Chapter 6 provides a conclusion and offers insights into potential avenues for
future research. Part II comprises the compilation of the five publications.
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2 Theoretical Background

This chapter serves as an essential foundation for understanding the subsequent
sections of the thesis. It is divided into third main parts. The first part introduces
the concept of WNCS and discusses the key challenges addressed by control
theory in the context of wireless networked systems. Within this part, we delve
into the MPC algorithm, which is capable of handling time delays and packet
loss in control systems. Additionally, we explore the Event-Based Control
System, a method designed to reduce the communication bandwidth usage in
control systems. This section further narrows down to the introduction of Event-
Based State Estimation (EBSE). In the second part, we provide an overview of
ML and delve into the ML models commonly employed in PdM applications,
including tasks like RUL estimation and anomaly detection. Lastly, this section
introduces the FL algorithm as a prominent approach for dealing with data
distributed across devices over wireless network, particularly in the context of
edge computing. The third part delves into the details of OACC. It includes
a mathematical description of the system model and explores the concept of
analog over-the-air aggregation, which pertains to distributed ML. Within this
context, issues related to fading and additive noise on wireless channels emerge
as critical considerations.

2.1 Wireless Networked Control System
WNCS represent a category of control systems in which sensors, controllers, and
actuators communicate through a wireless digital network (Figure 7), which may
introduce delays and potential message losses. WNCS utilize wireless devices,
offering several advantages over their wired counterparts, including ease of
deployment, flexible architecture, cost-effective installation and maintenance,
absence of cabling, and enhanced mobility.

Figure 7. Schematic of a WNCS.
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The interdisciplinary field of WNCS combines control theory,
communication technology, and computer science to develop a dynamic setting
for real-time control systems. In this environment, there are limitations on the
resources available, and the workload can change, which creates uncertainties
about the availability of computing resources and communication resources,
like bandwidth (Figure 8).

Figure 8. WNCS lies at the intersection of control, communication, and computation.

In traditional control theory, it deals with dynamic systems that are connected
through perfect channels, assuming that data is collected at regular intervals,
communication delays are very short or constant, and no data is lost. In contrast,
communication theory focuses on how information is transmitted over imperfect
channels, which can have different delays and might lose some data along the
way. Furthermore, when systems engineers design things, they often assume
that the control and communication tasks have fixed schedules that repeat at
regular intervals, come with strict deadlines, and have well-understood worst-
case execution times (WCET). Nevertheless, these assumptions may not always
be valid, particularly in scenarios where resources change over time. To design
and put into action control methods and communication rules for real-time
networked control systems, it is essential to incorporate ideas and techniques
from computer science and communication technology into the process of
designing control systems. This approach leads to a combined design for
control, communication, and computing.

The linear physical system in Figure 7 corresponds to a differential equation
of the form

dx(t) = Φx(t)dt +Γu(t)dt +Q dW (t), (2.1)

where x(t) ∈ Rn is the plant state, u(t) ∈ Rm is the control input, W (t) ∈ Rn

is a multi dimensional Wiener process capturing process noise, Φ ∈ Rn×n is
the state transition matrix, Γ ∈ Rn×m is the input matrix, and Q ∈ Rn is the
covariance matrix. Because of digital communication and the integration of
CPS in embedded devices, control laws are primarily implemented in a digital
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format. Wireless networks pose significant considerations in control system
design and performance. Some of these considerations, which are addressed in
this thesis, are outlined below.

• Reliability: Ensuring that sensor data and control commands are not
lost is crucial for control algorithms. However, improving reliability
through retransmissions may consume more energy, so a balance between
reliability and energy usage must be found.

• Latency: Timely delivery of sensor data and control commands is
essential for control system performance and stability. Retransmissions
for reliability can introduce delays, so a tradeoff between reliability and
latency is necessary.

• Data Rate: Advanced control strategies may require more computation
and data transmission, and the choice of control strategy affects the data
volume. Scheduled control mandates timely data transmission, while
event-based control focuses on access when events occur.

2.1.1 Control Implications of Wireless Networks

In the context of WNCS, the data acquired by the sensor and the control signal
generated by the controller are communicated through a network. This
transmission process introduces potential challenges, such as packet loss,
significant delays, jitter, quantization issues, packet fragmentation, and other
related concerns. One prevalent approach to address these imperfections
involves employing MPC, which can effectively compensate for both delays
and packet loss. Think about sending not only the initial control sequence value
but also larger segments of this sequence. This offers a backup input in case of
packet loss during subsequent transmissions. MPC, as a predictive control
method, provides a sequence of input values that can compensate for network
delays and losses (Findeisen and Varutti, 2009; Grüne et al., 2012).

This approach addresses imperfections in wireless communication between
the controller and actuator. However, there is a possibility of dropped
measurements between sensors and the controller. Hence, an estimator is
required to reconstruct plant states that are missing on the controller side as
well. Figure 10 depicts the WNCS seamlessly integrated with an MPC and an
KF serving as a state observer. τca signifies the time delay, and pca indicates the
probability of message drop between the controller and the actuator. On the
sensor side, τso denotes the time delay, and pso represents the probability of
message drop between the sensor measurements and the observer.

By sampling the plant with a time-varying sampling period, denoted as
hk = tk+1− tk, and expressing this period as the sum of a base sampling time
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Figure 9. Integration of MPC and State Observation in a WNCS

h0 and a term τk
so, the discrete-time formulation of the continuous-time plant

dynamics (Equation 2.1) is derived as follows, assuming a zero-order hold.

xk+1 = Axk +Buk +wk, (2.2)

yk =Cxk + vk, (2.3)

here, h0 is a constant in hk = h0+τk
so, τso satisfies 0< τk

so < hk, and the sampling
period hk is bounded by 0 < hmin ≤ hk ≤ hmax. The matrices A and B are defined
as A = eΦhk and B =

∫ hk
0 eΦsdsB, respectively. Additionally, we make the

assumption that the random sequences {τk
so}∞

0 and {hk}∞
0 are independent and

have known distributions.
As illustrated in Figure 10, measurements y(k) and control inputs u(k) are

transmitted via the wireless network. It is assumed that upon transmission,
both reach the observer and the system with specific delays and probabilities,
each governed by independent Bernoulli processes. The Bernoulli processes
are denoted by βk and αk, which are independent and identically distributed
(i.i.d.) binary variables. These variables indicate whether messages were lost
(βk = 1,αk = 1) or successfully received (βk = 0,αk = 0). Modeling the packet
loss sequence results in the subsequent expression for the sensor measurements
in the observer and the control value in the actuator.

ŷk = (1−βk)(Cxk + vk), (2.4)

ûk = (1−αk)uk, (2.5)

βk and αk represent Bernoulli random variables, where the probabilities of
packet loss are P(βk = 1) = pso and P(αk = 1) = pca. These variables model
the packet loss between the sensor and the observer and between the controller
and the actuator, respectively. Ultimately, the subsequent linear difference
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equations are derived, accounting for intermittent sensor measurements and
control commands through WNCS.

xk+1 = Axk +Bûk +wk, (2.6)

ŷk = (1−βk)yk, (2.7)

where (x0,wk,vk) are Gaussian variables that are uncorrelated with mean
(x̄0,0,0) and covariance (P0,Q,R). If there is packet loss between the sensor
and the observer, the KF state estimator should be employed to ensure accurate
updates to the controller input. Therefore, the use of an estimator becomes
necessary in WNCS to reconstruct the missing states. In cases of packet loss
between sensors and the observer, the utilized KF state estimator is represented
as follows

1. Time update:

xk+1|k = Ax̂k|k +Bûk, (2.8)

ek+1|k = Aek|k +wk, (2.9)

Pk+1|k = APk|kAT +Q, (2.10)

2. Measurement update:

x̂k+1|k+1 = x̂k+1|k +(1−βk+1)Kk+1
[
yk+1−Cx̂k+1|k

]
, (2.11)

ek+1|k+1 = [I− (1−βk+1)Kk+1C]ek+1|k− (1−βk+1)Kk+1wk+1,
(2.12)

Pk+1|k+1 = Pk+1|k− (1−βk+1)Kk+1CPk+1|k, (2.13)

Kk+1 = Pk+1|kC
T (CPk+1|kC

T +R
)−1

, (2.14)

here, yk represents the actual sensor measurement, Cx̂k|k−1 denotes the
measurement prediction, Kk is the time-varying Kalman filter gain matrix, and
Pk|k−1 is the error covariance matrix, which depends on the occurrence of
packet loss between sensors and observer. If sensor measurements are dropped
in one or several consecutive sampling periods, the estimator only runs the time
update part in an open loop until the time when all sensor packets will be
received successfully. A threshold exists for sensor measurement loss, crucial
for the stability of the state estimator. As outlined in (Sinopoli et al., 2004),
critical probabilities pcrti

so and pcrti
ca determine stability limits, with the estimated

mean state covariance remaining bounded below these values. Beyond the
thresholds, the covariance can diverge for some initial conditions.
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At the controller side, the goal is to create an application-level solution
capable of compensating for delays and message dropouts. The MPC controller
serves as a solution that can anticipate the control horizon, sending an array
of inputs to the actuators in the WNCS. This ensures that the actuator always
has sufficient information to feed into the plant, even in the event of delays or
message dropouts. MPC employs an optimization based control law, where
the performance measure typically involves minimizing a quadratic cost. By
specifying positive definite matrices as the performance weights (Q and R), the
primary objective is to determine the optimal control input that minimizes the
performance cost over an infinite horizon.

Jk(x̂,u) =
∞

∑
j=k

x̂T
j|kQx̂ j|k +uT

j|kRu j|k. (2.15)

For a full-state feedback system, the cost function can be rewritten as follows
to track the reference point (r).

Jk(r, x̂,u) =
∞

∑
j=k

(r j|k− x̂ j|k)
T Q(r j|k− x̂ j|k)+∆uT

j|kR∆u j|k. (2.16)

The cost function in Equation 2.16 is unconstrained, and the optimal solution
to minimize it is determined by the linear quadratic (LQ) controller. In cases
where constraints are present, there is no analytical solution available. However,
in MPC, a strategy is employed where a prediction horizon, denoted as w, is
defined. The goal is to solve a minimization problem with a finite-horizon cost.
This approach is a key method in WNCS, and it enables the MPC to calculate
an array of inputs for each time step k ∈ 0,1, ...,w−1. This proactive strategy
helps mitigate challenges such as delays and message drops.

Jk(r, x̂,u) =
k+w−1

∑
j=k

(r j|k− x̂ j|k)
T Q(r j|k− x̂ j|k)+∆uT

j|kR∆u j|k. (2.17)

MPC is an approach that iteratively addresses a series of optimal control
problems within a finite prediction horizon. By utilizing the model (Equation
2.2) as a constraint, MPC algorithm can be defined as follows.
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Algorithm 2.1: MPC algorithm for WNCS
Init: Set k to 0, with the provided model of the plant.
1: Address the optimal control problem within a reduced time horizon,

utilizing the most recent state measurement supplied by the Kalman
Filter, denoted as x̂. This involves determining a permissible array of
control inputs, denoted as u, by minimizing the cost function while
adhering to the model constraints.

min
u

k+w−1

∑
j=k

(r j|k− x̂ j|k)
T Q(r j|k− x̂ j|k)+∆uT

j|kR∆u j|k

subject to u(k+ j | k) ∈U

x̂(k+ j | k) = Ax̂(k+ j−1 | k)+Bu(k+ j−1 | k)

2: Define the static state feedback.
Static state feedback is defined as the first element of the computed
optimal input sequence. This sequence is stored in the buffer and fed
to the actuator of the plant one element at a time for implementation.

3: Move the prediction horizon in time by incrementing k to k+1, and
then repeat this process, starting from step 1.

The iterative application of this algorithm establishes a feedback control
law over an infinite time horizon, even though utilizing only a finite prediction
horizon at each time instant. It is crucial to highlight that MPC relies on a plant
model to predict the future behavior of the system and consequently determine
an appropriate control sequence.

As discussed, we employed MPC and Kalman Filter state estimation to
address imperfections in WNCS. However, designing WNCS involves
balancing various trade-offs, particularly those involving control performance,
communication performance, and network lifetime. Therefore, it is crucial to
design control and communication jointly, considering these factors.

2.1.2 Control and Communication Co-design

The principal challenge within WNCS is effectively combining communication
and control system designs because they are closely connected. This integrated
approach aims to enhance both the control performance and the network
lifetime. However, control theory makes assumptions about factors like
sampling instances, performance, and reliability, which can be challenging to
fulfill using standard or specialized communication technologies. Conversely,
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computer networks may possess limitations that are suboptimal for control
systems. To reconcile this disparity, the proposal of a joint design for both the
control and communication systems has been proposed (Cao et al., 2012;
Chamaken et al., 2009).

From an architectural point of view, WNCS can be divided into two layers,
as illustrated in Figure 10. The control layer encompasses the application
functions of controllers, sensors, and actuators, while the communication layer
manages various networking functions. Consequently, the optimization problem
needs to be addressed in both aspects. This concept imposes constraints on
the complexity of control algorithms and communication protocols, as well as
considerations for throughput and reaction times.

Figure 10. Joint design architecture of WNCS

Quality of control (QoC) and quality of service (QoS) are terms used to
describe the control and communication requirements of a system. QoS focuses
on efficiency aspects like latency, bandwidth, and loss rate for data flow between
sensors, controllers, and actuators. To adapt to changing control setpoints and
resource availability, the system defines a minimum QoS to ensure a basic level
of QoC, as well as a preferred QoS for dynamic disturbances (Vashisht and Jain,
2019). Hence, the goal is to provide robust assurances for meeting the minimum
QoS requirements and to fulfill the preferred QoS requirements to the greatest
extent possible.

Another way to jointly design the communication and control of WNCS is
through the event-based control schemes, like event and predictive triggering.
The design of communication systems for event-triggered sampling has
predominantly focused on the MAC layer. In this approach, sensing and
actuating happen only when the system requires attention. Unlike periodic
systems, the traffic pattern of event triggering is asynchronous. Event-triggered
control can significantly reduce network traffic with little to no impact on
control performance, as traffic is generated only when the signal changes by a
specific amount (Araújo et al., 2013). Various studies have explored the
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trade-off between the threshold crossing level in control systems and packet
losses in communication systems (Ramesh et al., 2016; Vilgelm et al., 2016;
Mamduhi et al., 2014). However, there is a gap in research when it comes to
analyzing event triggering mechanisms for distributed multi-agent systems in
the presence of message drop imperfections. We will address this gap in
Chapter 3, but before doing so, let us delve into the fundamental theory of
event-based control and triggering, focusing particularly on multi-agent
distributed systems.

2.1.3 Event based control

In event-based control, the feedback loop closes when an event shows that the
control error goes beyond an acceptable limit, prompting data transmission
from sensors to controllers and controllers to actuators. This makes event-based
control a key method for cutting down on communication load in a WNCS.
In event-based control, data is not collected at regular intervals. Instead, it is
determined by an event-triggered system.

This approach differ fundamentally from time-triggered control systems,
where data is periodically collected from the sensors and sent simultaneously
to the controller. In periodic sampling, communication occurs regardless of
the control error size, even when it is small and feedback is not needed for
performance requirements. This can lead to unnecessary use of communication
and computing resources.

Figure 11. Event-based control of a WNCS

Figure 11 depicts the essential elements of an event-based control system
for a WNCS. In this system, a continuous-time input signal u(t) is generated by
a control input generator. Simultaneously, an event condition is continuously
assessed by an event generator. When the event generator detects that the
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control error surpasses a predefined limit at a specific time tk, an event ek is
triggered through the dashed lines, which represent the communication links
in the figure. This event could be either the current state x(tk) or the current
output y(tk), which is then transmitted to the controller. Upon receiving the
event information, the controller calculates a new input uk. The control input
generator utilizes this updated input to calculate the continuous input signal
u(t) within the time interval [tk, tk+1) until the occurrence of the next event at
time tk+1. This cyclic process helps in adapting the control input based on the
system’s behavior, ensuring effective control in response to relevant events and
decrease the communication load.

Various methods have been proposed for event-based control, taking into
account the definitions and functions of the event generator and control input
generator. Some of these methods include event-driven control, event-triggered
control, and send-on-delta control (Aranda-Escolastico et al., 2020; Lunze and
Lehmann, 2010). Additionally, there are conceptually different approaches such
as predictive-triggered control and self-triggered control. In predictive-triggered
and self-triggered control, the plant state is not continuously monitored by the
event generator. Instead, the next event time tk+1 is predicted by the event
generator at the current event time tk (Heemels et al., 2012; Yi et al., 2018;
Trimpe and Baumann, 2019). This allows the system to enter an idle mode until
the predicted next sampling time, which is advantageous for low-power wireless
nodes.

The plant (2.1), when coupled with state feedback K as given by

u(t) =−Kx(t), (2.18)

results in the continuous closed-loop system

ẋ(t) = (Φ−ΓK)x(t)+w(t), (2.19)

This occurs when the state x(tk) is communicated to the control input generator
at time tk. The control input generator can then determine the same control
input u(tk) = −Kx(tk) as a continuous state-feedback controller. However,
for all future time t > tk, the control input generator needs to be aware of
the disturbance w(t). By defining (Φ−ΓK = Φ̄), The control input can be
expressed as

u(t) =−KeΦ̄(t−tk)x(tk)−
∫ t

tk
KeΦ̄(t−τ)v(τ)dτ . (2.20)

It has been assumed that the control input generator can appropriately account
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for the disturbance beyond the communicated state at time tk.
The control input generator can be represented by the following model to

determine the control input (2.20)

ẋs(t) = Φ̄xs(t)+ ŵk, (2.21)

u(t) =−Kxs(t), (2.22)

here, xs denotes the state of the control input generator, and it is set such that
xs(t+k ) = x(tk) for t ≥ tk. The solution of this model exactly corresponds to
(2.20). Additionally, it is assumed that the disturbance is constant w(t) = ŵk

for t ≥ tk, but it should be estimated in the control input generator using an
estimator. Figure 12 shows the block diagram of the control input generator.

Figure 12. Control input generator

In the event generator block, events are generated by comparing the current
state of the system, denoted as x(t), with the estimated state in the feedback
loop, represented as xs(t), considering a constant disturbance ŵk. An event is
triggered whenever the difference between the measured plant state x(t) and the
estimated reference state xs(t) satisfies the condition

∥x(t)− xs(t)∥2 ≥ δ . (2.23)

At the event time tk, when this condition is met, the measured plant state x(tk) is
sent to the control input generator for further processing. Figure 13 shows the
block diagram of the event generator.

The event-based state-feedback loop structure is illustrated in Figure 14. It
is clear that state estimators play a crucial role in the design of event-based
controllers. Consequently, in the next subsection, we will delve into methods
for designing event-based state estimators.
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Figure 13. Event generator

Figure 14. Event-based state-feedback loop structure

2.1.4 Event Based State Estimation

The main challenge in event-based estimation is designing the estimator.
Usually, these estimators are designed to be optimal like mean square
estimation error. However, because of the event-triggering conditions, the
optimal estimators often do not have straightforward recursive structures. This
happens because the Gaussian property of the state’s conditional distributions,
based on the available measurement information, is no longer maintained (Shi
et al., 2016).

The most straightforward event-based state estimator involves ignoring
information when there is no event and designing the estimator solely based on
the received information. The resulting estimator corresponds to the Kalman
filter state estimator designed for unreliable communication channels, as
introduced in section 2.1.1. The key difference is that the Bernoulli random
variable representing packet loss is replaced with the triggered decision variable
(γk). If an event is triggered (γk = 1), the sensor measurement yk becomes
available to the estimator, and the measurement update in the Kalman filter is
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akin to the classic Kalman filter. On the other hand, when the sensor
measurement is not available (γk = 0), the filter only carries out the time update
step.

2.1.5 Bayesian Filtering and Particle Filter

Bayesian filters are employed to generate precise estimates of the state in a
dynamic system, relying on multiple observations despite the presence of noisy
measurements. The Kalman filter, predominantly employed in this chapter,
serves as a closed form solution to the linear Gaussian filtering problem. As a
result of the linear Gaussian model assumptions, the posterior distribution is
precisely Gaussian, eliminating the need for any numerical approximations. In
many practical applications, it is common for the dynamic and measurement
models to be nonlinear, thereby making the Kalman filter inappropriate.
Therefore, a modified version of the Kalman filter, known as the Extended
Kalman Filter (EKF), is utilized to approximate the nonlinear measurement and
dynamic models through linearization. The concept of EKF is closely akin to
Kalman filtering, utilizing a Taylor series expansion around the nominal
solution for linearization.

An alternative nonlinear estimator is the particle filter, a recursive Bayesian
state estimator that employs discrete particles to approximate the posterior
distribution of the estimated state. In Bayesian inference, the primary inference
challenge frequently involves computing an expectation over the posterior
distribution as follows.

E [g(x) | y1:T ] =
∫

g(x)p(x | y1:T )dx, (2.24)

where g : Rn → Rm is an arbitrary function and p(x | y1:T ) is the posterior
probability density of state x given the measurements y1, . . . ,yT . the challenge
lies in the fact that evaluating such an integral in closed form is feasible only
in a limited number of special cases and generally, numerical methods must
be employed. Monte Carlo methods offer a numerical approach for computing
integrals of the form (2.24). Monte Carlo denotes a broad category of methods
where the computation of statistical quantities in closed form is replaced by
drawing samples from the distribution and estimating these quantities through
sample averages.

In the context of the particle filter utilizing the Monte Carlo approximation,
N independent random samples x(i) ∼ p(x | y1:T ) are generated, denoted as
i = 1, . . . ,N, and the expectation is estimated as
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E [g(x) | y1:T ]≈
1
N

N

∑
i=1

g
(

x(i)
)

. (2.25)

Each particle has a weight {(w(i)
k ,x(i)k ) : i = . 1, . . . ,N}, for representing the

filtering distribution p(xk | y1:k) such that at every time step k the approximation
of an arbitrary function g(·) can be calculated as the weighted sample average

E [g(xk) | y1:k]≈
N

∑
i=1

w(i)
k g

(
x(i)k

)
. (2.26)

The subsequent step involves resampling, where particles with negligible
weights are replaced by new particles in proximity to those with higher weights.
This process ensures that only the most likely particles persist into the next
iteration of the particle filter, enhancing the accuracy of estimation (Särkkä and
Svensson, 2013).

2.2 Edge Computing and Machine Learning
In recent years, there has been a significant increase in the number of IoT
devices. This growth can be attributed to rapid advancements in hardware,
software, and wireless communication technology. These developments enable
the collection of data, allowing for observation and measurement to transition
seamlessly from the physical realm to the digital domain. Traditional cloud
computing requires sending data from IoT devices to centralized servers for
processing. Subsequently, the results are transmitted back to the devices. This
process puts strain on the network, increases communication cost and network
bandwidth usage, causes delayed system response, and puts data privacy at risk
(Alli and Alam, 2020). To address these challenges, fog and edge computing
have emerged as a promising paradigm, bringing computation and data storage
close to where the data originates (Firouzi et al., 2022). Here, ML and data-
driven models stand out as prominent tools for analyzing the data generated by
edge devices (Lim et al., 2020).

In PdM applications, machines are outfitted with numerous sensors to
collect a substantial amount of data. This data is then processed and analyzed
by ML algorithms to predict potential failures in manufacturing equipment.
Edge and fog computing play a crucial role in processing this data through
distributed algorithms. They offer the advantage of lowering data transfer costs
and enhancing processing speed, particularly in PdM applications. These
distributed algorithms are classified based on where the data is processed: Edge,
Fog, and Cloud (De Donno et al., 2019). The hierarchical and collaborative
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edge-fog-cloud architecture, as illustrated in Figure 15, provides the advantage
of processing data at the edge device level. Nevertheless, edge learning
introduces various challenges, including latency and message loss that
complicate ML algorithms. There are also bandwidth limitations for intensive
computation processes, and concerns about privacy and security when sharing
datasets. Those challenges should be specifically considered for PdM
applications dealing with a large volume of sensor data. For instance, in the
setup shown in Figure 15, only the model parameters need to be transmitted to
the fog level, reducing the overall data transfer.

Figure 15. Hierarchical and collaborative edge-fog-cloud architecture

2.2.1 Machine Learning

PdM aims to predict or estimate the time when a machine or its components
might fail. This is done using either a physical model or a data-driven model,
employing ML techniques to replace faulty components before they fail. Data-
driven models utilize methods from statistics, ML, and artificial intelligence to
estimate RUL, assess the health of the component, or detect anomalies. This
section delves into ML and its goals, covering the mathematical formulations
of supervised learning. Examples include SVM and LSTM models, which are
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well-known in PdM applications. SVM is effective for anomaly detection, while
LSTM is utilized for predicting RUL.

ML is a field of computer science that focuses on learning patterns from data.
In supervised ML, models are trained to predict an unobserved quantity using a
dataset of observed data points. For instance, one could aim to predict the RUL
of a machine using a dataset that includes past sensor data and failure history.
In this context, the learning algorithm processes input (x,y), where x ∈ Rd is
the sample vector, and yi ∈ R is the corresponding label. Specially, the object
of a learning algorithm is to find a prediction function h : X → Y mapping
from X to Y . The learning algorithm seeks a suitable h by minimizing a loss
function f : X ×Y → Y , measuring the error between the predicted value
ŷ = h(x) and the true output y.

While the learning algorithm theoretically has the flexibility to choose any
prediction function, h(x) is constrained to a specific group of functions
parameterized by a real vector w to handle complexity. The optimal value for
the learning parameter w∗ is then determined by minimizing the loss function
f (h(x,w),y).

w∗ = argmin
w

f (h(x,w),y). (2.27)

For the training data set, consisting of a finite set of tuples (x,y) defined as
D = (xi,yi)

D
i=1, the optimization problem can be rewritten as

w∗ = argmin
w

1
D

D

∑
i=1

f (h(x,w),y). (2.28)

2.2.2 Model Selection

In this section, SVM and LSTM are explored as ML models in PdM applications.
SVMs, in particular, are acknowledged as powerful supervised ML models
with a solid mathematical foundation, capable of handling both linear and
nonlinear classification (Murphy, 2012). This method can be employed as alarm
notifications in PdM applications, detecting abnormal sensor data and notifying
factory management when maintenance is needed for an asset close to failure.

The basic concept of SVM is depicted in Figure 16. It displays the decision
boundary for classifying a two-class dataset with the maximum distance from the
nearest training instance of each class. SVM seeks a hyperplane that effectively
separates instances and has the widest margin from the edge of each class.
This hyperplane, known as the maximum-margin hyperplane, sits midway
between two parallel hyperplanes with the greatest possible separation between
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Figure 16. Decision boundaries in SVM

them. Any hyperplane in a d-dimensional space can be defined as wT x+b = 0,
where w ∈ Rd is the hyperplane normal vector, and b is the bias. The dashed
lines representing the two parallel hyperplanes passing along each class can be
expressed as wT x+b = 1 and wT x+b =−1. SVM aims to find the maximum-
margin hyperplane and prevent instances from falling into the margin. Therefore,
the following constraints can be defined for SVM{

wT xi +b≥+1, if yi =+1
wT xi +b≤−1, if yi =−1

(2.29)

To maximize the distance between these two hyperplanes, the distance,
parameterized with w, should be calculated. It’s evident that the instance x+

satisfies the equation wT x+ b = 1 and the instance x− satisfies the equation
wT x+b =−1. Therefore, it could be written as

wT x++b =+1, (2.30)

wT x−+b =−1, (2.31)

subtracting equation 2.30 from 2.31 can be expressed as

wT (x+− x−) = 2, (2.32)

where vector w and vector (x+− x−) are illustrated in Figure 16. Equation 2.32
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can be rewritten using the definition of vector multiplication as follows:

∥w∥ · ∥x+− x−∥cosα = 2, (2.33)

Now it’s clear that the distance between these two hyperplanes is represented by
∥x+− x−∥cosα , denoted as M in figure 16. Therefore it could be written that
∥w∥ ·M = 2 so the distance can be calculated as M = 2

∥w∥ , and its maximization
corresponds to the minimization of ∥w∥. To simplify the process of finding the
optimum point, the objective function can be defined in a quadratic form as
follows:

min
1
2
∥w∥2 (2.34)

subject to wT xi +b≥+1, if yi =+1

wT xi +b≤−1, if yi =−1.

This optimization problem can be expressed with a single constraint

min
1
2
∥w∥2 (2.35)

subject to yi(wT xi +b)≥+1

The solution to this problem, denoted by w and b, yields the maximum-margin
hyperplane. By employing the method of Lagrange multipliers, the
optimization problem can be transformed into the Lagrangian function,
allowing for optimization without the need to explicitly consider the
constraints.

min
1
2
∥w∥2−

D

∑
i=1

αi[yi(wT xi +b)−1], (2.36)

where αi ≥ 0 are Lagrangian multipliers. The SVM model can be trained by
solving this minimization problem. Another form of this problem, known as
the dual form, exists, but for brevity, this thesis does not delve into it. Refer to
(Murphy, 2012) for more information.

Another model is LSTM, a type of recurrent neural network. Neural networks
are non-linear models that estimate relationships between input and output. In a
fully connected neural network, the input layer is linked to hidden layers and
an output layer through weights (Du et al., 2016). Let’s look at a single neuron
with X ∈ R3, depicted in Figure 17. The neuron takes a vector input from the
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previous layer and computes a scalar output using the activation function a(z)

y = a(W T X +b), (2.37)

even though this is just a single neuron, in the broader context of a neural
network, distinct weights W and biases b apply to neurons in different layers
and at various positions within each layer.

Figure 17. Visualization of a single neuron with X ∈ R3

A neural network aims to find values for W and b that effectively describe
the observed data and, simultaneously, generalize well for unseen data. This is
achieved by minimizing a loss function f (W ,b). For a regression problem, a
commonly used mean squared error function is given by

f (W ,b) =
1
D

D

∑
i=1

(yi− ŷi)
2. (2.38)

In the case of a binary classification problem, a frequently used loss function is
the cross-entropy loss:

f (W ,b) =− 1
D

D

∑
i=1

[
yi log ŷi +(1− yi) log(1− ŷi)

]
. (2.39)

The LSTM is a type of recurrent neural network (RNN) with the capability
to receive feedback from multiple hidden layers, unlike traditional RNNs,
which only utilize one hidden layer. Unlike RNNs, LSTM has the ability to
manage memory blocks, enabling it to remember input patterns at the
beginning of a sequence (Hochreiter and Schmidhuber, 1997). This memory
retention is especially advantageous for predicting temporal data, as seen in
PdM applications.

The architecture of the LSTM neural network includes several memory
blocks, each comprising a memory cell and three types of gateways, illustrated
in Figure 18. In this structure, data from the previous layer xt and the prior
time step ht−1 serve as inputs. The flow of information is governed by three

41



Figure 18. The architecture of LSTM and its memory blocks

gates: forget, input, and output. Each gate utilizes a sigmoid activation function,
scaling values between 0 and 1, and performs elementwise multiplication with
the input data vector. Values close to 0 indicate disregarded parts of the data,
while values close to 1 signify active parts for making predictions. A crucial
component is the forget gate in conjunction with the internal state ct where the
current internal state is memorized and multiplied with the forget gate at the
next time step. This enables the LSTM to learn when to remember old time
information, when to forget, when to use new data, and how to generate output
by combining the old memory with new input.

The equations of the LSTM scheme are given as follows.

ft = σ(w f [ht−1,xt ]+b f )

it = σ(wi[ht−1,xt ]+bi)

ĉt = tanh(wc[ht−1,xt ]+bc)

ct = ft ⊗ ct−1 + it ⊗ ĉt

ot = σ(wo[ht−1,xt ]+bo)

ht = ot ⊗ tanh(ct),

(2.40)

where ft , it , and ot present the forget, input, and output gates, respectively,
w and b are the corresponding weight and bias parameters for these gates, c is
used for cell state, and h is the hidden state. Moreover, σ represents the sigmoid
activation function, and⊗ indicates the Hadamard product. The standard LSTM
is made by the number of sequential blocks. Each of them is the same as Figure
18 and sequentially connected. At the final block, a softmax function is used as
a final activation function, given as follows for the prediction.

ŷt =
1
D

D

∑
i=1

− log

 e

((
w(i)

v

)T
h(i)t +b(i)v

)

∑
s
j=1 e

((
w( j)

v

)T
h(i)t +b( j)

v

)

 . (2.41)
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2.2.3 Gradient Descent

Gradient descent (GD) is a widely used optimization algorithm for iteratively
minimizing loss functions in ML models. This section covers three standard
variants, full GD, stochastic gradient descent (SGD), and stochastic
variance-reduced gradient (SVRG). GD minimizes f (h(x,w),y) by updating
the parameters in the opposite direction of the gradient ∇w f (h(x,w),y), using
the entire dataset D = (xi,yi)

D
i=1 in each iteration (Ruder, 2016). The steps are

computed as

wn+1 = wn−
α

D

D

∑
i=1

∇w f (h(xi,wn),yi), (2.42)

where n is the iteration index, and α is the step size. However, GD becomes
computationally expensive when dealing with large neural networks and
extensive datasets. To alleviate this issue, SGD substantially reduces the
computational cost by processing only one data sample per step

wn+1 = wn−α∇w f (h(xi,wn),yi), (2.43)

where i is a randomly selected integer with a uniform distribution from 1 to
D. Another algorithm in the SGD category is SVRG which operates with two
nested loops (Xiao and Zhang, 2014). In the outer loop, the full gradient of the
entire function, ∇ f (wt

n), is calculated. However, this can be computationally
expensive and is avoided whenever possible. In the inner loop, the update step
is iteratively computed as follows.

wn+1 = wn−α
[
∇ f i(wn)−∇ f i(wt

n)+∇ f (wt
n)
]

, (2.44)

where ∇ f i(wn) represents the stochastic gradient computed based on a randomly
selected data label and ∇ f i(wt

n) denotes the stochastic gradient computed over
the entire dataset. This iteration is specific to a single device, and its fundamental
concept lies in utilizing stochastic gradients to estimate the gradient change from
point wt to w, rather than directly estimating the gradient itself. The pseudocode
for SVRG is provided in Algorithm 2.2.
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Algorithm 2.2: SVRG
Parameters: m= number of stochastic steps, α = stepsize.
for n = 0,1,2 . . . do

Compute and store ∇ f (wt) = 1
D ∑

D
i=1 ∇ f i(wt)

Set w = wt

for t = 1 to m do
Randomly select i ∈ {1,2, . . . ,D}
w = w−α

[
∇ f i(w)−∇ f i(wt)+∇ f (wt)

]
end
wt+1 = w

end

2.2.4 Distributed Learning

Let’s look at the collaborative edge-fog-cloud structure in Figure 15. At the
edge level, there are K edge devices connected to a parameter server (PS) at
the fog level. Each edge device carries its own dataset Dk = (xi,yi)

Dk
i=1, and

collectively, they constitute the global dataset D =
⋃

i∈K Di. Now, the goal is to
train a model that minimizes the empirical loss on this global dataset, which is
essentially what distributed ML aims to achieve.

w∗ = argmin
w

1
D

K

∑
k=1

Dk

∑
i=1

f (h(xi ∈Dk,w),yi ∈Dk). (2.45)

The straightforward way to tackle this minimization problem is by collecting
each dataset Dk at the PS to create the global dataset D and then training the
model with GD (Verbraeken et al., 2020). However, this approach comes with
issues like privacy concerns and high communication load. An alternative
method is Distributed Gradient Descent, where local training is performed at
the edge devices, and the gradients are communicated to the PS for aggregation.
The local gradient at each edge device k is computed using an initial model
received through broadcasting from the PS.

∇
(n)
k =

Dk

∑
i=1

∇ f (h(xi ∈Dk,wn),yi ∈Dk). (2.46)

The edge devices then send these gradients to the PS, where the model update
takes place

wn+1 = wn−α

K

∑
k=1

∇
(n)
k . (2.47)
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Another approach to solving distributed optimization problems is using FL
algorithms, which reduce the communication load compared to distributed GD.
FL has the capability to perform multiple training steps on edge devices before
communicating a model update to the PS (McMahan et al., 2017). FL involves
two steps: local training and global aggregation. In local training, an edge
device downloads the model from the PS through broadcasting and computes an
updated model using its local data. The PS then collects these updated models,
primarily by averaging. Specifically, after broadcasting the global model w(t),
the local devices train new local models w(t)

k (E) by running E iterations of GD
as follows.

w(t)
k (e+1) = w(t)

k (e)−α
1

Dk

Dk

∑
i=1

∇ f (h(xi,w
(t)
k (e)),yi). (2.48)

The new global model at the PS is computed by averaging all received local
models w(t)

k (E).

wt+1 =
1
K

K

∑
k=1

w(t)
k (E). (2.49)

There are various FL algorithms for distributed optimization, some of which
are evaluated in (Nilsson et al., 2018), including FedAvg, FedProx, and CO-
OP. FedAvg runs the training task on edge devices, sharing an overall model
with the central server as an average of all parameters. CO-OP introduces
an asynchronous approach, merging any received edge model with the global
model. Unlike FedAvg, merging is done using a weighting scheme based on
the models’ age difference. FedProx, similar to FedAvg but with small changes,
improves performance and accommodates heterogeneity better, acknowledging
the diverse limitations of edge devices (Konečnỳ et al., 2016).

It is crucial to highlight that FedAvg at the PS does not necessitate knowledge
of any specific local model. Only the model averaging needs to be calculated
and sent back to the edge devices. Instead of computing this average at the PS
hardware, it can be done in the wireless channel using over-the-air computation,
owing to the waveform superposition property in multi-access communication
channels. This method significantly reduces communication latency compared
to conventional methods.

2.3 Over-the-Air Distributed Machine Learning
In this section, we provide a detailed explanation of OACC. When multiple edge
devices transmit their models simultaneously over the same frequency band in
an analog manner, the PS can receive the aggregated model. Consider a network
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with K edge devices, each transmitting their model wk to the PS. The received
signal r at the PS is given by the expression

r =
K

∑
k=1

hkwk + z, (2.50)

where hk represents the channel state information, and z∼ C N (0,σ2
z I) is an

AWGN. To rebuild the average model at the PS, one solution is to have user
devices pre-equalize their channel. Instead of directly transmitting wk, they
send wk/hk.

r =
K

∑
k=1

hk(
wk

hk
)+ z =

K

∑
k=1

wk + z. (2.51)

This approach relies on accurate channel state estimation for each edge device.
One method involves calculating the constant multiplier ck = hk(0)/gk(0),
where hk(0) and gk(0) represent the uplink and downlink channel gains at time
0 for edge device k respectively. Assuming ck stays constant, the uplink
channel can be determined using the downlink channel gain measured through
the PS broadcast. However, this method is suitable only for stationary nodes. In
dynamic scenarios like cellular networks and vehicle communication,
alternative solutions are needed. This thesis does not delve into the details of
channel state estimation. For more information on this topic, refer to
(Goldenbaum and Stanczak, 2014).

2.3.1 Effective Noise and Power Control

Power control is a concern in OACC. When an edge device faces a deep fade, the
value of hk becomes very small. Consequently, a significant amount of power is
needed for pre-equalization at the edge device. In a practical application, there
is also a limit on the peak power available at the edge devices. The received
signal at the PS is represented by gain blocks in Figure 3, enabling the PS to
estimate the aggregated model through the expression

r =
K

∑
k=1

hk pkwk√
η

+
z
√

η
, (2.52)

here, η serves as a post-transmission scaling factor. To fulfill the aggregation
requirements of OACC distributed learning, edge devices follow the channel
inversion rule to determine the instantaneous transmit power

pk =
hH

k
|hk|
·
√

η

|hk|
, (2.53)
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where H represents the Hermitian transpose. With this definition, the received
signal can be expressed as

r =
K

∑
k=1

wk +
z
√

η
. (2.54)

The received Signal-to-Noise Ratio (SNR) of the PS aggregated signal can be
given by

SNR = E

∥∥∥∥∥ 1
K

D

∑
i=1

√
η ∑k∈K wi

k
zi

∥∥∥∥∥
2

=
ηE∥∑k∈K wk∥2

σ2
z K2 . (2.55)

It is evident that the received SNR is consistent across all users due to
devices with weaker channels compensating by transmitting at higher powers.
In various studies, devices with significantly weak channels are often excluded
from training due to their inability to pre-equalize their channels.

Figure 19. Analog transmission Over-The-Air aggregation

The conventional channel inversion technique proves suboptimal unless
all devices possess the capability to invert their channels. Extensive research
has been conducted to optimize parameters such as η and pk with the aim of
enhancing model convergence in fading channels within the context of OACC.
For a more comprehensive understanding, please consult reference (Cao et al.,
2020).
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3 Distributed Event Triggering Algorithm in
WNCS

This chapter provides a summary of the contributions made in Papers I, II, and
III (Bemani and Björsell, 2020, 2021b,a). It successfully achieves research
objectives I and II and addresses research questions 1, 2, 3, and 4 (RQ1, RQ2,
RQ3, and RQ4) introduced in Section 1.4.

3.1 Introduction
System of systems (SoS) integrates different systems to enhance capabilities.
Systems of systems engineering is a method increasingly used for solving
challenges in various fields like industry, transportation, energy, and global
communication networks (Ishizaka and Nishimura, 2021). For instance, in
transportation, vehicle platooning is a type of SoS. In industry, especially in
PdM applications, series machines that rely on each other’s output are another
example of SoS. The idea is to merge WNCS, CPS, and SoS for real-time
control of such systems over wireless networks. To explore this area, the first
step is to create an efficient testbed that enables testing, implementation, and
troubleshooting of various control algorithms for a wireless CPSoS. A platoon
of vehicles serves as the testbed, representing a wireless CPSoS. The vehicles
within the testbed possess the capability of V2I and V2V communication.

In order to reduce communication load among these vehicles, an event
triggering algorithm is explored. However, the control performance becomes
uncertain in an industrial environment with a high probability of packet dropping.
Therefore, as the next step, a distributed event triggering algorithm in the state
feedback controller for multi-agent systems is proposed. This involves applying
distributed event-based state estimation methods to design a new event triggering
algorithm named PET for multi-agent systems while maintaining satisfactory
control performance, even in conditions with a high probability of packet drops.
The subsequent sections provide a detailed explanation of the testbed, PET
algorithm, and its evaluation under bursty packet drops.

3.2 Wireless CPSoS testbed

3.2.1 Testbed Description

To illustrate a category of SoS, contemplate the control of a platoon of vehicles,
depicted in the Figure 20. The control objective is to synchronize the trajectories
of the followers with the leader, ensuring a constant spacing while avoiding
collisions.
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Figure 20. Platooning vehicles in leader-follower configuration with distance di

PiCar-S vehicles from SunFounder Company are employed as miniature
vehicles for the physical hardware prototype in this testbed. The central
component of the PiCar-S is the Raspberry Pi, complemented by features such
as the ultrasonic obstacle avoidance module, the line follower module, and the
inertial measurement unit for assessing vehicle acceleration. As miniature
vehicles proposed for integration into this testbed, they are designed to
communicate with the overarching system controller through V2I
communication. The Raspberry Pi is assigned four primary functions,
regulating DC gear motors for speed control, overseeing servo motor drive for
steering angle control, processing sensor data (speed, IMU, ultrasonic, and IR
signals), and facilitating Bluetooth and Wi-Fi communication.

The architecture of the testbed is delineated in Figure 21, elucidating its
sub-systems and interfaces. Constituting both cyberspace and physical space,
the cyberspace component encompasses a Kalman Filter that facilitates state
estimation [vi,si] through sensor data. For line tracking, each Raspberry Pi
features a decentralized control loop, determining the steering angle set point
for individual vehicles. Simultaneously, a centralized upstream control loop in
cyberspace leverages an MPC controller to calculate vehicle velocities based on
distance, ensuring controlled spacing between the leader and follower cars
within a train-vehicle cooperative control algorithm. For clarity, Figure 22
illustrates the control loop of the testbed. Real-time position feedback is
facilitated by an Indoor Positioning System (IPS) utilizing Bluetooth beacons
and IMU data, the details of which will be explained later.

In each vehicle, real-time sensor data, including position, ultrasonic
distance, infrared, and speed, is wirelessly transmitted to a centralized
controller through Raspberry Pi. MATLAB processes the received data and
executes control algorithms within the Simulink environment. The
implementation involves Kalman Filter and Model MPC in
MATLAB/Simulink. Given that MPC necessitates a system model, the state
space representation for a two-car following system is as follows.
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Figure 21. Testbed System Architecture illustrating sub-systems and communications

Figure 22. Control loop of the testbed

 v̇1(t)
v̇2(t)

ṡ1(t)− ṡ2(t)

=

 0 0 0
0 0 0
1 −1 0


 v1(t)

v2(t)
s1(t)− s2(t)

+
 1 0

0 1
0 0

[
a1(t)
a2(t)

]
,

(3.1)
Here, si represents the absolute position, vi is the velocity, and ai is the

acceleration of vehicle i. It is clear that the control algorithm on the centralized
controller must effectively manage communication imperfections. The approach
employed aligns with the theory on WNCS discussed in Section 2.1.1.
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3.2.2 Cooperative Driving Scenario

The proposed testbed serves as an open system of systems platform for the
evaluation of cooperative driving algorithms, spanning from physical entities to
cyber components. One such cooperative experimental case implemented on
the testbed is the leader-follower scenario. The centralized controller handles
four conditions related to the distance between two cars within the platoon
configuration

1. If the sensor-measured distance exceeds one meter, the miniature vehicle
identifies itself as the leader and begins moving at 0.9 of its full speed.

2. If the distance is less than one meter but greater than 10cm, the LQR
controller is activated to maintain a 10cm distance from the lead miniature
car.

3. If the distance falls between 10cm and 6cm, the speed follows a linear
function of the distance.

4. If the distance becomes less than 6cm, the miniature vehicle comes to a
stop.

Figure 23 exhibits a photograph of the testbed, featuring the trajectories of the
vehicles and providing a representation of their real-time positions.

Figure 23. Photograph of the testbed
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3.2.3 Indoor Positioning System

In this testbed, we introduce a new IPS utilizing multiple sensing techniques,
including IMU sensors and iBeacons built on Bluetooth Low Energy. Five
iBeacons are strategically placed as landmarks with precise positions covering
the testbed surface. Each vehicle receives the signal strength (RSS) value
from the broadcasted iBeacons, and this value is used to calculate the distance
between the vehicle and each iBeacon. Position estimation is accomplished
using a particle filter. Additionally, IMU data, which measures acceleration and
heading direction, is employed for positioning. While IMU accuracy diminishes
over time, sensor fusion combines both methods to enhance position estimation
accuracy. The block diagram of the proposed IPS is presented in Figure 24.

Figure 24. Position tracking system

The entire algorithm, which incorporates particle filtering, map matching, IMU
positioning, and distance calculation to iBeacons, has been implemented on
Raspberry Pi. The accelerometer samples acceleration data and forwards it to the
step detection component. The step detection algorithm triggers the prediction
model upon detecting a step. Simultaneously, the RSS to distance component
processes RSS values from iBeacons ranging and converts them into distances.
The particle filter utilizes the step detection as a trigger for the prediction model
and employs the RSS to distance component to update particles in the model.
Additionally, the Map Matching component restricts particle movement in the
prediction model. The position is determined by averaging these particles, and
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this result is fused with the IMU method to improve accuracy. For more details,
please refer to Paper I.

3.3 Distributed Event Triggering Algorithm
In the designed testbed, the feasibility of feedback control for a fast dynamic
process like vehicle platooning over a wireless network is demonstrated.
However, communication ran at the control sampling rate to support the control
process. To enable resource saving, event-triggered methods for such
multi-agent systems will now be presented, where communication occurs only
when needed. Vehicles in the testbed had V2I communication, but in this part,
it is assumed each vehicle in the platoon has communication with neighbors
through V2V communication. Here, we examine the scenario where each
vehicle is capable of measuring only its own position and velocity. Therefore,
distance information is acquired only through communication. The
communication between each vehicle and its neighbors is illustrated in Figure
25.

Figure 25. Platooning vehicles with V2V communications

By this assumption, the state space representation of the ith-follower in
vehicle platooning, subjected to its interaction with the front vehicle can be
obtained as[

v̇i

ṡi− ṡi−1

]
=

[
0 0
1 0

][
vi

si− si−1

]
+

[
1
0

]
ai+

[
0 0
−1 0

][
vi−1

si−1− si−2

]
.

(3.2)
Vehicle platooning with V2V communication is an example of a multiple

CPSs connected over a communication network, as illustrated in Figure 26.
These interconnected systems are designed for cooperative control. In this setup,
the dynamics of agent i’s are interconnected with all or a subset of other agents

xi
k = Aixi

k−1 +Biui
k−1 +wi

k + ∑
h∈NN ,h̸=[i]

Nhx̌h
k−1 , (3.3)

where Nh is the interaction matrix between the agents in the multi-agent system,
xi

k ∈ Rnx denotes the state, x̌h
k−1 ∈ Rnx denotes the remote state prediction of

other agents in agent i, ui
k ∈ Rnu denotes the input, wi

k ∈ Rnx denotes process
noise, and Ai,Bi denote the dynamic system parameters for agent i. A discrete-
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time linear process with Gaussian noise is considered for each agent and the
interaction between them.

Figure 26. Representation of multiple CPSs interconnected through a communication network

The network bandwidth is shared by multiple agents in such system, each
agent should utilize the communication resource only when it is essential.
Event triggering algorithms can notably minimize network usage, but they may
compromise control performance in industrial environments prone to packet
drops. This section introduces a new event-triggering algorithm named PET
that incorporates DEBSE, providing control convergence in environments with
a high probability of packet drops.

3.3.1 Architecture Design: DEBSE and PET

This section extends a previously developed framework for DEBSE, as outlined
in earlier works (Trimpe and Baumann, 2019; Muehlebach and Trimpe, 2017;
Trimpe, 2017). The application of this framework is demonstrated in Figure
26. The fundamental concept behind DETSE is to use model-based predictions
from other systems, eliminating the necessity for constant data transmission
between agents. Updates are transmitted only when these predictions deviate
significantly, such as in the presence of disturbances or packet drops. Figure 27
depicts the primary architecture of DEBSE and PET, along with its components
for agent i in the overall system.

The event triggering decision relies on two parallel algorithms. The first
algorithm involves comparing the state prediction of agent i with its own state
estimation. The second algorithm compares the state prediction with the state
estimation of other agents that communicate with agent i (state prediction
j and state estimation j). The first event triggering algorithm assesses the
accuracy of prediction without knowledge of whether a packet drop has occurred.
Conversely, the second event triggering algorithm evaluates the difference
between the estimation and prediction of other agents interacting with agent i
in their processes. This allows checking if the discrepancy between estimation
and prediction has increased, indicating a packet drop in the previous broadcast
of agent i. Now, an event trigger is needed to improve the prediction of agent i
in other agents. State estimators and predictors, such as those of Kalman filter
explained in Section 2.1.3, are employed to forecast the states of all or a subset
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Figure 27. PET based on DEBSE for each agent i . The control decision of Agent i is determined by
the local state estimation and prediction of either all or subset of other systems. Each agent sends
an update (Event Trigger) to all other agents when the prediction of its own state (State prediction i)
deviates significantly from the truth (Local state estimation i) or when the predictions of other agents
(State prediction j) deviate significantly from their estimations (State estimation j) in agent i .

of agents, relying on the dynamics models of the agents.

• Local State Estimation (Agent i): Agent i estimates its states using a
KF state estimator, incorporating its dynamics model, measured sensor
values, and state predictions from interacting agents.

• Local State Prediction (Agent i): Agent i predicts its states with a KF state
predictor, considering potential packet drops. It relies on its dynamics
model, the last buffered state values from the previous ET mechanism,
and state predictions from interacting agents.

• State Estimation (Agent j/i): Using a KF state estimator, agent j’s states
are estimated with consideration for potential packet drops. It relies on its
dynamics model and the state values received by agent i in the previous
ET broadcast of agent j. In a distributed multi-agent system, agent j’s
dynamic model is influenced by the accessible state values of agent i in
its estimation.

• State Prediction (Agent j/i): It is similar to the state estimator of agent
j, but excluding state values of agent i due to unclear access caused by
potential packet loss, is only based on the dynamic model of agent j.

For information about the estimators and predictors in the proposed PET
algorithm, as well as the mathematics behind them, please refer to Paper II.
Additionally, it is important to highlight that the proposed PET algorithm
involves a modest increase in communication instances between agents. It is
presumed that when an event is triggered in one agent, its states are disseminated
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not only to the agents with which it directly interacts but also to those receiving
interactions from it. This minimizes additional communications, as sending
states functions like group broadcasting. The extra communication load can be
estimated based on the multi-agent system’s topology and interactions between
agents.

3.3.2 Formulate Event Triggering

In this part, PET formulation for each agent is established by defining two
estimation costs. The name of predictive state estimation is introduced, where
local state estimation is shared among agents through wireless communication.
Figure 28 illustrates the configuration of PET for one agent, simplified to its
essential components for detailed analysis. In this setup, Agent i, referred to as
the sensor agent, transmits its local state estimation wirelessly with a probability
of packet drop when a positive triggering decision is made (γ i

k = 1). Agent
j, known as the remote agent, represents any agent in the multi-agent system
and receives these transmissions with a probability of λi/ j. Agent j requires
information from Agent i to address the local control problem. Additionally,
Agent j broadcasts its local state estimates when an event occurs, and Agent i
receives the data with a probability denoted by λ j/i. These received data help
assess the accuracy of Agent j’s state estimation through Agent i in the second
event-triggering algorithm. The packet drop model between Agent j and i is
characterized by a random Bernoulli variable ν

j/i
k .

Figure 28. Event triggering problem. The sensor agent i broadcasts its local state estimate x̂ i
k in

case of a positive triggering decision (γ i
k = 1) and is received by agent j with the probability of λi/j .

The two estimation costs in PET are utilized in an optimization problem for
the control and communication decision.

The estimation cost E i
1 quantifies the difference between the state estimation

and prediction of agent i, expressed as the quadratic norm

E i
1|k ≜ ∥x̂

i
k− x̌i

k∥2. (3.4)
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Similarly, the estimation cost E j
2 measures the disparity between the state

estimation and prediction of agent j in i, given by

E j
2|k ≜ ∥x̂

j/i
k − x̌ j/i

k ∥
2. (3.5)

The estimation costs, E1 and E2, are associated with the first and second event
triggering algorithms, respectively, both of which generate the PET algorithm.
E i

1|k is the estimation cost for agent i, and E i
2|k ≜ ∑

j∈NN\[i]
E j

2|k is the total remote

estimation cost of other agents through agent i. The detailed expression of the
solution to the optimization problem and the mathematical design of these two
parallel events are presented in Paper II.

3.3.3 Results of Evaluation and Discussion

To assess the effectiveness of the proposed PET algorithm, we apply it to a
vehicle platoon control scenario, treating it as a synchronization challenge
in a wireless networked dynamical system. In this setup, the initial vehicle
serves as the platoon leader, and a group of follower vehicles (two in total)
communicate through a network. The control objective is to maintain a desired
distance between vehicles, ensuring that the dynamics of the followers converge
toward those of the leader. An LQR is designed as a decentralized controller for
each vehicle. The architecture of the vehicle platoon with the proposed event
triggering algorithm is shown in Figure 29. When an event is triggered in one
vehicle, the data is sent to the rear vehicle that interacts with it and the front
vehicle that gets interaction from it.

Figure 29. Schematic of vehicle platooning with the proposed PET algorithm

The vehicle platooning, incorporating the PET algorithm, is simulated in
the TrueTime simulator, a Matlab/Simulink-based tool, with three vehicles.
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Figure 30. Vehicle platooning with the proposed PET algorithm. From top to bottom: states of
vehicles in the platoon (speeds in km/h, relative distance in meters), and network usage between
vehicles 1 → 2 and 2 → 3.

Each vehicle’s dynamic process is modeled in Simulink, followed by internal
communication facilitated by TrueTime’s kernel. TrueTime utilizes a modified
WLAN (802.11b) protocol without the exchange of acknowledgments during
transmission. This part aims to showcase the primary advantage of the PET
algorithm in addressing packet drop effects, in contrast to the standard event
triggering algorithm, within a multi-agent system.

In this simulation, the desired inter-vehicle spacing is set to 10 meter as a
reference. the platoon simulates for 20 seconds. The first vehicle becomes the
leader, reaching a constant speed of 40 km/h. An external disturbance, such as
reaching a hill, affecting the leader’s speed, starting at t = 8, and the leader’s
controller compensates this disturbance, impacting the followers’ dynamics.
A challenging scenario with a random packet drop rate of 58% is considered,
under which conventional ET algorithm fail to ensure system convergence,
leading to collisions between vehicles. However, the results obtained with PET
(Figure 30) demonstrate that, even in the presence of a 58% packet drop rate,
the proposed event triggering algorithm successfully converges the followers to
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the leader’s motion and maintains the desired inter-vehicle distance.
The PET algorithm is also assessed in a scenario of correlated burst packet

drops, simulating the platoon entering a tunnel with a jammer causing a wireless
cyber attack. In this situation, the communication channel between vehicles
is impacted by a high probability of burst packet drops (68.5%), occurring
with a delay from the front vehicle to the tail. Despite correlated burst packet
drops in the communication channel, the proposed PET algorithm ensures that
each following vehicles follow the leader’s speed while maintaining the desired
inter-vehicular distance. This underscores the effectiveness of PET in achieving
consensus within the platoon, even in the challenging environment of high
probability correlated burst packet drops.

The conclusion drawn is that the proposed PET algorithm slightly enhances
network resource utilization compared to ET, yet it preserves effective control
performance in multi-agent consensus problems, even in challenging packet
drop conditions.
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4 Collaborative Predictive Maintenance with
Federated Learning

This chapter provides a summery of the contribution made in Paper IV (Bemani
and Björsell, 2022). It successfully achieves research objective III and IV and
addresses research questions 5 and 6 (RQ5 and RQ6), introduced in Section 1.4.

4.1 Introduction
Industry 4.0 has revolutionized the way we build industrial assets, transforming
them into compact, precise, and interconnected entities. This transformation
has also turned modern industrial assets into significant sources of data,
providing valuable insights for process optimization specially PdM applications.
However, the sheer volume of data collected from machines, often considered
as edge devices, presents challenges in terms of cost, latency, and privacy when
transmitting to the cloud for processing. To overcome these challenges, there
has been a growing emphasis on leveraging edge computing in PdM
applications, aiming to reduce data transmission costs and enhance processing
speed. FL emerges as a powerful solution, allowing the creation of models from
distributed data across edge, fog, and cloud layers without compromising
privacy as discussed in Section 2.2.4. Despite its potential, FL encounters
challenges in asset management within the industry, particularly in PM
applications. Therefore, this study delves into the realm of distributed ML for
PdM applications and introduces two federated algorithms, namely FedSVM
for distributed anomaly detection and FedLSTM for distributed RUL
estimation. These algorithms empower factories at the fog level to optimize the
accuracy of their PdM models without sacrificing privacy. Additionally, we
propose an aggregation strategy for collaborative PdM at the cloud, fog, and
edge levels. The effectiveness of FedSVM and FedLSTM, along with the
collaborative PdM aggregation strategy, are evaluated using the CMAPSS
dataset distributed on various edge devices. The dataset is utilized for
predicting engines’ RUL and performing anomaly detection. Each method is
comprehensively explained in the subsequent sections.

4.2 Aggregation Strategy for Collaborative PdM
In collaborative PdM scenarios at the edge level, where different devices and
failures are involved, some clients may lack enough computing power for
training the overall model. This can lead to a decline in model accuracy and
aggregation, causing delays in the training process. Such interruptions in the
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collaborative training process are costly for PdM. Hence, a hierarchical model
is required for effective collaboration in PdM scenarios spanning edge, fog, and
cloud levels.

Figure 31. Collaborative PdM scenario at the edge, fog, and cloud level.

The collaborative PdM approach at the edge, fog, and cloud levels is depicted
in Figure 31. Edge devices within each factory contribute to creating a local
model at the fog level. Subsequently, a global model is constructed from the
parameters of these local models in the fogs. This facilitates the utilization of
the globally trained model for PdM projects by different companies, even if
they are geographically separated. The global model benefits from a broader
range of experiences in various failure categories.

Algorithm 4.1 provides a comprehensive description of federation on the
edge, fog, and cloud layers. Consider a wireless multi-agent network supported
by FL between the fog server and N distributed edge devices at the factory level.
The fog server is directly connected to the cloud server through a wireless link
with the nearest base station. Each fog server in a factory is equipped with
computational resources to offer communication and computation services to
the edge devices, which could be similar assets within a factory site. These edge
devices communicate with the fog server for FL tasks via a wireless link. The
primary analysis in the cloud and fog layers is based on the FedAvg Algorithm.
The training process unfolds periodically, comprising an unspecified number
of communication rounds. In this context, TG denotes the count of global
communication rounds between cloud and fog servers, while T j

l signifies the
number of local communication rounds between edge devices and the fog server
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across various factories. Each local communication round consists of a varying
number of iterations on edge devices E, referred to as local epochs.

Algorithm 4.1: Federation on the edge, fog, and coud
Cloud server executes:
initialise w0

for each round t = 0,1, . . . ,TG do
for each factory site j ∈M do

wt+1
f og, j← Fog server executes( j,wt

cloud)

end
wt+1

cloud ← ∑
M
j=1 A jwt+1

f og, j

end

Fog server executes( j,w f og):
h j← stepsize
for each round t = 0,1, . . . ,T j

l do
for each edge device i ∈ N do

wt+1
i, j ← Edge device uppdate(i,wt

f og)

end

wt+1
f og, j← ∑

N j
i=1

D j
i

D j wt+1
i, j ,

end
wt+1

f og, j will be returned to cloud server by request

Edge device uppdate( j, i,w):
{Di}N

i=1 = data partition
for each local epoch k from 1 to E do

wt+1
i, j = wt

i, j−η∇ f j
i

(
wt

i, j

)
end
return wi, j to jth fog server

4.3 Distributed Anomaly Detection: FedSVM

4.3.1 Algorithm

FedSVM leverages the SVM algorithm as a supervised machine learning tool
for analyzing PdM data in a classification task on the edge, fog, and cloud
levels. The FedSVM approach involves initially identifying one or multiple
hyperplanes at the fog level to separate and classify failure data from healthy
data across all assets within a factory site at the edge level. These hyperplanes
are then aggregated at the cloud level using fedAvg. In SVM, the goal is to find

64



a hyperplane with the largest margin that separates the two groups. However, in
FedSVM, the objective is to find the largest margin on a federal hyperplane.

SVM, being a supervised learning method with high time and memory
complexity, faces challenges in meeting the fast response requirements of PdM
applications. To address this, a lightly modified cost function is introduced for
SVM, specifically employing the hinge loss function (equation 4.1). After
preparation the dataset from each edge device at a factory site, the faulty
and healthy data segments are separated by setting a threshold. For instance,
measurement data from a device is assigned a label of +1 if its RUL exceeds the
threshold, and −1 otherwise. This approach allows the definition of a consistent
FedSVM objective function at each level. The hinge loss function used in the
modified cost function is defined as

f (x,w,y) =
1
D

N

∑
i=1

fi(w)+λ ||w||22

fi(xi,w,yi) = max(0,1− yiwT xi).

(4.1)

Here, xi represents features extracted from the dataset, and yi is the label
associated with the features for a particular edge device at a factory site. Due to
the imbalance and non-independent and identically distributed (non-iid) nature
of data across edge devices in PdM applications, a regularization term λ has
been introduced to the local loss function. For parameter updates, FedSVM is
implemented based on federation across edge, fog, and cloud layers (Algorithm
4.1). FedSVM boasts notable advantages, particularly its remarkable speed and
swift convergence time. These attributes make it highly suitable and beneficial
for online applications.

4.3.2 Dataset Preparation and Distribution

The performance of FedSVM was evaluated using the distributed CMAPSS
dataset, which simulates two factory sites, each equipped with 5 edge devices, a
fog server, and a global cloud server. CMAPSS, a well-known and benchmarked
dataset introduced by NASA (Saxena et al., 2008), records the run-to-failure
degradation process of a turbofan engine. The dataset comprises time series
data from 21 sensors installed on the turbofan engine, capturing parameters like
temperature, pressure, and speed. The dataset is organized into four multivariate
time series subsets, namely FD001, FD002, FD003, and FD004, each featuring
different conditions and fault modes. These subsets are further divided into
training and testing trajectories (Table 1). FD001 is identified as the simplest
subset, involving a single condition and fault mode, with 100 training and testing
trajectories. In contrast, FD004 presents more intricate scenarios, including six
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different conditions and two fault modes.
Table 1. Detailed Information of CMAPSS Subsets.

Subsets Conditions Fault Modes
Training

trajectories
Testing

trajectories
FD001 1 1 100 100
FD002 6 1 260 259
FD003 1 2 100 100
FD004 6 2 248 249

The complete CMAPSS dataset is utilized in our experiments to replicate
factory site conditions and distribute time-series data among edge devices.
Specifically, time series FD001 is partitioned into ten shuffled subsets,
distributed across ten edge devices situated in two distinct factory sites,
facilitating participation in a collaborative PdM scenario. Each edge device
independently trains its FedSVM model using its local time-series data.

The graph connectivity of the edge devices across the two factory sites is
illustrated in Figure 32. The FedSVM, based on Algorithm 4.1, operates across
different layers of the undirected graph, including edge, fog, and cloud layers.
In Figure 32a, a synchronous federated learning method is depicted, where fog
and cloud layers wait to collect all parameters from the edge devices. In Figure
32b, an asynchronous configuration is presented, wherein Edge devices 5 and 6
function similarly to fog servers. Each edge device shares its parameters with
neighboring edges, acting as fog nodes. The key distinction in the asynchronous
configuration lies in the fact that fog agents perform simple federated averaging
upon receiving a new parameter, promptly returning the most recent update to
the specific edge device from which the last parameter was received.

(a) Synchronous FL. (b) Asynchronous FL

Figure 32. Undirected graph of communication between edge devices and fog servers.

It is assumed that fog servers in different factories can communicate with
each other. With this approach, if certain edge devices face resource constraints
and cannot participate in fog aggregation, the fog model can continue operating
effectively. Parameters are transmitted from fog servers to the cloud upon
request from the cloud layer.
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4.3.3 Results of Evaluation and Discussion

To assess the performance of the proposed FedSVM, we conducted a
benchmark comparison against centralized methods. The FedSVM has linear
time complexity positions it as a suitable choice for online PdM applications.
Additionally, this characteristic allows its effective use with large datasets and
even for a substantial number of edge devices. The final accuracy and overall
training runtime serve as quantitative metrics for evaluating the global FedSVM
model’s performance.

Upon completion of training using the collaborative PdM algorithm, the final
model in the cloud is deployed to predict the labeled RUL on the testing subset
associated with different time series data. As detailed in the Algorithm section
4.3.1, the RUL prediction is constrained to a binary label, where values less
than a specified threshold are labeled as 1, and those exceeding the threshold
are labeled as −1. This approach generates two distinct classes, enabling the
execution of the FedSVM classifier at the edge devices. The chosen threshold,
set at 50 cycles, signifies that maintenance is required for an edge machine when
its RUL falls below 50 cycles.

Figure 33. Labeled RUL predictions for the testing engine using the synchronous FedSVM model.

The labeled RUL predictions based on synchronous FedSVM for testing
engine unit FD004 is illustrated in Figure 33. The cyan band signifies safe engine
operation, while the chrome yellow band indicates the need for maintenance.
The green line represents the true RUL, the blue line represents the labeled RUL,
and the red line illustrates the predicted labeled RUL. Notably, synchronous
FedSVM demonstrates effective detection of maintenance requirements, even
for the more complex FD004 engine.

The performance of FedSVM with both synchronous and asynchronous
configurations is summarized in Tables 2 and 3, respectively. Remarkably, the
proposed FedSVM exhibits an average accuracy of over 85% in both
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Table 2. Performance analysis of the synchronous FedSVM.

Optimizer Evaluation
Metrics

Dataset
FD001 FD002 FD003 FD004

SGD Runtime (s) 18.9 43 20.5 45.5
Final acc (%) 92.5 78.9 92.2 71.7

Table 3. Performance analysis of the asynchronous FedSVM.

Optimizer Evaluation
Metrics

Dataset
FD001 FD002 FD003 FD004

SGD Runtime (s) 19.8 42.5 21.4 43
Final acc (%) 90 77.5 92.1 83.1

configurations, showcasing its robust performance even when data is
distributed.

4.4 Distributed RUL Estimation: FedLSTM

4.4.1 Algorithm

The proposed distributed RUL estimation method, FedLSTM, incorporates
modified LSTM models at the edge, fog, and cloud levels. To enable federated
learning, model consistency across all levels is essential. Unlike SVM, LSTM
involves a substantial number of weight and bias parameters, resulting in
increased bandwidth usage during model distribution across levels and
introducing computational delays. Therefore, the conventional LSTM model is
not well-suited for distributed learning with fully connected neurons in each
memory block.

Figure 34. Proposed topology of FedLSTM.

FedLSTM introduces a random topology for synapses at each level, deviating
from the traditional fully connected approach. This topology is initially designed
in the cloud, and the configuration is then applied to all fog servers and edge
devices. Figure 34 illustrates the random FedLSTM topology, where dashed
lines indicate removed synapses and solid lines represent retained synapses.
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This configured model is subsequently distributed across different layers.
Reducing the number of synapse connections by half results in a modest

30% loss in model accuracy. This reduction operates akin to dropout and
regularization techniques, contributing to the model’s robustness.
Simultaneously, this adjustment leads to decreased bandwidth usage and
reduced training time, highlighting a favorable trade-off between accuracy and
efficiency.

4.4.2 Dataset Preparation and Distribution

The data preparation process outlined in 4.3.2 is consistently applied to
FedLSTM. To emphasize the FedLSTM model’s attention on the crucial
segment of the data where engine failures are more probable, a clipping
operation is implemented on the responses at the 100-cycle threshold. During
the training process, inputs with RUL exceeding 100 are adjusted to a fixed
value of 100. This ensures a concentrated focus on the critical phase of the data
related to potential engine failures. This operation is executed across all edge
devices.

Figure 35. RUL predictions for the testing engine using the synchronous FedLSTM model.

4.4.3 Results of Evaluation and Discussion

FedLSTM was benchmarked on distributed CMAPSS against two representative
centralized RUL estimation, namely DCNN (Li et al., 2018) and CNN-XGB
(Zhang et al., 2019b). The performance of the global FedLSTM model is
assessed using standard root mean square error (RMSE) and scoring factor (SF)
as quantitative metrics. SF is an asymmetric function crucial in assessing PdM
prediction model, awards higher scores for RUL predictions below the actual
value. In PdM applications, prioritizing early predictions over late ones helps
mitigate potential adverse outcomes due to delayed predictions.

69



The RUL prediction result based on the synchronous FedLSTM for testing
engine unit FD004 is illustrated in Figure 35. It can be observed that with the
FedLSTM model, predictive accuracy is acceptable, especially when edge
devices are close to failure. The entire training process for both synchronous
and asynchronous FedLSTM has been completed, and the evaluation metrics
have been calculated. A comparison with benchmarking results from
centralized deep learning algorithms shows that the proposed FedLSTM
applications exhibit comparable efficiency to conventional centralized
approaches in terms of prediction accuracy. While centralized methods
demonstrate higher accuracy, the proposed federated approach is not
significantly distant in performance. For more details, please refer to Paper IV.
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5 Low-Latency Collaborative Predictive
Maintenance

This chapter provides a summery of the contribution made in Paper V (Bemani
and Björsell, 2023). It successfully achieves research objectives III and IV and
addresses research questions 6, 7, and 8 (RQ6, RQ7, RQ8) introduced in Section
1.5.

5.1 Introduction
In Chapter 4, we focus on the runtime for computation complexity in FedSVM
and FedLSTM and the evaluation of the proposed methods was done with this
metric. However, despite the rapid advancement of computing speeds,
communication latency has emerged as a bottleneck for fast edge learning,
especially in time sensitive applications such as PdM. To address this issue, an
innovative approach is suggested: analog aggregation over-the-air of model
updates transmitted concurrently over wireless channels. However, it is
vulnerable to performance degradation due to channel properties like noise and
fading. Introducing a method to mitigate the impact of channel noise in
FLOACC instead of increasing power of transmission, this approach employs a
novel tracking-based stochastic approximation scheme into a standard federated
stochastic variance reduced gradient (FSVRG), namely FSVRG-OACC. This
effectively averages out channel noise’s influence, ensuring robust FLOACC
performance without increasing transmission power gain.

5.2 FLOACC: Gradient Distribution
In this section, the focus is on FLOACC, which could be a part of the
hierarchical PdM scenario (Figure 31). Here, factory-level agents use analog
communication to broadcast updated models over the air, leveraging the
advantages of computation through analog communication. As detailed in 2.3,
there are two approaches to minimize a global distributed loss function based
on FedAVG. The first is model averaging, where each agent minimizes its local
loss, transmits model parameters to the PS, and receives an updated model in
the next iteration. The second is gradient averaging, centered on transmitting
gradients for aggregation, with agents updating their models based on received
gradients in subsequent iterations. In FLOACC, only the gradient averaging at
the PS is considered. This is because the aggregated gradient is less sensitive in
the optimization algorithms compared to the model averaging.

FLOACC provides an efficient multi-access scheme in a low-latency scenario,
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which is crucial for applications like PdM that require very fast and real-time
task decision making. As discussed in 2.3, the idea of over-the-air distributed
ML was inspired by the PS’s lack of interest in individual model weight vectors.
Instead, The server only requires the average of these weights, conveniently
provided by the wireless multiple-access channel as their sum.

Figure 36. FLOACC scenario at the factory level.

As illustrated in Figure 36, FLOACC facilitates the simultaneous analog
transmission of result vectors from all devices and assets at the factory level
to the fog PS. Let wk =

[
wk,1, · · · ,wk,q

]T represent the (q× 1) local model
parameter vector, and ∇Fk(w) =

[
∇Fk,1, · · · ,∇Fk,q

]T denote the local gradient
vector of the loss function from the k-th device. In FLOACC, it is assumed
that the local gradient of each model is transmitted over an analog medium,
with symbols denoted as

{
∇̃Fk,i

}
and normalized to have zero mean and unit

variance. By utilizing Orthogonal Frequency Division Multiplexing (OFDM),
each element of the gradient vector can be allocated to a distinct sub-carrier
OFDM channel. This approach significantly reduces the learning process latency
for FLOACC.

In each round n, all local devices at a factory simultaneously transmit their
local gradient based on the distributed loss function. Therefore, the PS obtains
the aggregated gradient instead of the aggregated model as specified in equation
2.52. Extensive research has been conducted to optimize transmit power for
achieving model convergence and mitigating the effects of existing noise on the
aggregated signal (Cao et al., 2020; Liu et al., 2020b). In this context, we
investigate the comparison of convergence performance among different
algorithms without optimizing transmission power control. In the upcoming
section, we delve into the FSVRG-OACC algorithm, which demonstrates
superior convergence properties.
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5.3 Adaptive FSVRG-OACC Algorithm

5.3.1 Algorithm

FSVR-OACC is derived from the SVRG algorithm, detailed in 2.2.3. SVRG
employs two nested loops, updating iteratively in the inner loop as

w[n+1] = w[n]−α
[
∇F i(w[n])−∇F i(wt [n])+∇F(wt [n])

]
. (5.1)

This algorithm is naturally suited for centralized implementations as it
requires computing the stochastic gradient over the complete dataset. FSVRG,
introduced in (Konečnỳ et al., 2016), is designed for distributed optimization.
However, it does not exhibit satisfactory convergence in FL for over-the-air
analog aggregation. A critical challenge lies in the significant variation in the
number of available data points among edge devices, differing from the average.
Unlike FSVR, our assumptions consider analog communication as the sole type
between local devices and the PS. Consequently, the PS lacks information
about the number of data points and data distribution types. In this scenario,
local data often clusters around a specific pattern, making it unrepresentative of
the overall distribution we aim to learn. Considering aggregation on the entire
gradient direction in each iteration could be a promising approach in the
concept of analog aggregation.

FSVRG-OACC involves two communication rounds, which increases
communication costs but provides advantages in the convergence algorithm.
Algorithm 5.1 introduces FSVRG-OACC, a modified version for over-the-air
analog aggregation. Practically,

[
∇F it (wk[n])−∇F it

k (wt [n])+∇Fk(wt [n])
]

is
split into two parts. In the first distributed loop, the last two gradients
∇F it

k (wt [n]) and ∇Fk(wt [n]) are calculated, aggregating their distance across all
edge devices. In the second loop, the aggregated value of[
∇F it

k (wt [n])−∇Fk(wt [n])
]

is accessed. In the first iteration (n = 1), the
stochastic gradient for each device is computed, subtracted from the aggregated
gradient obtained in the first loop, resulting in[
∇F it (wk[n])− aggregation(∇F it

k (wt [n])−∇Fk(wt [n]))
]
. This overall

gradient update is then aggregated over the air with other devices and then is
used to directly update the model parameters of each device. The details of the
FSVRG-OACC algorithm are explained in Paper V.

5.3.2 System Model and Dataset

The performance of the proposed algorithm is assessed using FedSVM for
anomaly detection in a PdM application. The evaluation involves over-the-air
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Algorithm 5.1: FSVRG With Over-the-Air Communication and
Computation (FSVRG-OACC)

Parameters: φ= number of data points ,φk= number of data points
store on device k, α = stepsize, data partition {Dk}K

k=1, Randomly
initialize wk on each device.

for n = 0,1, . . . do
for k = 1 to K do in parallel over device k do

1: Let {it}φk
t=1 be random permutation of Dk → Distribution1

2: Compute ∇F it
k (wt [n])

3: Compute ∇Fk(w[n]) = 1
φk

∑
φk
i=1 ∇F it

k (wt [n])
4: Over-the-Air Gradient Aggregation: Each device k uploads

gk =
[
∇F it

k (wt [n])−∇Fk(w[n])
]

Over-the-Air.

end
Aggregated signal in PS (Server Side)

ĝ = 1
K ∑

K
k=1

hk[n]pk[n]gk√
η

+ z[n]√
η
→ Aggregation1

Aggregated signal ĝ is received by all edge devices
for k = 1 to K do in parallel over device k do

1: Initialize: αk = α/φk → Distribution2
2: Compute ∇F it (wk[n])
3: Aggregated signal Ĝ is received by the edge device k

n = 0→ randomly initialize Ĝ
for t = 1, . . . ,φk do

wk[n+1] = wk[n]−αkĜ
end
4: Over-the-Air Gradient Aggregation: Each device k uploads

Gk =
[
∇F it (wk[n])− ĝ

]
Over-the-Air.

end
Aggregated signal in PS (Server Side)

Ĝ = 1
K ∑

K
k=1

h′k[n]p
′
k[n]Gk√
η ′

+ z′[n]√
η ′
→ Aggregation2

end

analog aggregation on the CMAPSS dataset. The goal is to explore how four
optimization algorithms GD, SGD, FSVRG, and FSVRG-OACC converge in
the context of over-the-air analog aggregation. The focus is on examining the
performance of these algorithms in terms of model accuracy and convergence
rate, crucial metrics in this field.

5.3.3 Results of Evaluation and Discussion

FSVRG-OACC optimizes the FedSVM problem on CMAPSS, comparing
results with standard FSRVG, SGD, and GD methods to highlight notable
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improvements in convergence rate and accuracy within the context of
over-the-air analog aggregation in a noisy environment. The channel inversion
policy estimates the transmitted signal in this implementation. However, it’s
important to note that the main focus of this study is not on the transmission
policy.

Figure 37. Convergence versus communication round for different algorithms in Over-the-Air analog
aggregation (σ2

z = 1, p = 1).

Figure 37 illustrates the descending regime of the distributed FedSVM loss
function with over-the-air analog aggregation. The lighter graphs depict the
signal, while the bolder graphs represent the windowed average of the signal.
In this experiment involving 10 devices (K = 10) at the factory site, and the
transmitting power is set to P = 300 mW.

In a distributed setting, there are two approaches: GT, where gradients are
transmitted and aggregated for model updating, and MT, where the model is
updated locally and then transmitted for aggregation. Both GD-MT and FSVRG
algorithms fail to converge under the given noise and power settings, so they
are excluded from accuracy analysis. However, GD-GT and SGD-GT converge
with significant fluctuations. In contrast, our proposed FSVRG-OACC method
shows excellent convergence performance under the same conditions. In the
accuracy plot, both SGD-DT and GD-GT algorithms experience a notable drop
in accuracy, while our proposed algorithm maintains an average accuracy of
91%, demonstrating higher stability compared to others.

Implementing the proposed approach in real-world industrial settings comes
with practical implications and challenges. A significant aspect of this approach
involves adjusting the local gradients in large edge devices using an analog
waveform and transmitting them through the same wireless channels. The
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primary challenge lies in achieving perfect waveform superposition, crucial for
the success of FSVRG-OACC algorithm. This task is complicated due to frame
timing offset and carrier frequency offset. Overcoming these issues necessitates
high-performance devices with substantial computational capabilities. Another
significant challenge arises when we only have access to partial information,
leading to some edge devices being unable to effectively participate in the
FLOACC aggregation process. This limitation results in a deviation in the
gradient descent regime, highlighting the importance of robust device selection
and strategies to manage situations where certain devices may have limited
participation capabilities.
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6 Conclusions and Outlook

6.1 Summary
Industry 4.0 is poised to revolutionize industrial manufacturing, aiming to
enhance efficiency and productivity. In this context, the maintenance process
within manufacturing is evolving into a machine-assisted digital version,
focused on monitoring and ensuring asset performance. The communication
between assets and their digital counterparts is pivotal for their success,
especially leveraging wireless technology. However, challenges arise in
achieving control stability through wireless network control systems.
Additionally, while data-driven models like machine learning are making
significant strides across various domains, but centralized solution is not
feasible due to the substantial communication latency it would introduce. As a
solution, edge computing emerges, enabling learning algorithms at the edge in
a distributed and collaborative manner. This approach addresses the limitations
of centralized solutions and holds promise for advancing the efficiency of
maintenance applications. This dissertation aims to address such research
questions, and five scientific papers have been published to provide insights
into these inquiries.

The exploration of this field begins with the establishment of an efficient
testbed enabling testing, implementation, and troubleshooting of various
control algorithms for a wireless network control system. Consequently, a
platoon of vehicles serves as the testbed, representing closed-loop control over
a wireless network (Paper I). This setup illustrates the difficulties in
establishing reliable closed-loop control systems via wireless communication.
Particularly in noisy environments, coordinating the smooth movement of a
platoon poses a challenging problem under these conditions.

In the context of ongoing connectivity, the constrained bandwidth in wireless
communication channels remains a significant challenge. To address this issue
and reduce communication load among wireless agents, an event-triggering
algorithm is explored. However, control performance becomes uncertain in an
industrial environment with a high probability of packet dropping. Therefore, as
the first innovative method in this thesis, a distributed event triggering algorithm
in the state feedback controller for multi-agent systems is proposed. This
involves applying distributed event-based state estimation methods to design a
parallel event triggering algorithm for multi-agent systems while maintaining
satisfactory control performance, even in conditions with a high probability
of packet drops (Paper II and III). The suggested event-triggering algorithm
slightly increases resource usage, but it ensures the stability of multi-agent
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systems, even in networks with a high chance of packet drops. While this
approach performs effectively, alternative methods like adaptive threshold tuning
can also operate well in networks with high packet drops, albeit with an increase
in network usage.

In the context of distributed ML for PdM applications and edge computing,
the thesis introduces two federated algorithms as the second and third
innovative methods. Specifically, FedSVM is presented for distributed anomaly
detection, and FedLSTM is proposed for distributed RUL estimation (Paper
IV). These algorithms provide factories at the fog level with the capability to
enhance the accuracy of their PdM models while preserving privacy. These two
federated algorithms show effectiveness in PdM applications. However, they
face challenges when dealing with non-iid data. Achieving convergence
becomes particularly difficult in cases where the data distribution is highly
non-iid. Additionally, both algorithms currently focus only on the same assets
at the edge level. For future developments, it is recommended to consider a
federated model capable of handling various types of assets and different data
types. Building upon distributed algorithms, an aggregation strategy is
proposed for collaborative PdM applications across the cloud, fog, and edge
levels. This facilitates the utilization of a globally trained model for PdM by
different companies.

Continuing, the focus shifts to leveraging wireless transmission channels for
both communication and computation. Over-the-air analog aggregation is
introduced as a method that combines computation and communication
simultaneously for model updates in a distributed learning system. However,
the learning performance is degraded due to channel noise. Therefore, we
propose FSVRG-OACC, a novel tracking-based stochastic approximation
scheme adapted as a federated stochastic variance-reduced gradient method for
over-the-air computation (Paper V). This algorithm effectively averages out
channel noise’s influence, ensuring robust learning performance without
increasing transmission power gain. Nevertheless, while this algorithm ensures
convergence, it comes at the cost of doubling the communication rounds. The
over-the-air aggregation strategy, though promising, remains a challenging
issue that necessitates further practical implementation within this domain.

6.2 Future Research
In the context of the suggested parallel event-triggering algorithm, we applied
model-based state estimation and prediction to compare and initiate events.
Event-triggered learning is a new idea designed to minimize communication
and adjust to changing dynamics in network control systems using learning
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algorithms. This learning could involve reinforcement learning to adapt to
various environments, including scenarios with a high probability of packet
drops. Future research could focus on developing the proposed event-triggering
algorithm, incorporating reinforcement learning for handling more complex
systems.

In the suggested collaborative PdM scenario, the feasibility of implementing
federated learning in PdM applications has been confirmed. With advancements
in device and sensor technology, there is an opportunity to integrate IoT sensors
into the products of assets, enabling the development of a comprehensive FL
algorithm for future research. This federated model takes input data from assets
and products and even includes considerations for management and business
models. It is important to explore a learning method capable of handling diverse
and non-iid data from assets, products, and administrative sources. Such a
distributed module could be applicable to various companies with different
assets.

In light of our recent proposal, the FSVRG-OACC optimization algorithm
aimed at mitigating noise in over-the-air aggregation solutions. Comprehensive
theoretical analyses have been conducted in this area. The state of over-the-air
analog aggregation has reached a level of maturity, prompting consideration
for real-world implementation. Leveraging high-speed devices with advanced
computational capabilities on both transmitters and receivers, the next phase of
future research involves the practical deployment of over-the-air aggregation.
This initiative could be intended to conduct experimental measurements to
assess the comparative effectiveness of learning over-the-air aggregation versus
offline learning.
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