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A B S T R A C T   

This study investigates the structural behaviour of double-skin columns, introducing novel double-skin double 
filled tubular (DSDFT) columns, which utilise double steel tubes and concrete to enhance the load-carrying 
capacity and ductility beyond conventional double-skin hollow tubular (DSHT) columns, employing a combi-
nation of finite element model (FEM) and machine learning (ML) techniques. A total of 48 columns 
(DSHT+DSDFT) were created to examine the impact of various parameters, such as double steel tube configu-
rations, thickness of fibre-reinforced polymer (FRP) layer, type of FRP material, and steel tube diameter, on the 
load-carrying capacity and ductility of the columns. The results were validated against the experimental findings 
to ensure their accuracy. Key findings highlight the advantages of the DSDFT configuration. Compared to the 
DSHT columns, the DSDFT columns exhibited remarkable 19.54 % to 101.21 % increases in the load-carrying 
capacity, demonstrating improved ductility and load-bearing capabilities. Thicker FRP layers enhanced the 
load-carrying capacity up to 15 %, however at the expense of the reduced axial strain. It was also observed that 
glass FRP wrapping displayed 25 % superior ultimate axial strain than aramid FRP wrapping. Four different ML 
models were assessed to predict the axial load-carrying capacity of the columns, with long short-term memory 
(LSTM) and bidirectional LSTM models emerging as superior choices indicating exceptional predictive capa-
bilities. This interdisciplinary approach offers valuable insights into designing and optimising confined column 
systems. It sheds light on both double-tube and single-tube configurations, propelling advancements in structural 
engineering practices for new constructions and retrofitting. Further, it lays out a blueprint for maximising the 
performance of the confined columns under the axial compression.    

Notations 
FEM Finite element model 
ML Machine learning 
FRP Fibre-reinforced polymer 
DSDFT Double-skin double filled tubular 
DSHT Double-skin hollow tubular 
CFFT Concrete-filled FRP tube 
GFRP Glass fibre-reinforced polymer 

AFRP Aramid fibre-reinforced polymer 
σ Stress 
ε Strain 
fcc Peak confined concrete strength 
εcc Confined concrete strain at peak strength 
Rσ Stress ratio 
Rε Strain ratio 
fc Unconfined concrete strength 
Ecc Elastic modulus of confined concrete 
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fr Residual stress 
ψ Dilation angle 
Efrp Elastic modulus of FRP 
tfrp Thickness of FRP 
h Inner depth of FRP 
b Inner width of FRP 
fy Steel tube yield strength 
ts Steel tube thickness 
σi Tensile strength 
Es Elastic modulus of steel 
fsy Yield strength of steel 
εsy Yield strain of steel 
μ Poisson’s ratio 
H Height of column 
S4R 4-node shell elements 
C3D8R 8-node brick element 
2a/2b Outer steel tube sides 
XN Normalised parameter value 
R2 Coefficient of determination 
RMSE Root mean square error 
MAE Mean absolute error 
BF Basis function 
MARS Multivariate adaptive regression splines 
LS–SVM Least square–support vector machine 
SVM Support vector machine 
LSTM Long short-term memory 
BI-LSTM Bidirectional LSTM 

1. Introduction 

In structural engineering, innovation constantly drives advance-
ments in building components to enhance efficiency. Fibre-reinforced 
polymer (FRP) composites have notably transformed civil engineering 
by offering a strong alternative to conventional materials [1,2]. Their 
exceptional strength-to-weight ratio and resistance to corrosion have 
garnered significant interest [3–6]. Combining FRP composites with 
traditional materials has given rise to hybrid structures, leveraging the 
strengths of both domains [7–10]. External confinements through FRP 
jackets have remarkably increased the strength and ductility of rein-
forced concrete columns [11–14]. 

Innovation extends to hybrid structures like FRP-concrete-steel 
double-skin tubular columns (DSTCs) and concrete-filled FRP tubes 
(CFFTs). These structures integrate an internal steel tube, an interme-
diary concrete layer, and an external FRP tube to optimise performance 
[15,16]. Extensive experimental studies have been conducted around 
the world to ascertain the behaviour of DSTCs [17,18]. These columns 
have demonstrated exceptional corrosion resistance and energy dissi-
pation during seismic events [19]. However, prior research has pre-
dominantly focused on analysing single steel tubes [20,21], with only a 
scarce number of studies exploring the use of double steel tubes. 
Therefore, there is a pressing need for a comprehensive examination of 
the behaviour of double steel tubes filled with concrete and subjected to 
confinement by FRP composites. This exploration aims to delve into the 
interaction between the double steel tubes and the concrete infill, of-
fering a novel perspective on its structural behaviour. 

Integrating conventional analysis methods with advanced method-
ologies, the fusion of finite element model (FEM) and machine learning 
(ML) techniques has garnered significant attention in structural engi-
neering. These tools are poised to revolutionise the predictive capabil-
ities for structural forces and reactions [22,23]. FEM simulations offer 
insightful analyses across various structural scenarios, including com-
plex configurations like FRP-constrained structures and seismic-resilient 
constructs [24–26]. Meanwhile, ML techniques, driven by data-driven 
learning models, enable computational systems to predict and decide 
without explicit programming. The synergy between ML and FEM 
promises precision and depth in understanding complex structural 

behaviours [27], advancing predictive prowess in structural engineering 
by revealing hidden patterns within vast structural data. 

This study highlights a comprehensive exploration of glass fibre- 
reinforced polymer (GFRP) and aramid fibre-reinforced polymer 
(AFRP) confined circular double-skin hollow tubular (DSHT) and 
double-skin double-filled tubular (DSDFT) columns. Employing FEM 
simulations through ABAQUS software, combined with ML techniques, 
the study delves into the structural performance of these columns 
(Fig. 1). The rigorous comparative analysis between DSHT and DSDFT 
columns, facilitated by 48 ABAQUS-modelled specimens, forms the crux 
of the research approach. Four distinct ML algorithms are evaluated to 
discern the optimal algorithm for predicting structural responses. The 
accuracy of results from the FEM simulations is confirmed through 
validation against prior experimental findings [28–30]. A systematic 
parametric study explores the influence of the introduction of double 
steel tubes, the diameter of the steel tube used, the type of FRP used, and 
the thickness of the FRP layer. A flowchart of the integrated process is 
highlighted in Fig. 2. This exhaustive investigation enriches the under-
standing of GFRP and AFRP confined circular single and double steel 
tube columns, ushering in new dimensions through the integration of 
ML techniques in response prediction. The findings extend the knowl-
edge horizon and hold the potential to inform future design and analysis 
methodologies within the domain of structural engineering. 

2. Methodology 

The methodology utilised in this investigation can be segmented into 
two primary components. The initial component involves the use of FEM 
to simulate the behaviour of DSHT and DSDFT columns, executed 
through the ABAQUS software. The subsequent phase centres on the 
integration of ML algorithms to predict axial loads and axial strains 
within DSHT and DSDFT columns. Detailed discussions regarding both 
methodologies are provided in the subsequent sections. 

2.1. Finite element modelling 

2.1.1. Development of FEMs 
FEMs representing the DSHT and DSDFT circular columns are 

created within the computational environment of the ABAQUS software. 
These columns are characterised by a fixed height (H) of 305 mm and an 
outer diameter of 152.5 mm. In both configurations, namely DSHT and 
DSDFT, a layered composition is observed, beginning with an external 
layer made of GFRP or AFRP, succeeded by a layer of concrete. More-
over, in the case of DSHT columns, there exists an inner steel tube. On 
the other hand, for DSDFT columns, apart from the steel tube, there is an 
extra concrete layer followed by another inner steel tube. This inner 
steel tube has a diameter half the size of the previous one and is 
completed with concrete filling. It is important to highlight that the 
DSHT columns have an empty interior, while the DSDFT columns 
contain a core filled with concrete. These column configurations are 
visually represented in Fig. 3. 

In this study, unidirectional GFRP and AFRP with a nominal thick-
ness of 0.2 mm were employed. The material behaviour of GFRP and 
AFRP utilised in this investigation is modelled as orthotropic linear 
elastic before the point of tensile rupture. Unconfined concrete under 
uniaxial monotonic loading typically demonstrates brittle behaviour 
upon reaching its ultimate strength. The use of confinement, such as 
steel tubes or FRP, enhances the concrete’s behaviour, enabling it to 
exhibit characteristics of inelastic (elastic-plastic) materials [31]. 
Confined concrete’s strength and ductility primarily hinge upon the 
extent of lateral reinforcement-based confinement [31]. The core con-
crete enclosed within FRP experiences confinement pressure, which 
leads to lateral expansion of concrete as axial load intensifies – a phe-
nomenon termed passive interaction. Within finite element analysis, 
accurately modelling concrete’s stress-strain (σ − ε) relationship by 
incorporating this confinement pressure significantly contributes to the 
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precision of the analysis result. 
In the past, multiple researchers have put forward different models 

concerning concrete’s behaviour, including the smeared cracking model 
(SCM), concrete damaged plastic model (CDPM), Drucker–Prager model 
(DPM), and brittle crack model (BCM). In this study, to simulate the 

inelastic behaviour of concrete, CDPM is employed. By considering 
crushing and cracking of concrete, this model can depict the intricate 
character of the material. As a result, it is widely acknowledged while 
modelling the nonlinearity of concrete [32–34]. CDPM integrates 
various concrete properties like the compressive, tensile, plastic, and 
damaging behaviours. The Young’s modulus value was derived from Eq. 
(1) [35], and a Poisson’s ratio of 0.2 [36] was utilised. The density for 
normal-weight concrete was considered as 2400 kg/m3. The stress-strain 
curve of concrete is presented in Fig. 4. 

Ec = 3320
̅̅̅̅̅

f ′
c

√

+ 6900 (Eq. (1))  

where f′c is the compressive stress of the concrete material tested at 28 
days. 

According to the ABAQUS user manual [37], five concrete parame-
ters are taken into account when analysing the plastic behaviour of 
concrete: dilation angle (ψ), viscosity parameter (μv), eccentricity (e), 
ratio of biaxial to uniaxial stresses (fbo/f′

c), and yielding surface shape 
factor (Kc) [38]. All these elements were calibrated to attain the best 
possible alignment with the test measurement values which is listed in 
Table 1. An extensive analysis was provided by Isleem et al. [39] for a 
fuller understanding and the mathematics involved. 

To accurately replicate the interaction between the FRP layers and 
concrete, tie constraints are employed, with the FRP layer assuming the 
role of the primary surface. Further, the steel tubes within concrete 
experience surface-to-surface contact using the penalty contact method, 
wherein a friction coefficient of 0.6 is implemented. Notably, in this 
context, the steel tube functions as the master surface. 

The steel material is represented through solid elements following 
the σ − ε relation proposed by Tao et al. [40]. It is considered to have 
linear elastic behaviour with a density of 7.85 × 109 ton/mm3, Poisson’s 
ratio of 0.25, and the elastic modulus as displayed in Table 2. 

The FRP layers are modelled, and their stiffness is tailored through 
the incorporation of a reduction factor (R), contingent on the confine-
ment stiffness ratio, and the aspect ratio of the columns. This R bears an 
inverse relationship with the confinement stiffness ratio and aspect 
ratio, aptly accounting for the behaviour of the FRP layers. The concrete 
types ranging from normal strength concrete to high strength concrete, 
characterised by compressive strengths of 42.5 MPa, 49.8 MPa, 82.4 
MPa, 96.2 MPa, and 113.8 MPa are used. 

The intricate interactions among FRP, concrete, and steel layers are 
conducted by employing suitable modelling methodologies and math-
ematical formulations, carefully considering the distinctive material 
properties, and prevailing failure criteria. Comprehensive details per-
taining to the material properties for different diameters of steel tubes, 
GFRP, AFRP, and their relevant parameters are documented in Table 2. 

2.1.2. Loading and boundary conditions 
The loading and boundary conditions imposed on the column models 

play a crucial role in accurately simulating the axial behaviour of the 
specimens. The column configurations were exclusively subjected to 
axial loading to replicate realistic conditions accurately. To maintain 
homogeneity within the composite specimens during the loading pro-
cess, the boundaries are carefully defined, and the interactions are 
given, as explained in Section 2.1.1. 

A pivotal strategy of using the kinematic coupling mechanism is 
applied. The kinematic coupling establishes a connection between the 
steel tube, GFRP, and concrete layers at both ends of the columns. This 
coupling strategy facilitates the seamless transfer of displacements and 
rotations among the layers, thereby preserving their structural integrity 
throughout the loading regime. Specific reference points are strategi-
cally established within the model, as illustrated in Fig. 5(d) and (e). 
These reference points serve as anchors for the coupling connections 
between the distinct material layers. At these points, axial displacements 
and loads are precisely prescribed, ensuring an accurate simulation of 
the loading conditions. 

Fig. 1. Workflow of FEM and ML.  
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Now, boundary conditions are enforced both at the upper and lower 
ends of the columns. The lower end is fixed against any rotation or 
movement in all three axes: X, Y, and Z, as depicted in Fig. 5(g). 
Conversely, the upper end is constrained from rotation and movement 
solely in the X and Y directions, while allowing freedom of movement 
along the Z-axis, as shown in Fig. 5(h). In the Z-direction, an axial 
displacement of 25 mm is induced to apply the axial compression load. 
This load is meticulously chosen to replicate practical loading scenarios, 
ensuring precise capture of the structural response. The adopted 
modelling strategy ensures the stability of the composite specimens 

during the loading sequence, effectively mitigating any undesired lateral 
or rotational movements. 

2.1.3. Meshing, element types, and analysis 
The discretisation of the column models is a critical endeavour aimed 

at achieving an accurate representation of their geometry while effec-
tively capturing the intricate behaviours of the composite materials 
during the axial loading. The analysis is performed utilising ABAQUS/ 
explicit solver, renowned for its robust capabilities in dynamic simula-
tions. To ensure computational efficiency and numerical stability, the 

Fig. 2. Integrated process of FEM and ML.  

Fig. 3. Cross-sectional view of: (a) DSHT column and (b) DSDFT column.  
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central difference integration scheme is employed, which is recognised 
for its accuracy and stability. This integration scheme relies on small 
time increments to approximate the structural response, ensuring that 
the analysis output is based on the stable known parameters from the 
preceding time step. This approach effectively captures the time- 
dependent behaviours inherent to the column models. To enhance 
computational efficiency, a mass scaling technique is initiated at the 
outset of the analysis step, incorporating a scaling factor of 10. This 
technique optimally balances the kinetic and internal energy compo-
nents within the model, thereby diminishing computational re-
quirements without compromising the accuracy of the results. 
Moreover, step smoothing is introduced to minimise the velocities 
within the model, leading to reduced levels of kinetic energy. This 

strategy, in turn, enables the analysis to focus on capturing the static 
response of the column models under the axial loading. The kinetic 
energy encompassing the entire model (ALLKE) is judiciously restricted 
to approximately 5 % of the total internal energy (ALLIE), in accordance 
with established recommendations for static analyses. 

For the purpose of discretising the column models within the ABA-
QUS software environment, pertinent element types are judiciously 
selected, accounting for the material properties and the structural at-
tributes of the constituent components. 

The composite layers of FRP and steel tubes are modelled using 
specialised four-node shell elements (S4R), adept at representing thin- 
walled structures. These elements accurately capture the bending and 
membrane behaviours specific to the FRP’s anisotropic properties while 
reducing computational costs compared to the solid elements. Concrete 
layers are simulated with solid homogeneous hexahedral elements 
(C3D8R) that efficiently handle compression and confinement re-
sponses, accounting for nonlinear material behaviours, stress distribu-
tions, and deformation characteristics. To maintain computational 
efficiency and coherence, a uniform mesh size of 25 mm is utilised for 
concrete elements in the column models. The key characteristics applied 
to FEMs are exhibited in Table 3. By eschewing substantial mesh size 
variations, a consistent and dependable analysis outcome is realised, 
engendering a high level of confidence in the acquired results. 

The mesh configuration of the column models, elucidating the dis-
cretisation of concrete, steel tube, and FRP layers, is illustrated in Fig. 5. 
Comprehensive details regarding the modelled DSHT and DSDFT spec-
imens are elaborated in Table 4. 

2.2. ML methodology 

The methodology adopted for this study involves the fusion of FEM 
simulations and ML techniques, with the primary objective of scruti-
nizing and predicting the behaviour of DSHT and DSDFT circular col-
umns. The ensuing subsections present the procedures entailing data 
pre-processing, exploratory data analysis, and examination of four 
distinct ML algorithms. 

2.2.1. Data pre-processing and normalisation 
The dataset consists of 82 entries wherein the input parameters 

encompass: the product of the steel tube’s cross-sectional area and its 
yield strength (GPa), the cross-sectional area of the column excluding 
both the hollow core and steel tubes, the number of FRP layers, and the 

Fig. 4. Stress-strain curve for both uniaxially confined and unconfined concrete.  

Table 1 
Plasticity parameters of concrete for CDPM.  

ψ Kc e fbo/f′
c μv 

27◦ 0.667 0.1 1.16 0.0005  

Table 2 
Tensile properties of different steel tubes, GFRP, and AFRP.  

Material Outer 
diameter 
of steel 
tube (mm) 

Thickness 
(mm) 

Elastic 
modulus 
(MPa) 

Yield 
stress 
(MPa) 

Peak 
stress 
(MPa) 

Axial 
peak 
strain 
(%) 

Steel 
T1

1 60.300 3.60 203800 325.5 386.2 3.34 
T1

2 76.100 3.20 200600 359.4 432.5 2.34 
T1

3 88.900 3.20 199800 334.3 415.2 2.43 
T1

4 101.60 3.20 198700 318.3 385.4 2.09 
T1

5 114.60 6.00 201400 446.4 510.3 3.10 
T1

6 114.30 6.02 200600 342.3 419.0 2.93 
T2

3 88.900 3.20 200000 314.2 387.9 2.02 
T2

1 60.300 3.60 200000 459.4 526.4 2.85 
T3

1 60.300 3.60 200000 319.0 384.0 3.34 
T2

3 88.900 3.20 200000 320.0 404.0 2.43 
T2

6 114.30 6.02 200000 449.0 524.0 3.10 
FRP 
Glass - 0.2 95300 - 3055 3.21 
Aramid - 0.2 128500 - 2390 1.86  
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elastic modulus of FRP (GPa), and the concrete strength (MPa). These 
parameters are denoted as Input 1, Input 2, Input 3, and Input 4, 
respectively. Correspondingly, the output parameter, designated as 

load-carrying capacity (kN), is labelled as output. Descriptive statistics 
pertaining to the dataset are indicated in Table 5, revealing a diverse 
range within the experimental data. It is evident that distinct columns 
demonstrate disparate distributions. To discern the relationships be-
tween the variable pairs, a pair-plot is shown in Fig. 6. Employing the 
Pearson correlation coefficient, a statistical analysis is conducted to 
ascertain the degree of correlation (DOC) between the input and output 
parameters, as depicted in Fig. 6. It can be observed from Fig. 7 that 
Input 1 (r = 0.43) and Input 2 (r = 0.49) manifest a stronger positive 
correlation with the output in comparison to Input 3 (r = 0.26) and Input 
4 (r = 0.36). 

To enhance the model’s accuracy by mitigating associated errors, a 
min-max normalisation technique is employed to standardise the input 
and output parameters. This normalisation is executed via the following 
mathematical Eq. (2): 

XN =
X − Xmin

Xmax − Xmin
(Eq. (2))  

where XN signifies the normalised parameter value, X represents the 
original parameter value, and Xmin and Xmax denote the minimum and 
maximum values within the input and output dataset, respectively. 

2.2.2. Details of performance indices 
Four distinct performance metrics are computed to assess the 

Fig. 5. Modelling DSHT and DSDFT columns.  

Table 3 
Properties of FEMs.  

Property Value 

Mesh size of concrete material (mm) 15/ Element shape: Hex-structured 
Mesh size of FRP tube (mm) 18/ Element shape: Quad-dominated, Free- 

advancing front 
Mesh size of steel tube (mm) 13/ Element shape: Hex-structured 
Minimum step size 1 × 10-8 

Initial step size 0.01 
Maximum step size 1 
Concrete and steel tube element 

type 
Standard C3D8R/Geometric order: Linear/ 
Family: 3D stress 

FRP element type Standard S4R/Geometric order: Linear/ 
Family: 2D shell 

Interaction constraint of FRP tube to 
concrete 

Tie constraint/Surface to surface/Friction 
coefficient: 0.6 

Applied displacement (mm) 25 
Step-1 type Static, General 
Equation solver Direct 
Automatic stabilisation Use damping factors from previous general 

steps  
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efficacy of the employed models [41,42]. Table 6 elucidates the optimal 
values and parametric equations corresponding to these metrics. For an 
impeccable prediction model, the values of these metrics must align 
precisely with their respective ideal values. The different ML models are 

discussed in the following subsections. 

2.2.3. Multivariate adaptive regression splines 
The multivariate adaptive regression splines (MARS) technique, a 

Table 4 
Details of modelled DSHT and DSDFT specimens.  

Type Specimen Filling Number of steel tube FRP tube Outer steel tube 
sides (mm) 

Concrete strength (MPa) 

Type Ply tfrp (mm) Efrp (MPa) Tensile strength (MPa) 2a 2b  

DSHT 6G-H-S-T1
1 Hollow Single GFRP 6 1.2 95300 3055 60.3 53.1 96.2 

DSDFT 6G-F-D-T1
1 Filled Double GFRP 6 1.2 95300 3055 60.3 53.1 96.2 

DSDFT 4G-F-D-T1
1 Filled Double GFRP 4 0.8 95300 3055 60.3 53.1 96.2 

DSHT 8G-H-S-T1
1 Hollow Single GFRP 8 1.6 95300 3055 60.3 53.1 96.2 

DSHT 6G-H-S-T1
2 Hollow Single GFRP 6 1.2 95300 3055 76.1 69.7 96.2 

DSDFT 6G-F-D-T1
2 Filled Double GFRP 6 1.2 95300 3055 76.1 69.7 96.2 

DSDFT 4G-F-D-T1
2 Filled Double GFRP 4 0.8 95300 3055 76.1 69.7 96.2 

DSHT 8G-H-S-T1
2 Hollow Single GFRP 8 1.6 95300 3055 76.1 69.7 96.2 

DSHT 6G-H-S-T1
3 Hollow Single GFRP 6 1.2 95300 3055 88.9 82.5 96.2 

DSDFT 6G-F-D-T1
3 Filled Double GFRP 6 1.2 95300 3055 88.9 82.5 96.2 

DSDFT 4G-F-D-T1
3 Filled Double GFRP 4 0.8 95300 3055 88.9 82.5 96.2 

DSHT 8G-H-S-T1
3 Hollow Single GFRP 8 1.6 95300 3055 88.9 82.5 96.2 

DSHT 6G-H-S-T1
4 Hollow Single GFRP 6 1.2 95300 3055 101.6 95.2 96.2 

DSDFT 6G-F-D-T1
4 Filled Double GFRP 6 1.2 95300 3055 101.6 95.2 96.2 

DSDFT 4G-F-D-T1
4 Filled Double GFRP 4 0.8 95300 3055 101.6 95.2 96.2 

DSHT 8G-H-S-T1
4 Hollow Single GFRP 8 1.6 95300 3055 101.6 95.2 96.2 

DSHT 6G-H-S-T1
5 Hollow Single GFRP 6 1.2 95300 3055 114.6 102.6 96.2 

DSDFT 6G-F-D-T1
5 Filled Double GFRP 6 1.2 95300 3055 114.6 102.6 96.2 

DSDFT 4G-F-D-T1
5 Filled Double GFRP 4 0.8 95300 3055 114.6 102.6 96.2 

DSHT 8G-H-S-T1
5 Hollow Single GFRP 8 1.6 95300 3055 114.6 102.6 96.2 

DSHT 4A-H-S-T2
3 Hollow Single AFRP 4 0.8 125700 2663 88.9 82.5 113.8 

DSDFT 4A-F-D-T2
3 Filled Double AFRP 4 0.8 125700 2663 88.9 82.5 113.8 

DSHT 6A-H-S-T2
3 Hollow Single AFRP 6 1.2 125700 2663 88.9 82.5 113.8 

DSDFT 6A-F-D-T2
3 Filled Double AFRP 6 1.2 125700 2663 88.9 82.5 113.8 

DSHT 3A-H-S-T2
3 Hollow Single AFRP 3 0.6 125700 2663 88.9 82.5 49.8 

DSDFT 3A-F-D-T2
3 Filled Double AFRP 3 0.6 125700 2663 88.9 82.5 49.8 

DSHT 6A-H-S-T2
1 Hollow Single AFRP 6 1.2 125700 2663 60.3 53.1 113.8 

DSDFT 6A-F-D-T2
1 Filled Double AFRP 6 1.2 125700 2663 60.3 53.1 113.8 

DSHT 6A-H-S-T1
6 Hollow Single AFRP 6 1.2 125700 2663 114.3 102.26 113.8 

DSDFT 6A-F-D-T1
6 Filled Double AFRP 6 1.2 125700 2663 114.3 102.26 113.8 

DSHT 3A-H-S-T3
1 Hollow Single AFRP 3 0.6 128500 2390 60.3 53.1 42.5 

DSDFT 3A-F-D-T3
1 Filled Double AFRP 3 0.6 128500 2390 60.3 53.1 42.5 

DSDFT 1A-F-D-T3
1 Filled Double AFRP 1 0.2 128500 2390 60.3 53.1 42.5 

DSHT 3A-H-S-T2
3 Hollow Single AFRP 3 0.6 128500 2390 88.9 82.5 42.5 

DSDFT 3A-F-D-T2
3 Filled Double AFRP 3 0.6 128500 2390 88.9 82.5 42.5 

DSDFT 1A-F-D-T2
3 Filled Double AFRP 1 0.2 128500 2390 88.9 82.5 42.5 

DSHT 6A-H-S-T2
3 Hollow Single AFRP 6 1.2 128500 2390 88.9 82.5 82.4 

DSDFT 6A-F-D-T2
3 Filled Double AFRP 6 1.2 128500 2390 88.9 82.5 82.4 

DSDFT 4A-F-D-T2
3 Filled Double AFRP 4 0.8 128500 2390 88.9 82.5 82.4 

DSHT 6A-H-S-T2
6 Hollow Single AFRP 6 1.2 128500 2390 114.3 102.26 82.4 

DSDFT 6A-F-D-T2
6 Filled Double AFRP 6 1.2 128500 2390 114.3 102.26 82.4 

DSDFT 4A-F-D-T2
6 Filled Double AFRP 4 0.8 128500 2390 114.3 102.26 82.4 

DSHT 6G-H-S-T3
1 Hollow Single GFRP 6 1.2 95300 3055 60.3 53.1 82.4 

DSDFT 6G-F-D-T3
1 Filled Double GFRP 6 1.2 95300 3055 60.3 53.1 82.4 

DSHT 6G-H-S-T2
3 Hollow Single GFRP 6 1.2 95300 3055 88.9 82.5 82.4 

DSDFT 6G-F-D-T2
3 Filled Double GFRP 6 1.2 95300 3055 88.9 82.5 82.4 

DSHT 6G-H-S-T2
6 Hollow Single GFRP 6 1.2 95300 3055 114.3 102.26 82.4 

DSDFT 6G-F-D-T2
6 Filled Double GFRP 6 1.2 95300 3055 114.3 102.26 82.4  

Table 5 
Descriptive statistics of input and output parameters.  

Parameter Mean Standard 
error 

Median Standard deviation Minimum Maximum Skewness Kurtosis 

Input 1 436.439 32.11917 291.423 290.8515 204.6449 1149.809 1.419556 0.44773 
Input 2 13476.2 357.2383 13722.5 3234.931 7953.856 17470.87 -0.40643 -1.0641 
Input 3 114.933 3.406904 114.36 30.85083 25.7 154.2 -0.47474 0.01566 
Input 4 87.1195 2.448913 96.2 22.17585 42.5 113.8 -0.89605 -0.0512 
Output 2641.80 87.33697 2418.04 790.8699 1480.27 5126.92 1.035888 1.03914  

L. Ali et al.                                                                                                                                                                                                                                       



Composites Part C: Open Access 13 (2024) 100444

8

nonparametric statistical approach, adeptly handles high-dimensional 
data. Through piecewise segments or splines, MARS captures intricate 
interactions between the input and dependent variables [43]. This yields 
continuous models with derivatives, distinct from recursive partitioning 
outcomes. MARS deduces relationships devoid of presupposed func-
tional connections, utilising coefficients and basis functions determined 
by the dataset. A cornerstone is the spline function, underpinning basis 
functions with piecewise linear segments. These segments, termed 
splines, partition data effectively. By merging polynomial segments at 
specific locations (knots), the MARS model introduces basis functions, 
enhancing the capacity to capture nonlinearities. The MARS model 
iteratively generates basis functions by exhaustively exploring univari-
ate knots and potential variable interactions. The model’s general-
isability improves through backward steps that prune the less impactful 
terms, curbing overfitting [44]. The MARS model response, f(x), com-
prises basis functions and interactions. Here, in Eq. (3) BF(x) signifies a 
spline basis function, while β0 and βn represent intercept and nthBF co-
efficients, respectively, with N total basis functions. 

f (x) = β0 +
∑N

n=1
βnBF(x) (Eq. (3)) 

Fig. 6. Scatter matrix and pair-plot of input and output parameters.  

Fig. 7. Correlation matrix of input and output parameters.  

Table 6 
Performance metrics equations and their ideal values.  

No. Parameter Equation Ideal 
value 

1 Coefficient of 
determination (R2) R2 =

∑n
i=1(yi − ymean)

2
−
∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − ymean)

2 

yiand ŷi are actual and predicted 
ithvalues 

1 

2 Adjusted coefficient of 
determination (adj.R2) adj.R2 = 1 −

(n − 1)
(n − p − 1)

(1 − R2)

where p is number of input 
parameters 

1 

3 Root mean square error 
(RMSE) RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑n

i=1
(yi − ŷi)

2
√

N is number of data sample 

0 

4 Mean absolute error 
(MAE) 

MAE =
1
n
∑m

i=1
|(ŷi − yi)|

0  
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The MARS model is constructed using the MATLAB 2018a software. 
The initial prediction of the normalised output MARS model involved 15 
basis functions. After the pruning phase, several basis functions were 
eliminated, leaving the five most effective basis functions as detailed in 
Table 7. Leveraging the correlation equation, Eq. (4) identified, the 
normalised output, namely load-carrying capacity, is subsequently 
determined. 

Output = 0.7172 + 1.0536 × BF1 − 0.30944 × BF2 + 1.1551 × BF3

− 0.50747 × BF4 − 1.0883 × BF5
(Eq. (4))  

2.2.3. Least square–support vector machine 
Introduced by Vapnik [45], the least square–support vector machine 

(LS-SVM) method finds its roots in statistical learning theory, offering a 
solution for tackling local minimum and nonlinear challenges in 
high-dimensional spaces. This approach is an enhancement of the sup-
port vector machine (SVM) model and introduces two novel parameters. 
The conventional inequality constraints are substituted with equality 
constraints, effectively transforming the pair of programming problems 
into linear equations. Notably, these modifications contribute to a 
reduction in computation time in comparison to the SVM model. The 
LS-SVM framework defines the regression function linking Input (i) and 
Output (O) through Eq. (5), where αi signifies the ithLagrange multiplier, 
K denotes the kernel function, and b represents the bias. Within this 
context, Eq. (6) indicates the application of the radial basis function 
(RBF) kernel function, pivotal in this study, where σ corresponds to a 
parameter influencing the algorithm’s accuracy. The hyper-parameters 
selected for optimising the LS-SVM model’s construction entail a cost 
parameter of 100 and a sparsity constraint of 10. 

O = α1k(i, i1) + α2k(i, i2) + ...+ αnk(i, in) + b (Eq. (5))  

k(x, xi) = exp
(
− ‖ x − xi ‖

2

2σ2

)

(Eq. (6))  

2.2.4. Long short-term memory 
Long short-term memory (LSTM), a class of recurrent neural net-

works, stands out as an effective and scalable solution for addressing the 
diverse learning challenges inherent in sequential data. Its effectiveness 
and generality render it suitable for capturing temporal dependencies 
across the extended sequences [46]. Functioning as a specialised type of 
recurrent neural network, LSTM employs gated mechanisms to control 
information flow among its constituent neurons. 

Through the orchestrated interplay between input and forget gates, a 
refined version of the cell state is generated, enriched by the contextual 
understanding of inputs [47]. Despite its virtues, the LSTM architecture 
has faced critique for its complexity and somewhat arbitrary features, 
some of whose functionalities remain unclear. This prompts a discourse 
over whether LSTM represents an optimal design choice or whether 
superior alternatives may exist. A schematic depiction of the founda-
tional LSTM algorithm is displayed in Fig. 8. The current study de-
termines the optimal hyper-parameters for the LSTM model construction 
as follows: hidden nodes = 70, activation function = sigmoid, epochs =
500, batch size = 12, optimiser = Adam, return sequence = true, and 
loss function = mean_squared_error. 

2.2.5. Bidirectional LSTM 
The pioneering work of Schuster and Paliwal [49] introduced the 

bidirectional LSTM (BI-LSTM) model, designed to harness both the past 
and future input data sequences for training. This architecture employs 
two interconnected layers to process input data [50]. By leveraging the 
historical and prospective context of the elements, BI-LSTM undertakes 
the prediction or tagging of sequences, considering a limited sequence 
length. This outcome is achieved through the simultaneous operation of 
a left-to-right LSTM in conjunction with a right-to-left LSTM. The 
composite output constitutes the predicted value of a specific target 
signal, yielding remarkably favourable results. The architectural blue-
print of BI-LSTM is illustrated in Fig. 9. Eqs. (7) and (8) serve to compute 
the forward function of BI-LSTM with L unit inputs and H hidden units. 
Notably, the BI-LSTM network stores two distinct values within its 
hidden layer. In forward and backward computations, both the matrix A 
and its transpose play a pivotal role. The ultimate value y is a product of 
both the matrix A and its transposed counterpart [51]: 

αt
h =

∑L

l=1
xt

lwth +
∑H

h′,t>0
bt− 1

h′ wh′h (Eq. (7))  

αt
h = θh

(
αt

h

)
(Eq. (8)) 

The current study identifies the optimal hyper-parameters for con-
structing the BI-LSTM model as follows: hidden nodes = 64, activation 
function = sigmoid, epochs = 500, batch size = 12, optimiser = Adam, 
return sequence = true, and loss function = mean_squared_error. 

In the current investigation, the implementation of these four ML 
algorithms is adopted, and their respective performances have been 
meticulously examined. This comprehensive evaluation aims to discern 
the most effective approach for scrutinising and prognosticating the 
behaviour and performance of the DSHT and DSDFT columns. The 
overarching goal is to pinpoint the algorithm that delivers precise and 
dependable outcomes, instilling a heightened level of confidence in the 
resultant predictions. 

3. Illustrations, validation, and discussion of FEMs 

To ascertain the precision and dependability of FEMs formulated via 
the ABAQUS software, an exhaustive validation investigation is 
executed through a comparative analysis of simulation outcomes against 
experimental findings of three distinct scholarly works: Article 1 auth-
ored by Louk Fanggi and Ozbakkaloglu [28], Article 2 by Louk Fanggi 
and Ozbakkaloglu [29], and Article 3 by Albitar et al. [30]. This 
empirical inquiry encompasses the emulation of 48 circular columns, 
divided into two sets of 24 columns each: DSHT and DSDFT, all un-
dergoing the axial compression. Amid these columns, 22 are sheathed 
with AFRP, while 26 are enveloped with GFRP. A gamut of ten steel 
tubes, distinguished by the diameter and material attributes as delin-
eated in Table 2, is deployed. The height of each column is calibrated to 
305 mm, in congruence with the experimental framework outlined in 
Articles 1, 2, and 3. Variance in concrete strength is accounted for, 
spanning five levels: 42.5 MPa, 49.8 MPa, 82.4 MPa, 96.2 MPa, and 
113.8 MPa, ensuring parity between the experimental and numerical 
investigations. 

The primary indices of performance for validation proceedings are 
the ultimate axial load and ultimate axial strain of the DSHT columns. 
The DSDFT columns mirror the initial DSHT configuration but introduce 
a novel structure: the hollow segment of DSHT columns is supplemented 
with an additional steel tube, possessing a diameter equivalent to 0.5 
times that of the initial steel tube; the void within this secondary steel 
tube is then packed with concrete. The validation findings manifest a 
conspicuous congruence between FEMs and experimental observations. 
Prediction of the ultimate load-carrying capacity garnered from FEMs 
evinces close alignment with experimental results, exhibiting a 
maximum divergence of 12.14 % and a minimum disparity of 0.07 %. 
Correspondingly, predictions of the ultimate strain portray satisfactory 

Table 7 
Equations for MARS model’s basis functions.  

No. Basis function Equation 

1 BF1 max(0, x1 − 0.75069) 
2 BF2 max(0, 0.7506 − x1) 
3 BF3 max(0, x2 − 0.95427) 
4 BF4 max(0, 0.95427 − x2) 
5 BF5 BF2 × max(0, 0.6899 − x3)  
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accord, marked by a maximum deviation of 24.02 % and a minimum 
deviation of 0.52 %. These minor discrepancies underscore the conser-
vative tendency of FEMs, yielding values slightly surpassing experi-
mental outcomes. 

An elaborate comparative assessment, elucidated in Table 8 and 
Fig. 10, presents the computed deviations for each DSHT column, 
juxtaposing FEMs against experimental data in Articles 1, 2, and 3. 
Table 8 also furnishes data regarding the ultimate axial load and ulti-
mate axial strain of the proposed DSDFT columns. The notable concur-
rence between the simulation outcomes and the experimental 
observations substantiates the precision and dependability of the 
formulated FEMs. This alignment affirms the capability of the developed 
FEMs to accurately depict the response of both DSHT and DSDFT col-
umns under the influence of the axial compression. Further, an organ-
ised parametric exploration delves into the impact of factors including 
the incorporation of double steel tubes, dimensions of utilised steel 
tubes, variety of FRP materials engaged, and thickness of FRP layers 
using the different column models, as demonstrated in Table 8. Fig. 11 
shows the strain and stress datasets extracted from FEMs for a subset of 
the chosen DSHT columns, alongside their corresponding DSDFT 
counterparts. 

3.1. Effect of double steel tubes 

The investigation into the effect of providing a double steel tube 
configuration on the behaviour of FRP (GFRP and AFRP) confined cir-
cular columns (DSHT vs. DSDFT) provides intriguing insights into the 
structural performance of these configurations. This section discusses 

the findings related to the ultimate axial load and ultimate axial strain, 
focusing on the influence of the double steel tube arrangement. 

From Table 9 and Figs. 12(a) and 13 it is deduced that there is a 
substantial increase in the ultimate axial load-carrying capacity in the 
DSDFT columns compared to the DSHT columns. For the initial steel 
tube diameter of 60.3 mm, the DSHT columns exhibited an ultimate 
axial load of 2903.98 kN, whereas the DSDFT columns gave a substantial 
increase to 3471.55 kN, reflecting a notable 19.54 % increment. This 
trend of enhanced load-carrying capacity continues across the varying 
steel tube diameters, with the percentage increase in the ultimate axial 
load displaying a consistent upward trajectory reaching up to 101.21 % 
for an initial steel tube diameter of 114.6 mm. It is also noted that as the 
initial steel tube diameter increases, the percentage increase in the ul-
timate axial load between the two configurations also escalates. This 
augmentation in the ultimate axial load is due to multiple factors. 

Firstly, the presence of an additional inner steel tube and concrete fill 
in the DSDFT configuration, in contrast to the DSHT configuration, 
serves as supplementary material capable of bearing extra loads. This 
configuration effectively redistributes the load, thereby enhancing the 
overall load-carrying capacity of the column. Secondly, this added inner 
tube and concrete fill noticeably contribute to an improved confinement 
effect. This effect generates greater lateral support for the column, 
consequently increasing its load-carrying capacity. Thirdly, the multi- 
layered arrangement of the DSDFT columns provides a more robust 
structural integrity compared to the DSHT columns. This heightened 
integrity enables the column to better withstand the deformation and 
resist failure under the axial compression, thereby contributing to the 
observed increase in load-carrying capacity. Lastly, the additional 

Fig. 8. Architecture of a LSTM algorithm [48].  

Fig. 9. Architecture of a BI-LSTM algorithm [48].  

L. Ali et al.                                                                                                                                                                                                                                       



Composites Part C: Open Access 13 (2024) 100444

11

Table 8 
Ultimate axial load and axial strain for DSHT and DSDFT columns.  

Study Type Specimen Experimental result FEM result Deviation (%) 
Axial load (kN) Axial strain (mm/mm) Axial load (kN) Axial strain (mm/mm) Load Strain 

Article 1 DSHT 6G-H-S-T1
1 2940.00 0.0351 2903.98 0.0345 -1.23 -1.76 

Article 1 DSHT 6G-H-S-T1
1 2608.00 0.0278 2903.98 0.0345 11.35 24.02 

Present DSDFT 6G-F-D-T1
1 - - 3471.55 0.0356 - - 

Present DSDFT 4G-F-D-T1
1 - - 3007.73 0.0359 - - 

Present DSHT 8G-H-S-T1
1 - - 3290.76 0.0344 - - 

Article 1 DSHT 6G-H-S-T1
2 2741.00 0.0394 2720.82 0.0373 -0.74 -5.32 

Article 1 DSHT 6G-H-S-T1
2 2668.00 0.0360 2720.82 0.0373 1.98 3.61 

Present DSDFT 6G-F-D-T1
2 - - 3815.11 0.0396 - - 

Present DSDFT 4G-F-D-T1
2 - - 3303.90 0.0404 - - 

Present DSHT 8G-H-S-T1
2 - - 3076.69 0.0369 - - 

Article 1 DSHT 6G-H-S-T1
3 2212.00 0.0299 2396.09 0.0345 8.32 15.46 

Article 1 DSHT 6G-H-S-T1
3 2352.00 0.0353 2396.09 0.0345 1.87 -2.19 

Present DSDFT 6G-F-D-T1
3 - - 3757.88 0.0369 - - 

Present DSDFT 4G-F-D-T1
3 - - 3290.96 0.0378 - - 

Present DSHT 8G-H-S-T1
3 - - 2653.04 0.0334 - - 

Article 1 DSHT 6G-H-S-T1
4 1798.00 0.0250 1824.95 0.0307 1.50 22.92 

Article 1 DSHT 6G-H-S-T1
4 1850.00 0.0303 1824.95 0.0307 -1.35 1.42 

Present DSDFT 6G-F-D-T1
4 - - 3156.37 0.0310 - - 

Present DSDFT 4G-F-D-T1
4 - - 2836.69 0.0315 - - 

Present DSHT 8G-H-S-T1
4 - - 2086.21 0.0298 - - 

Article 1 DSHT 6G-H-S-T1
5 2367.00 0.0318 2338.36 0.0343 -1.21 7.99 

Article 1 DSHT 6G-H-S-T1
5 2215.00 0.0277 2338.36 0.0343 5.57 23.97 

Present DSDFT 6G-F-D-T1
5 - - 4643.45 0.0383 - - 

Present DSDFT 4G-F-D-T1
5 - - 4223.11 0.0392 - - 

Present DSHT 8G-H-S-T1
5 - - 2637.01 0.0332 - - 

Article 2 DSHT 4A-H-S-T2
3 1919.00 0.0289 1907.36 0.0306 -0.61 5.88 

Article 2 DSHT 4A-H-S-T2
3 1965.00 0.0292 1907.36 0.0306 -2.93 4.79 

Present DSDFT 4A-F-D-T2
3 - - 2914.89 0.0325 - - 

Article 2 DSHT 6A-H-S-T2
3 2247.00 0.0294 2242.33 0.0301 -0.21 2.38 

Article 2 DSHT 6A-H-S-T2
3 2251.00 0.0310 2242.33 0.0301 -0.38 -2.90 

Present DSDFT 6A-F-D-T2
3 - - 3300.33 0.0315 - - 

Article 2 DSHT 3A-H-S-T2
3 1664.00 0.0422 1572.13 0.0401 -5.52 -5.01 

Article 2 DSHT 3A-H-S-T2
3 1567.00 0.0380 1572.13 0.0401 0.33 5.48 

Present DSDFT 3A-F-D-T2
3 - - 2534.11 0.0419 - - 

Article 2 DSHT 6A-H-S-T2
1 2745.00 0.0241 2755.56 0.0257 0.38 6.49 

Article 2 DSHT 6A-H-S-T2
1 2783.00 0.0213 2755.56 0.0257 -0.99 20.49 

Present DSDFT 6A-F-D-T2
1 - - 3305.58 0.0254 - - 

Article 2 DSHT 6A-H-S-T1
6 2331.00 0.0333 2305.15 0.0319 -1.11 -4.13 

Article 2 DSHT 6A-H-S-T1
6 2228.00 0.0311 2305.15 0.0319 3.46 2.65 

Present DSDFT 6A-F-D-T1
6 - - 4638.30 0.0364 - - 

Article 3 DSHT 3A-H-S-T3
1 1722.00 0.0367 1784.86 0.0403 3.65 9.83 

Article 3 DSHT 3A-H-S-T3
1 1802.00 0.0401 1784.86 0.0403 -0.95 0.52 

Present DSDFT 3A-F-D-T3
1 - - 2199.52 0.0411 - - 

Present DSDFT 1A-F-D-T3
1 - - 1480.27 0.0426 - - 

Article 3 DSHT 3A-H-S-T2
3 1587.00 0.0399 1555.09 0.0419 -2.01 4.94 

Article 3 DSHT 3A-H-S-T2
3 1553.00 0.0380 1555.09 0.0419 0.13 10.19 

Present DSDFT 3A-F-D-T2
3 - - 2523.00 0.0437 - - 

Present DSDFT 1A-F-D-T2
3 - - 1799.95 0.0462 - - 

Article 3 DSHT 6A-H-S-T2
3 2132.00 0.0296 2241.74 0.0281 5.15 -5.00 

Article 3 DSHT 6A-H-S-T2
3 2212.00 0.0293 2241.74 0.0281 1.34 -4.02 

Present DSDFT 6A-F-D-T2
3 - - 3542.73 0.0296 - - 

Present DSDFT 4A-F-D-T2
3 - - 3086.35 0.0304 - - 

Article 3 DSHT 6A-H-S-T2
6 2367.00 0.0368 2369.98 0.0356 0.13 -3.32 

Article 3 DSHT 6A-H-S-T2
6 2331.00 0.0346 2369.98 0.0356 1.67 2.82 

Present DSDFT 6A-F-D-T2
6 - - 4689.62 0.0398 - - 

Present DSDFT 4A-F-D-T2
6 - - 4238.60 0.0407 - - 

Article 3 DSHT 6G-H-S-T3
1 2799.00 0.0358 2835.94 0.0388 1.32 8.38 

Article 3 DSHT 6G-H-S-T3
1 2838.00 0.0350 2835.94 0.0388 -0.07 10.86 

Present DSDFT 6G-F-D-T3
1 - - 3409.12 0.0395 - - 

Article 3 DSHT 6G-H-S-T2
3 2355.00 0.0450 2349.16 0.0390 -0.25 -13.33 

Article 3 DSHT 6G-H-S-T2
3 2182.00 0.0348 2349.16 0.0390 7.66 12.06 

Present DSDFT 6G-F-D-T2
3 - - 3732.27 0.0415 - - 

Article 3 DSHT 6G-H-S-T2
6 2440.00 0.0455 2562.43 0.0435 5.02 -4.47 

Article 3 DSHT 6G-H-S-T2
6 2285.00 0.0378 2562.43 0.0435 12.14 14.98 

Present DSDFT 6G-F-D-T2
6 - - 5126.92 0.0493 - -  
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concrete layer within the DSDFT columns plays a pivotal role in 
enhancing the crack control and energy absorption during loading. This 
characteristic has led to a more ductile response, evident from Table 9, 
where the axial strain of the DSDFT columns surpasses that of the DSHT 
columns. With the steel tube diameter of 60.3 mm, the DSHT columns 
manifest an ultimate axial strain of 0.0345, while the DSDFT columns 
register an ultimate axial strain of 0.0356, representing a 3.18 % in-
crease. The concrete core acts as a buffer that can absorb energy during 
the deformation, thereby allowing the column to sustain larger de-
formations without abrupt failure. This enhanced ductility allows the 
DSDFT columns to have a higher load-carrying capacity. 

A similar trend is observed for AFRP confinement (Fig. 12(b) and 
Fig. 13) for both the ultimate axial load and ultimate axial strain. 
However, for a steel tube diameter of 60.3 mm and 6 AFRP confinement 
layers, the DSHT columns presented an ultimate axial strain of 0.0257, 
whereas the DSDFT columns illustrated a slightly lower strain of 0.0254, 
indicating a small decline of -1.16 %. This witnessed discrepancy, while 
contrary to the general trend observed across other parameters, appears 
to be within a negligible range and might be attributed to the compu-
tational refinement or numerical variations inherent in the simulation. 
However, this is not a universal trend, as evident from other cases where 
the DSDFT columns show higher strains. 

3.2. Effect of FRP tube thickness 

The thickness of FRP layers applied to the confined columns plays a 
pivotal role in shaping their structural performance. This section dem-
onstrates the intriguing outcomes observed through the manipulation of 
the number of FRP layers in both the GFRP and AFRP confined columns. 

Upon thorough examination of Table 10 and Figs. 14 and 15, a 
consistent trend emerges within both the GFRP and AFRP-confined 
DSHT and DSDFT columns. An increase in the thickness of FRP layers, 
each increment measuring 0.2 mm, accompanies a notable increase in 
the ultimate axial load while triggering a simultaneous decline in the 
ultimate axial strain. Noteworthy observations unfold particularly 
within the DSHT columns utilising GFRP, revealing a remarkable surge 
of 10 % to 14 % in the ultimate axial load-carrying capacity as layers 
progress from 6 to 8. Similarly, in the DSDFT columns, the transition 
from 4 to 6 layers elicited a substantial 10 % to 15 % increment in the 
load-carrying capacity. This observed behaviour resonates across AFRP 
confinement scenarios. In the context of the DSDFT columns, the pro-
gression from 1 to 3 layers yielded an impressive 40 % increase in the 

ultimate axial load-carrying capacity, whereas within the DSHT col-
umns, the increase was approximately 18 %. Similar results were ob-
tained by Wong et al. [18], Ozbakkaloglu and Louk Fanggi [52] and 
Albitar et al. [30] where an increase in the thickness of FRP resulted in a 
corresponding increase in the ultimate axial load-carrying capacity of 
the columns. Increased thickness or additional layers of FRP result in the 
intensified confinement. This confinement leads to an enhanced lateral 
support to the confined concrete core, distributing the applied load more 
effectively. Consequently, the columns exhibit the increased 
load-carrying capacities as more layers contribute to reinforcing the 
structure against the axial compression. 

Thicker layers also exhibit increased stiffness, but decreased elon-
gation capabilities compared to thinner layers. As confinement increases 
with thicker FRP layers, the concrete core experiences greater lateral 
confinement pressure, limiting its ability to deform under the axial load. 
This restriction in the deformation translates into reduced the axial 
strain due to the enhanced stiffness of the structure. Within the AFRP- 
confined DSDFT columns, the shift from 1 to 3 layers leads to a reduc-
tion in the ultimate strain by 4 % to 5 %. 

3.3. Effect of steel tube diameter 

The diameter of the steel tube within confined columns exerts a 
significant influence on their structural behaviour and performance. As 
depicted in Table 2, the alteration in the diameter of the initial steel tube 
is accompanied by concurrent changes in the yield stress of the steel 
tube, the thickness of the steel tube, and the area of the confined con-
crete. As can be seen from Table 11, the DSHT and DSDFT columns with 
an outer steel tube diameter of 60.3 mm are compared against an outer 
steel tube diameter of 76.1 mm, 88.9 mm, 101.6 mm, and 114.6 mm. 
Figs. 16 and 17 illustrate graphically the effect of the steel tube diameter 
on the DSHT and DSDFT columns. 

In the case of the DSHT columns, an intriguing consistency emerges: 
an increase in the outer steel tube diameter results in a decrement in the 
ultimate axial load-carrying capacity of the columns. This trend can be 
attributed to the fact that a larger diameter of the steel tube leads to 
lesser concrete being present between the sandwiched section of FRP 
and steel tube. This reduction in the area of concrete present in the 
column results in decrement of the load-carrying capacity of the col-
umns. Notably, the ultimate axial load-carrying capacity of the DSHT 
columns decreases by approximately 37.16 % as the diameter of the steel 
tube increases from 60.3 mm to 101.6 mm. 

Fig. 10. Validation of FEMs with experimental models of Article 1 (A1), Article 2 (A2), and Article 3 (A3).  
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Contrasting to this trend, the behaviour exhibited by the DSDFT 
columns portrays a diametrically opposite scenario. Here, an increase in 
the outer steel tube diameter corresponds proportionately to an increase 
in both the ultimate axial load-carrying capacity and ultimate axial 
strain. As the outer steel tube diameter increases from 60.3 mm to 114.6 
mm, the ultimate axial load-carrying capacity notably increases by 
40.41 %, while the ultimate axial strain increases by 9.19 %. These 
findings remarkably align with prior research by Wong et al. [18], 
Ozbakkaloglu and Louk Fanggi [52], and Louk Fanggi and Ozbakkaloglu 
[29], validating the positive correlation between the diameter of the 
steel tube and the ultimate axial stress capacity of the confined concrete. 
However, for the outer steel tube diameter of 101.6 mm, it is observed 
that the ultimate load-carrying capacity of the column decreases by 
20.64 % when compared to the column with an outer diameter of 60.3 
mm which is in agreement with Louk Fanggi and Ozbakkaloglu [28] and 
Albitar et al. [30] where they found that the ultimate axial stress ca-
pacity of the confined concrete decreases with increase in the steel tube 
diameter. This marks that a split consensus within the existing literature 
regarding the precise influence of the steel tube diameter on the ultimate 
axial stress experienced by the confined concrete exists. This difference 

highlights the necessity for in-depth exclusive research concentrating 
specifically on the effects of the inner steel tube diameter in future 
studies. 

Fig. 11. Strain and stress data from ABAQUS models.  

Table 9 
Comparison of axial load and axial strain of DSDFT and DSHT columns.  

Specimen Axial load 
(kN) 

Increment 
(%) 

Axial strain (mm/ 
mm) 

Increment 
(%) 

6G-H-S- 
T1

1 

2903.98 19.54 0.0345 3.18 

6G-F-D- 
T1

1 

3471.55 0.0356 

6G-H-S- 
T1

2 

2720.82 40.21 0.0373 6.17 

6G-F-D- 
T1

2 

3815.11 0.0396 

6G-H-S- 
T1

3 

2396.09 56.83 0.0345 6.95 

6G-F-D- 
T1

3 

3757.88 0.0369 

6G-H-S- 
T1

4 

1824.95 72.95 0.0307 0.97 

6G-F-D- 
T1

4 

3156.37 0.0310 

6G-H-S- 
T1

5 

2338.36 98.57 0.0343 11.66 

6G-F-D- 
T1

5 

4643.45 0.0383 

4A-H-S- 
T2

3 

1907.36 52.82 0.0306 6.21 

4A-F-D- 
T2

3 

2914.89 0.0325 

6A-H-S- 
T2

3 

2242.33 47.18 0.0301 4.65 

6A-F-D- 
T2

3 

3300.33 0.0315 

3A-H-S- 
T2

3 

1572.13 61.18 0.0401 4.48 

3A-F-D- 
T2

3 

2534.11 0.0419 

6A-H-S- 
T2

1 

2755.56 19.96 0.0257 -1.16 

6A-F-D- 
T2

1 

3305.58 0.0254 

6A-H-S- 
T1

6 

2305.15 101.21 0.0319 14.10 

6A-F-D- 
T1

6 

4638.30 0.0364 

3A-H-S- 
T3

1 

1784.86 23.23 0.0403 1.98 

3A-F-D- 
T3

1 

2199.52 0.0411 

3A-H-S- 
T2

3 

1555.09 62.24 0.0419 4.29 

3A-F-D- 
T2

3 

2523.00 0.0437 

6A-H-S- 
T2

6 

2369.98 97.87 0.0356 11.79 

6A-F-D- 
T2

6 

4689.62 0.0398 

6G-H-S- 
T3

1 

2835.94 20.21 0.0388 1.80 

6G-F-D- 
T3

1 

3409.12 0.0395 

6G-H-S- 
T2

3 

2349.16 58.87 0.0390 6.41 

6G-F-D- 
T2

3 

3732.27 0.0415 

6G-H-S- 
T2

6 

2562.43 100.08 0.0435 13.33 

6G-F-D- 
T2

6 

5126.92 0.0493  
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3.4. Effect of type of FRP 

In this section, we delve into the outcomes of comparing the AFRP 
and GFRP confined columns, focusing on their ultimate load-carrying 
capacity and ultimate axial strain response. 

As presented in Table 12 and Figs. 18 and 19, the type of the FRP 
material employed for the confinement considerably impacts the 
behaviour of the columns. The ultimate load-carrying capacity is a 
fundamental indicator of a column’s structural strength, and it is evident 
that GFRP-confined columns demonstrate higher load-carrying capac-
ities than their AFRP-confined counterparts. 

This observed trend aligns with the mechanical properties of GFRP 
and AFRP highlighted in Table 2, where GFRP exhibited higher peak 
tensile strength than AFRP. This higher tensile strength allows GFRP to 
withstand higher loads before failure, translating into higher load- 
carrying capacities witnessed in the GFRP-confined columns. Tran-
sitioning from AFRP to GFRP confinement leads to a substantial increase 
in the ultimate load-carrying capacity for both the DSHT and DSDFT 
columns. The DSHT columns displayed an increase ranging from 
4.79–8.12 %, while the DSDFT columns provided improvements ranging 
from 9.32–13.08 % in the load-carrying capacity. Additionally, the 
GFRP-confined columns indicated approximately 25 % higher ultimate 
axial strains compared to the AFRP-confined DSHT and DSDFT columns. 
This aligns with their distinct mechanical behaviours under the applied 
loads. GFRP exhibited a higher peak axial strain of 3.21 %, showcasing 
superior elongation capabilities and enhanced ductility compared to 
AFRP, which demonstrated a peak axial strain of 1.86 %, as can be seen 
in Table 2. This observation is consistent with findings reported by 
Albitar et al. [30], for GFRP and AFRP-confined concrete. 

4. ML results and discussion 

The FEM investigation has yielded valuable insights into the col-
umns’ behaviour, encompassing the impact of variables such as the 
introduction of double steel tubes, type of FRP confinement, concrete 
strength, confinement layers, and steel tube dimensions. These insights 
have laid the groundwork for the formulation and training of the ML 
models. By assimilating the knowledge garnered from the FEM study, 
the ML models were endowed with the capacity to comprehend and 
encapsulate the intricate relationships between the input parameters 
and output predictions. Through a juxtaposition of the ML predictions 
against the FEM outcomes, a comparative assessment became feasible, 
facilitating the determination of the ML models’ efficacy in 

Fig. 12. Effect of double steel tubes on load-strain curve of: (a) GFRP 
confinement and (b) AFRP confinement. 

Fig.13. Ultimate axial load of DSHT and DSDFT columns.  
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approximating the load-carrying capacity and ultimate strain of the 
columns. This holistic evaluation has thereby enabled a comprehensive 
appraisal of the ML models’ performance and their proficiency in 
replicating the observed behaviour derived from the FEM analysis. 

4.1. Prediction results of MARS model 

The predictive outcomes of the MARS model are detailed in Table 12. 
Evidently, the MARS model achieved a R2 value of 0.918 during the 
training phase and a R2 value of 0.900 during the testing phase. This 

indicates a comparable performance between the two stages, with an 
accuracy surpassing 90 %. Further, the precision of error metrics 
exceeded 94 %, as evident from Table 13, with these values closely 
aligning with the ideal benchmarks. The regression plot, comparing the 
actual and predicted values obtained using the MARS model for training 
and testing, is also presented in Fig. 20, providing a visual insight into 
the model’s performance. 

4.2. Prediction results of LS-SVM model 

The predictive outcomes of the LS-SVM model are elaborated in 
Table 14. Evidently, the R2 value for the LS-SVM model during training 
is 0.956, while for testing, it stands at 0.904. In comparison to the MARS 
model, the LS-SVM model displays a higher R2 value during training. 
However, during the testing stage, both models indicated equivalent R2 

values, signifying the consistent performance of the MARS model across 
both phases. In contrast, the LS-SVM model’s performance appears to 
wane during testing. It can be observed from Fig. 21 that the LS-SVM 
model predicted the values almost similar to the actual values, 
whereas in the testing stage, significant error in the prediction can be 
seen. 

4.3. Prediction results of LSTM model 

The predictive outcomes of the LSTM model are as follows: during 
training, an exceptional R2 value of 0.992 was achieved, while during 
testing, the model maintained an impressive R2 value of 0.945. These 
remarkable R2 values are indicative of the LSTM model’s superior pre-
dictive capabilities. Complementing this, the error metric value indi-
cated a minimal, nearly zero magnitude, as clearly evident from 
Table 15. Fig. 22 also establishes that the predicted values are very close 
to the actual values in the training and testing stages, reaffirming its 
accuracy and proficiency across both the stages. 

4.4. Prediction results of BI-LSTM model 

In congruence with the LSTM model, the BI-LSTM model depicts 
impressive predictive prowess in both the training and testing stages. 
Notably, the BI-LSTM model illustrates a slightly enhanced predictive 
performance during the testing phase, surpassing even the commend-
able results of the LSTM model. This observation underscores the BI- 
LSTM model’s ability to yield more accurate predictions during the 
testing stage compared to its LSTM counterpart. The results of the pre-
diction are pointed out in Table 16, and the comparison between the 
actual and predicted values for the BI-LSTM model is shown in Fig. 23. 

The predicted values derived from the four distinct models, encom-
passing both the training and testing phases, are subjected to a 
comprehensive assessment using Taylor diagrams. These diagrams, 
serving as statistical evaluation tools, portray standard deviations, cor-
relation coefficients, and RMS differences within a two-dimensional 
framework. The radial distance from the centre conveys standard de-
viation, the RMS error corresponds to the deviation between the actual 
and projected values’ units, and the azimuthal angle signifies the cor-
relation coefficient. The proximity to the designated reference point 
("Ref") determines the optimal prediction model direction. The Taylor 
diagrams for both the training and testing stages are demonstrated in 
Figs. 24 and 25, respectively. 

Notably, during the training phase, the LS-SVM, LSTM, and BI-LSTM 
models highlighted marker positions closer to the "Ref" point, implying 
their superior performance compared to the MARS model. Similarly, in 
the testing phase, the MARS and LS-SVM models highlighted positions 
farther from the reference point compared to the LSTM and BI-LSTM 
models, confirming the statistical findings. 

An additional evaluation metric employed is the accuracy matrix, a 
novel heat map matrix designed to gauge a model’s accuracy across 
multiple performance metrics [53]. As displayed in Fig. 26, the accuracy 

Table 10 
Comparison of axial load and axial strain for different FRP thicknesses in DSDFT 
and DSHT columns.  

Specimen Axial load 
(kN) 

Increment 
(%) 

Axial strain (mm/ 
mm) 

Increment 
(%) 

4G-F-D- 
T1

1 

3007.73 15.42 0.0359 -0.83 

6G-F-D- 
T1

1 

3471.55 0.0356 

4G-F-D- 
T1

2 

3303.90 15.47 0.0404 -1.98 

6G-F-D- 
T1

2 

3815.11 0.0396 

4G-F-D- 
T1

3 

3290.96 14.18 0.0378 -2.38 

6G-F-D- 
T1

3 

3757.88 0.0369 

4G-F-D- 
T1

4 

2836.69 11.26 0.0315 -1.58 

6G-F-D- 
T1

4 

3156.37 0.0310 

4G-F-D- 
T1

5 

4223.11 9.95 0.0392 -2.29 

6G-F-D- 
T1

5 

4643.45 0.0383 

4A-F-D- 
T2

3 

2914.89 13.22 0.0325 -3.07 

6A-F-D- 
T2

3 

3300.33 0.0315 

1A-F-D- 
T3

1 

1480.27 48.58 0.0426 -3.52 

3A-F-D- 
T3

1 

2199.52 0.0411 

1A-F-D- 
T2

3 

1799.95 40.17 0.0462 -5.41 

3A-F-D- 
T2

3 

2523.00 0.0437 

6G-H-S- 
T1

1 

2903.98 13.31 0.0345 -0.28 

8G-H-S- 
T1

1 

3290.76 0.0344 

6G-H-S- 
T1

2 

2720.82 13.07 0.0373 -1.07 

8G-H-S- 
T1

2 

3076.69 0.0369 

6G-H-S- 
T1

3 

2396.09 10.72 0.0345 -3.18 

8G-H-S- 
T1

3 

2653.04 0.0334 

6G-H-S- 
T1

4 

1824.95 14.31 0.0307 -2.93 

8G-H-S- 
T1

4 

2086.21 0.0298 

6G-H-S- 
T1

5 

2338.36 12.77 0.0343 -3.20 

8G-H-S- 
T1

5 

2637.01 0.0332 

4A-H-S- 
T2

3 

1907.36 17.56 0.0306 -1.63 

6A-H-S- 
T2

3 

2242.33 0.0301  
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matrix reveals that predictive models (LS-SVM, LSTM, and BI-LSTM) 
achieve notable accuracy during training. Among these, the MARS 
model revealed slightly lower accuracy for the performance parameters 
R2 and Adj.R2. 

In the testing stage, a reduction in the accuracy is evident for the 

MARS and LS-SVM models, highlighted by red tones in the accuracy 
matrix. In contrast, the LSTM and BI-LSTM models sustain their per-
formance during testing, indicated by the yellow tones in the accuracy 
matrix. Through a comprehensive comparison of the overall perfor-
mance of the developed models, it can be concluded that, among the 

Fig.14. Effect of FRP tube thickness on load-strain curve.  

Fig.15. Effect of FRP tube thickness on ultimate axial load of DSHT and DSDFT columns.  

Table 11 
Comparative analysis of axial load and axial strain with varying steel tube diameters in DSDFT and DSHT columns.  

Specimen Axial load 
(kN) 

Axial strain (mm/mm) Specimen Axial load (kN) Increment (%) Axial strain (mm/mm) Increment (%) 

6G-H-S-T1
1 2903.98 0.0345 6G-H-S-T1

2 2720.82 -6.31 0.0373 8.11 
6G-H-S-T1

3 2396.09 -17.49 0.0345 0 
6G-H-S-T1

4 1824.95 -37.16 0.0307 -11.01 
6G-H-S-T1

5 2338.36 -19.47 0.0343 -0.01 
4G-F-D-T1

1 3007.73 0.0359 4G-F-D-T1
2 3303.90 9.85 0.0404 12.53 

4G-F-D-T1
3 3290.96 9.41 0.0378 5.29 

4G-F-D-T1
4 2836.69 -20.64 0.0315 -12.25 

4G-F-D-T1
5 4223.11 40.41 0.0392 9.19 

8G-H-S-T1
1 3290.76 0.0344 8G-H-S-T1

2 3076.69 -6.51 0.0369 7.26 
8G-H-S-T1

3 2653.04 -19.37 0.0334 -2.91 
8G-H-S-T1

4 2086.21 -36.60 0.0298 -13.37 
8G-H-S-T1

5 2637.01 -19.86 0.0332 -3.48  
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four proposed models, the LSTM and BI-LSTM models are well-suited for 
predicting the results of the considered output. Meanwhile, the MARS 
and LS-SVM models can satisfactorily predict the output results. 

The relationships and interactions between the output and four input 
variables that were considered in the current study for the ML analysis 
are explained using the SHapley Additive exPlanations (SHAP) analysis 
process. Shapley values, which are produced by applying game theory 
coalitions, are used in the SHAP analysis process to explain the contri-
bution of each feature to each prediction. The SHAP global explanations 
and mean absolute SHAP values of the BI-LSTM model are depicted in 
Figs. 27 and 28. It is also evident that increasing Input 1, Input 2, Input 
3, and Input 4 will increase the Output, and vice versa, as indicated by 
the red points (higher values) at the rightmost position in Fig. 27. It can 
also be seen from Fig. 28 that Input 2 and Input 1 dominate the pre-
diction of output as compared to Input 4 and Input 3. There is a corre-
lation between these observations and the dataset that was used in the 
research. If there are more data points, then the obtained results will be 
more accurate. 

Fig.16. Effect of steel tube diameter on load-strain curve.  

Fig.17. Effect of steel tube diameter on ultimate axial load of DSHT and DSDFT columns.  

Table 12 
Comparative analysis of axial load and axial strain with different FRP types in 
DSDFT and DSHT columns.  

Specimen Axial load 
(kN) 

Increment 
(%) 

Axial strain 
(kN) 

Increment 
(%) 

6A-H-S- 
T2

3 

2241.74 4.79 0.0301 29.57 

6G-H-S- 
T2

3 

2349.16 0.0390 

6A-H-S- 
T2

6 

2369.98 8.12 0.0356 22.19 

6G-H-S- 
T2

6 

2562.43 0.0435 

6A-F-D-T2
3 3300.33 13.08 0.0315 31.74 

6G-F-D- 
T2

3 

3732.27 0.0415 

6A-F-D-T2
6 4689.62 9.32 0.0398 23.86 

6G-F-D- 
T2

6 

5126.92 0.0493  
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5. Conclusions 

This study presented a novel configuration of DSDFT columns and 
investigated the structural behaviour of 48 GFRP and AFRP confined 
circular DSHT and DSDFT columns using a combination of FEM and ML 
techniques. The finite element modelling of columns was done using the 
ABAQUS software. Extensive validation of FEMs against the experi-
mental results of three different research works was conducted ensuring 

the accuracy and reliability of the developed models. The study exam-
ined the impact of the double steel tube configuration, thickness of FRP, 
steel tube diameter, and type of FRP on the columns’ ultimate axial load- 
carrying capacity and ultimate axial strain. A dataset of 82 entries forms 
the basis of the ML models, with the output parameter being the axial 
load-carrying capacity of the columns. Four different ML algorithms 
were evaluated for the same. The findings offer valuable insights into the 
performance of the DSHT and DSDFT columns across various parame-
ters, shedding light on their behaviour. The key findings of the study are:  

a) Double steel tube configuration: The study highlighted the benefits 
of employing double steel tubes and concrete infill configuration for 
enhancing the load-carrying capacity and ductility of the columns. 
Across different initial steel tube diameters, the DSDFT columns 
exhibited 19.54 % to 101.21 % increases in the ultimate axial load 
compared to the DSHT columns. The DSDFTs’ additional inner steel 
tube and concrete infill enhanced load redistribution, confinement 
effects, and structural integrity. Additionally, the DSDFT columns 

Fig. 18. Effect of FRP type on load-strain curve.  

Fig. 19. Effect of FRP type on ultimate axial load of DSHT and DSDFT columns.  

Table 13 
Prediction performance of MARS.  

Index Metric Training score Testing score 

1 R2 0.918 0.900 
2 Adj.R2 0.911 0.880 
3 RMSE 0.055 0.083 
4 MAE 0.046 0.059  

L. Ali et al.                                                                                                                                                                                                                                       



Composites Part C: Open Access 13 (2024) 100444

19

demonstrated higher ductility, as seen at an outer steel tube diameter 
of 60.3 mm with a 3.18 % increase in the ultimate axial strain 
compared to the DSHT. The DSDFT columns provided substantial 
enhancements in the load-carrying capacity and ductile behaviour, 
promising advancements in structural engineering applications. In-
dustries can consider incorporating this configuration in structural 

design to maximise the performance of confined columns under the 
axial compression. This approach could be particularly useful in 
applications where the load-carrying capacity and deformation 
behaviour are critical, such as in high-rise buildings or seismic- 
resistant structures. 

Fig. 20. Regression plot of MARS model for training and testing.  

Table 14 
Prediction performance of LS-SVM.  

Index Metric Training score Testing score 

1 R2 0.956 0.904 
2 Adj.R2 0.952 0.885 
3 RMSE 0.041 0.086 
4 MAE 0.030 0.063  

Fig. 21. Regression plot of LS-SVM model for training and testing.  

Table 15 
Prediction performance of LSTM.  

Index Metric Training score Testing score 

1 R2 0.992 0.945 
2 Adj.R2 0.992 0.934 
3 RMSE 0.017 0.065 
4 MAE 0.013 0.050  
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b) FRP layer thickness optimisation: The investigation indicated the 
influence of the GFRP and AFRP layers’ thickness on the load- 
carrying capacity and ultimate axial strain. Increases in the thick-
ness of the GFRP layers notably boosted the ultimate axial load by 10 
% to 14 % in the DSHT columns, and 10 % to 15 % in the DSDFT 
columns. For the AFRP layers, the increase in the ultimate axial load- 
carrying capacity was up to 18 % for the DSHT columns and up to 40 
% for the DSDFT columns. However, the increased thickness brought 
heightened stiffness, limiting the deformation potential correlating 
with a reduction in the ultimate axial strain by 4 % to 5 %. Industries 

Fig. 22. Regression plot of LSTM model for training and testing.  

Table 16 
Prediction performance of BI-LSTM.  

Index Metric Training score Testing score 

1 R2 0.991 0.955 
2 Adj.R2 0.991 0.946 
3 RMSE 0.018 0.057 
4 MAE 0.013 0.044  

Fig. 23. Regression plot of BI-LSTM model for training and testing.  
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can leverage this insight to fine-tune the number of FRP layers in 
confined columns based on specific project requirements. Designers 
can select an appropriate thickness to achieve desired load-carrying 
capacities while considering the potential trade-offs with the 
ductility.  

c) Selection of FRP material: The comparison between the AFRP and 
GFRP confined columns highlights pivotal differences in the ultimate 
load-carrying capacity and axial strain response. The GFRP-confined 
columns consistently exhibited 5 % to 13 % higher load-carrying 
capacities and 25 % higher ultimate axial strain than their AFRP 

Fig. 24. Taylor diagram for training stage.  

Fig. 25. Taylor diagram for testing stage.  
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counterparts, in line with the GFRP’s superior peak tensile strength 
and peak axial strain. In industrial applications where structural 
strength and deformation behaviour are paramount, utilising the 
GFRP confinement can lead to more robust and resilient structures.  

d) Consideration of steel tube diameter: The study revealed the impact 
of the steel tube diameter on the confined columns’ behaviour. For 
the DSHT columns, a larger outer steel tube diameter led to a 
decrement in the ultimate axial load-carrying capacity due to 
reduced concrete presence between FRP and steel tube. Notably, 
there was an approximate 37.16 % decrease in the load-carrying 
capacity, as the steel tube diameter increased from 60.3 mm to 
101.6 mm. In contrast, the DSDFT columns exhibited a proportional 
increase in both the load-carrying capacity and strain with larger 
outer steel tube diameters. The ultimate axial load-carrying capacity 
notably rose by about 40.41 %, and the ultimate strain increased by 
9.19 % going from 60.3 mm to 114.6 mm diameter. By carefully 
selecting the steel tube diameter, designers can optimise the load- 
carrying capacity while maintaining acceptable levels of ductility.  

e) Structural Retrofitting: The findings can be applied to retrofitting 
existing structures to enhance their load-carrying capacity and 
deformation behaviour. By strategically incorporating the insights 
from this study, industries can revitalise ageing infrastructure while 
ensuring compliance with modern structural standards.  

f) ML Models: The analysis assessed four ML models. The MARS model 
consistently achieved over 90 % accuracy, while the LS-SVM model 
showed higher training R2 but decreased in testing. In contrast, the 
LSTM and BI-LSTM models maintained exceptional accuracy across 
both phases, with the latter slightly outperforming the former. 
Evaluation tools confirmed LSTM and BI-LSTM superiority, espe-
cially in testing, while the SHAP analysis highlighted Input 1 and 
Input 2′s crucial role in the predictions. Overall, LSTM and BI-LSTM 
stood out for accurate predictions, while MARS and LS-SVM per-
formed adequately. 

Fig. 26. Accuracy matrix of ML models for output 1 for training and testing stages.  

Fig. 27. SHAP global explanation for output from BI-LSTM model.  

Fig. 28. Mean absolute SHAP values for output from BI-LSTM model.  
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