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The Theory of Joining-Systems
Lars Lindahl and Jan Odelstad

abstract. The theory of joining-systems (TJS), as developed in
this chapter, consists of three main parts, developed after the infor-
mal introduction and overview in Sections 1 and 2. One part (Section
3) is the abstract theory of joining-systems, providing the framework
for the subsequent analysis. Two other parts introduce those concepts
and results of the theory that are in focus for the representation of
normative systems. The first of these parts (Section 4) presents the
model of condition implication structures (cis’s) as applied to well-
known issues in legal theory. In the second part (Section 5), the cis
model of TJS is applied to a comprehensive new field, namely the
theory of “intervenients”. In a developed normative system, interve-
nient concepts serve as vehicles of inference for going from ultimate
descriptive grounds to ultimate deontic consequences. Among the
issues dealt with are: Boolean compounds of intervenients, interve-
nients as organic wholes, narrowing or widening of intervenients, the
typology of various kinds of intervenient minimality.

1 The field of research and its origins . . . . . . . . . . . . . . . 546
1.1 Cases and solutions in the theory of Alchourrón and

Bulygin . . . . . . . . . . . . . . . . . . . . . . . . . . 546
1.2 Input-output logic . . . . . . . . . . . . . . . . . . . . 548
1.3 The theory of joining-systems TJS . . . . . . . . . . . 549
1.4 TJS for simple normative systems . . . . . . . . . . . 549
1.5 Normative positions in TJS . . . . . . . . . . . . . . . 550
1.6 Subtraction and addition of norms in TJS . . . . . . . 551
1.7 Intermediaries and intervenients . . . . . . . . . . . . 552
1.8 Advice to readers . . . . . . . . . . . . . . . . . . . . . 562

2 First introduction to TJS . . . . . . . . . . . . . . . . . . . . 562
2.1 General TJS irrespective of intervenients . . . . . . . . 562
2.2 Intervenients in TJS . . . . . . . . . . . . . . . . . . . 564

3 Formal development of TJS . . . . . . . . . . . . . . . . . . . 566
3.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . 566
3.2 Joining-systems . . . . . . . . . . . . . . . . . . . . . . 568
3.3 Weakest grounds, strongest consequences and mini-

mal joinings . . . . . . . . . . . . . . . . . . . . . . . . 575

Handbook of Deontic Logic and Normative Systems, 545–634.
© 2013, Lars Lindahl and Jan Odelstad.



546 Lars Lindahl and Jan Odelstad

3.4 Connectivity . . . . . . . . . . . . . . . . . . . . . . . 577

3.5 Lowerness . . . . . . . . . . . . . . . . . . . . . . . . . 582

3.6 The structure on minimal joinings . . . . . . . . . . . 586

3.7 Networks of joining-systems . . . . . . . . . . . . . . . 590

3.8 Intervenients . . . . . . . . . . . . . . . . . . . . . . . 591

4 TJS for Boolean joining-systems . . . . . . . . . . . . . . . . 593

4.1 Boolean quasi-orderings and Boolean joining-systems . 593

4.2 The condition implication model (cis) . . . . . . . . . 596

4.3 Subtraction and addition of norms: an example . . . . 598

4.4 The cis version of normative positions . . . . . . . . . 604

5 Intervenients for Boolean joining-systems . . . . . . . . . . . 612

5.1 Introductory remarks on intervenients in Bjs’ . . . . . 612

5.2 cis’ with intervenients . . . . . . . . . . . . . . . . . . 615

6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 625

6.1 Previous work of ours . . . . . . . . . . . . . . . . . . 625

6.2 Recent work of others . . . . . . . . . . . . . . . . . . 627

1 The field of research and its origins

In the analysis of normative systems, one of the approaches is to represent a
normative system as a deductive mechanism, giving a normative output for
an input of facts. In modern literature, the foremost origin of this approach
is the work Normative Systems by the Argentinians Carlos E. Alchourrón
and Eugenio Bulygin. To this tradition belongs as well the recent “input-
output logic” by David Makinson and Leon van der Torre and the Theory
of Joining-Systems (TJS) proposed by the present authors.

A theory of representation for normative systems will be incomplete un-
less attention is paid to the role of intermediate concepts within the system
(for example, the role of legal concepts such as ownership). If a normative
system is represented as a deductive mechanism, there will be an emphasis
on the role of intermediate concepts as “vehicles of inference” within the
system. In this respect, the origin of later developments comes from Scan-
dinavian legal philosophy in the 1950’s, in particular the work of Anders
Wedberg and Alf Ross.

1.1 Cases and solutions in the theory of Alchourrón and
Bulygin

Alchourrón and Bulygin introduce the idea of deductive mechanism by con-
trasting the Aristotelian conception of science with the idea of deductive
system in modern theory [Alchourrón and Bulygin, 1971, pp. 43ff.]. The
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notion of deductive system is based on Tarski’s notion of deductive conse-
quence, satisfying the following four requirements [Alchourrón and Bulygin,
1971, pp. 48ff.]:

1. The set of the consequences of a set of sentences consists solely of
sentences.

2. Every sentence belonging to a given set is to be regarded as a conse-
quence of this set.

3. The consequences of the consequences are, in turn, consequences.

4. If a sentence of a conditional form (y ⊃ z) is a consequence of the
set of sentences X, then z is a consequence of the set of sentences
resulting from adding to X the sentence y.

Adopting the Tarskian conception of deductive system, Alchourrón and
Bulygin conceive of a normative system as a set of sentences deductively
correlating pairs of sentences. A set α of sentences deductively correlates a
pair 〈p, q〉 of sentences if q is a deductive consequence of {p} ∪ α, or, using
the relation Cn of consequence, if q ∈ Cn({p}∪α). Moreover, the statement
q ∈ Cn({p} ∪ α) is equivalent to (p ⊃ q) ∈ Cn(α) where ⊃ is the symbol
for truth-functional implication [Alchourrón and Bulygin, 1971, pp. 54ff.]

For a set α to be a normative system the additional requirement is made
that there be at least one pair 〈p, q〉 where q ∈ Cn({p} ∪ α) such that
p is a “case” and q is a “solution”. A solution is a normative sentence
expressed in terms of a descriptive sentence (deontic content) preceded by a
deontic operator for command, prohibition or permission. So, the character
of the system as normative depends on the deontic character of the solutions
inferred in the system. In the words of [Alchourrón and Bulygin, 1971,
p. 169]: “Justifying the deontic qualification of an action by means of a
normative system consists in showing that the obligation, the prohibition
or the permission of this action can be inferred from (i.e., is a consequence
of) this system.”

If propositional logic is used as a basis, it is usually presupposed that
p, q are closed sentences with no free variables, i.e., for example, p is the
sentence “Smith has promised to pay Jones $100” and q is “Smith has an
obligation to pay $100 to Jones”. In these sentences, individuals are referred
to by individual constants (names). While it is true that a normative system
may correlate sentences of this kind, a set of sentences containing individ-
ual names is not, however, an appropriate representation of a normative
system. A normative system expresses general rules where no individual
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names occur. If the task is to represent a normative system this feature of
generality has to be taken into account.

When Alchourrón and Bulygin speak of normative “solutions” being cor-
related to “cases”, however, they have in mind correlation of “generic” cases
to “generic” solutions. They emphasize the distinction between individual
and generic cases, and an analogous distinction holds for solutions. An in-
dividual case is a situation or a state of affairs. As such, appropriately, it
should be described by a closed sentence. On the other hand, a generic case
is a property or a set of individual cases, defined by a property.1 Therefore,
a “case” in the generic sense relevant to Alchourrón and Bulygin is an object
described by an open sentence. It can be argued that, when the expression
q ∈ Cn({p} ∪α) is said to express that α correlates q to p, q and p must be
thought of as “open” sentences (like “x has promised to pay $y to z”, “It
shall be that x pays $y to z”), not prefixed by any universal quantifier.2

1.2 Input-output logic

In a series of papers, Makinson and van der Torre have developed a logic
called “input-output logic”, see for example [Makinson and van der Torre,
2000; Makinson and van der Torre, 2003]. If G is a generating set, then
x ∈ out(G,A), i.e., x belongs to the output of A under G, if and only if
(A, x) ∈ out(G). The principal out-operation in input-output logic does not
require reflexivity or contraposition.

Input-output logic can, but need not, apply specifically to normative
systems, where norms are represented as ordered pairs.3 The construction
of norms in input-output logic, however, is different from the construction
in [Alchourrón and Bulygin, 1971]. In Alchourrón and Bulygin, if a is a case
and x is a solution, it is assumed that x is a normative sentence (a solution,
see above). In contrast, in input-output logic, a generating set G of ordered
pairs 〈a, x〉 can be understood as a set of conditional obligations in spite of
the fact that x, the consequence, is descriptive rather than normative. The
normative character, in this case, depends on the specific character of the
set G as a set of conditional obligations. (Similarly if 〈a, x〉 is a conditional
permission.)

For further details, the reader is referred to the Chapter “Input/output
logic” of the present Handbook. A remark on the interrelation between

1By an individual case is meant an element of the universe of discourse. See [Al-
chourrón and Bulygin, 1971, p. 28, and p. 10]. A generic case is described alternatively as
a subset of the universe of discourse, defined by a property, or as this defining property
itself. See [Alchourrón and Bulygin, 1971, p. 29].

2Cf. [Alchourrón and Bulygin, 1971, p. 49], and the comments in [Lindahl and Odel-
stad, 2004, sect. 1.1].

3[Makinson and van der Torre, 2000, p. 383 and p. 392].
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input-output logic and TJS is given below, Section 6.2.2.

1.3 The theory of joining-systems TJS

In TJS, implications are seen as relations between two objects. Thus a
statement “a implies b” expresses that an implicative relation holds from
a to b. The specific character of the objects a and b is a matter of which
model is chosen for the abstract theory.

A first view of TJS is as follows. A simple normative system contains
three basic kinds of implicative relations:

• a relation R1 over a set A1 of grounds,

• a relation R2 over a set A2 of consequences,

• a relation J from the grounds in A1 to the consequences in A2 (ex-
pressing the norms of the system).

We note that, though each of R1, R2 and J is a binary implicative
relation, the relation J is different in kind from R1, and R2. Thus while
the point of the latter two relations is to order elements of A1 and A2,
respectively, relation J is a “correspondence”, with the purpose of assigning
consequences in A2 to grounds in A1 and vice versa. (This is particularly
perspicuous in the case where A1 and A2 are disjunct.)

A picture of a joining relation is shown in Figure 1.
The resulting structures or systems are: The structure A1 = 〈A1, R1〉

of grounds, the structure A2 = 〈A2, R2〉 of consequences, and the system
〈A1,A2, J〉, called a joining-system, where the elements of J are joinings
from A1 to A2. (The elements of the joining relation J constitute a subset
of A1×A2, representing the norms of the normative system.) For a joining-
system 〈A1,A2, J〉, if 〈a1, a2〉 ∈ J (where a1 ∈ A1 and a2 ∈ A2), we say
that a1 is a ground for a2 and a2 is a consequence of a1.

To the three relations R1, R2, J will be added a fourth implicative or-
dering relation E, called “narrowness”, over the set of elements in J. These
elements (i.e., the norms from A1 ×A2) can be more or less “narrow”, and
this is expressed by the relation E . From another aspect, E expresses im-
plication between the norms in J. Thus, the expression 〈a1, a2〉 E 〈b1, b2〉
means that 〈a1, a2〉 is at least as narrow as 〈b1, b2〉, and also that 〈a1, a2〉
implies 〈b1, b2〉.
1.4 TJS for simple normative systems

TJS has a wider range of application than the representation of normative
systems. As will appear in Sections 2 and 3, the general theory of joining-
systems can be applied to quasi-orderings of any kind. Within this range, a
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Potential consequences, A2
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Figure 1.1.
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field of special interest is that of what may be called “Many-sorted implica-
tive conceptual systems” (cf. [Odelstad, 2008]). From the perspective to be
adopted here, a special area of this kind is the representation of normative
systems with conditional norms. In TJS, this problem is dealt with in terms
of joinings of normative consequences in A2 to grounds in A1.

If the sentence “a implies b” expresses a (conditional) norm, it is assumed
that b, the consequence, is normative. In this respect, the representation of
norms in TJS is akin to the theory of correlation of normative solutions to
cases in the work of Alchourrón and Bulygin, but different from the repre-
sentation of norms in input-output logic. The specific character of various
normative consequences in TJS is dealt with in terms of so-called normative
positions, made up by a combination of deontic concepts (constructed by
“Shall”, “May” for obligation and permission) and action concepts (con-
structed from “x sees to it that ...”).

1.5 Normative positions in TJS

An important refinement of classical deontic logic is the theory of normative
positions as the combination of a standard deontic operator Shall, express-
ing command (or May, expressing permission) with an action operator Do
(“Do(x,F )” for “x sees to it that F”), and exploiting the possibilities of
external and internal negation of sentences where these operators are com-
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bined. See Chapter “The theory of normative positions ” in the present
Handbook.

As an illustration, imagine a normative system N = 〈A1,A2, J〉 such
that 〈a1, a2, 〉 ∈ J. Suppose F is the condition that the police is informed of
which political party x sympathizes with. Let a1, a2 be as follows:

a1 : x is not suspected of any crime, and y is a police authority.

a2 the conjunction of (1)-(6) below:

(1) May Do(x,F )

(2) May Do(x, ¬F ),

(3) May (¬Do(x,F ) & ¬Do(x,¬F ))

(4) ¬May Do(y,F ) (= Shall ¬ Do(y,F ))

(5) May Do(y, ¬F ),

(6) May (¬Do(y,F ) & ¬Do(y,¬F ))

Among these, (1)-(3), (5-6) express permissions, while (4) expresses a
prohibition. (1) expresses that x may see to it that the police is informed
of which political party x sympathizes with, (2) that x may see to it that
the police is not so informed, (3) that x may be passive in this respect.
(4) expresses that it shall be the case that y (a police authority) does not
see to it that the police is informed, and so on. As will appear later, the
conjunction of (1)-(3) exemplifies one-agent type T1 of normative positions
while the conjunction of (4)-(6) exemplifies one-agent type T4.

As will be developed in Section 4.4 below, the TJS version of normative
positions combines the TJS approach to joining-systems with an explic-
itly algebraic model of the theory of normative positions. In the system
of grounds and consequences of a normative system, the algebraic version
of normative positions is an algebra of normative consequences intended to
handle the stratum A2 of a normative joining-system 〈A1,A2, J〉. In Sec-
tion 4.4.1, we introduce an example of conditional norms concerning the
normative positions of the owners of two adjacent estates.

1.6 Subtraction and addition of norms in TJS

An important issue within the representation of normative systems is the
handling of changes, in the sense of subtracting and/or adding norms to
the system. Section 4.3 below provides an example showing how TJS deals
with these issues in terms of the lattice-like structure of so-called mini-
mal joinings. The example concerns the legal effects of an illegal transfer
of goods belonging to someone else. We illustrate the transition from an
original normative system SI , satisfying specific requirements for minimal
joinings, via an unsatisfactory system SII , to systems SIII and SIV , once
more satisfying the requirements for joining-systems.
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1.7 Intermediaries and intervenients

1.7.1 Facts, normative positions and intermediaries

Legal rules attach obligations, rights, normative positions to facts, i.e., the
occurrence of actions and events, or the presence of circumstances. Norma-
tive positions are, so we might say, legal consequences of these facts. Facts
and normative positions are objects of two different sorts; we might call
them Is-objects and Ought-objects. In a legal system, when Ought-objects
are said to be “attached to” or to be “consequences of” Is-objects, there
is sense of direction. In a legal system, inferences and arguments go from
Is-objects to Ought-objects, not vice versa.

In the Is-Ought partition, something very essential is missing, namely
the great bulk of more specific legal concepts. A few examples are: prop-
erty, tort, contract, trust, possession, guardianship, matrimony, citizenship,
crime, responsibility, punishment. These concepts are links between grounds
on the left hand side and normative consequences on the right hand side of
the scheme below:
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Facts Links Normative positions
Events Ownership Obligations

Actions Valid contract Claims

Circumstances Citizenship (etc.) Powers (etc.)

Using this three-column scheme, we might say that ownership, valid con-

tract, citizenship etc. are attached to certain facts, and that normative

positions, in turn, are attached to these legal positions.

As an example, Amendment XIV, Section 1, of the Constitution of the

United States reads as follows:

All persons born or naturalized in the United States, and subject to the
jurisdiction thereof, are citizens of the United States and of the State wherein

Using this three-column scheme, we might say that ownership, valid con-
tract, citizenship etc. are attached to certain facts, and that normative
positions, in turn, are attached to these legal positions.

As an example, Amendment XIV, Section 1, of the Constitution of the
United States reads as follows:

“All persons born or naturalized in the United States, and sub-
ject to the jurisdiction thereof, are citizens of the United States
and of the State wherein they reside. No State shall make or
enforce any law which shall abridge the privileges or immuni-
ties of citizens of the United States; nor shall any State deprive
any person of life, liberty, or property, without due process of
law; nor deny to any person within its jurisdiction the equal
protection of the laws.”

Two central terms in this constitutional rule are “citizen” and “person”.
The rule enumerates grounds for being a citizen of the United States and
pronounces a number of legal consequences, expressed in terms of “shall”,
of this condition. It does not assert any grounds for being a “person”, but it
pronounces a number of legal consequences attached to personhood. Within
the U.S. constitutional system, the article just referred to is supplemented
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by other rules established by the Constitution and by constitutional court
decisions. These rules together, by specifying grounds and consequences,
indicate the role of the term “citizen” or “person” within the system.

1.7.2 Wedberg and Ross on vehicles of inference

In the 1950’s, each of the two Scandinavians Wedberg and Ross proposed
the idea that a legal term such as “ownership”, or “x is the owner of y at
time t” is a syntactical tool serving the purpose of economy of expression
of a set of legal rules.4

As an example, the function of the term “ownership” is illustrated as
follows by [Ross, 1951], cf. [Ross, 1956 and 1957]:

10

they reside. No State shall make or enforce any law which shall abridge the
privileges or immunities of citizens of the United States; nor shall any State
deprive any person of life, liberty, or property, without due process of law;
nor deny to any person within its jurisdiction the equal protection of the
laws.

Two central terms in this constitutional rule are îcitizenî and îpersonî.

The rule enumerates grounds for being a citizen of the United States and
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time tî is a syntactical tool serving the purpose of economy of expression
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As an example, the function of the term ìownershipî is illustrated as
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F1 →
F2 →
F3 →
�
Fp →

C1
C2
C3
�
Cn

O →

Figure 1.2.

be interpreted as follows:

F1Fp for: x has lawfully purchased y; x has inherited y; x has acquired
y by prescription, and so on.

4 In the same year 1951, when Ross published his well-known essay ìT˚-T˚î in a

Danish Festschrift [Ross, 1951] (English translation [Ross, 1956-57]), Wedberg published

an essay on the same theme in the Swedish journal Theoria [Wedberg, 1951]. Possibly,
the two authors arrived at these ideas independently of each other. Cf. [Wedberg, 1951,

p. 266], footnote 15, and [Ross, 1956-57, p. 822, footnote 6].

Figure 2

In the picture, the letters are to be interpreted as follows:

• F1 − Fp for: x has lawfully purchased y, x has inherited y, x has
acquired y by prescription, and so on.

• C1−Cn for: judgment for recovery shall be given in favor of x against
other persons retaining y in their possession, judgment for damages
shall be given in favor of x against other persons who culpably damage
y, if x has raised a loan from z that it is not repaid at the proper time,
z shall be given judgment for satisfaction out of y, and so on.

The letter “O” is a link between the left hand side and the right hand side.
It can be read “x is the owner of y”.

In Ross’s scheme, the number of implications to ownership from the
grounds for ownership is p (since the grounds are F1, ..., Fp); similarly the

4In the same year 1951, when Ross published his well-known essay “Tû-Tû” in a
Danish Festschrift [Ross, 1951] (English translation [Ross, 1956 and 1957]), Wedberg
published an essay on the same theme in the Swedish journal Theoria [Wedberg, 1951].
Possibly, the two authors arrived at these ideas independently of each other. Cf. [Wed-
berg, 1951, p. 266, n. 15], and [Ross, 1956 and 1957, p. 822, n. 6].
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number of implications from ownership to consequences of ownership is n
(since there are n consequences). Therefore, the total number of implica-
tions in the scheme is p + n. On the other hand, if the rules were formu-
lated by attaching each Cj among the consequences to each Fi among the
grounds, the number of rules would be p · n. Consequently, by the formu-
lation in the scheme, the number of rules is reduced from p · n to p + n, a
number that can be much smaller [Wedberg, 1951, pp. 273f.]. In this way,
economy of expression is obtained.5 (Cf., however, below, Section 1.7.4, on
reductionism.)

1.7.3 Intermediaries and meaning

Both Wedberg and Ross emphasize that intermediaries like “ownership”
fulfil their deductive purpose even if they are not defined. Ross claims that
“ownership” is a meaningless word in legal language:

“... the ‘ownership’ inserted between the conditioning facts and
the conditioned consequences is in reality a meaningless word,
a word without any semantic reference whatever, serving solely
as a means of presentation.” [Ross, 1956 and 1957, p. 820]

Already in 1944 (in a lecture in Uppsala), Anders Wedberg proposed the
idea that the concept of a “right”, as it appears in a normative system, is a
syntactical tool for inferences, not a concept with “independent meaning”.

“In the normative rules, the concepts of rights function as syn-
tactical tools, not as concepts with independent meaning.” (See
[Lindahl, 2004, p. 189, n. 16] for the reference.)

In his essay in 1951, [Wedberg, 1951], Wedberg, more cautiously, proposes
this as a “third alternative”, beside the alternatives of defining ownership
in terms of grounds or in terms of consequences, respectively (alternatives
one and two).

A plausible interpretation of Wedberg’s idea of “not independent mean-
ing” is that the rules stating the grounds and consequences of ownership
(cf. Ross’s figure above) are meaningful and that the sentence “O is the
property of P at t” has a purposeful role as a component of these rules but
that it has no meaning in abstraction from the rules where it functions as
a vehicle of inference.

5The similarities between Wedberg’s and Ross’ ideas are striking. Both use the ex-
ample of ownership. Central ideas propounded by both of them are: By use of the
linking term, the number p · n of rules is reduced to p+ n, and, the linking term has no
independent meaning (Wedberg) or has no semantical reference (Ross).
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“It may be shocking to unsophisticated common sense to ad-
mit such ‘meaningless’ expressions in the serious discourse of
legal scientists. But, as a matter of fact, there is no reason
why all expressions employed in a discourse, which as a whole is
highly ‘meaningful’, should themselves have a ‘meaning’.”[Wed-
berg, 1951, p. 273]

[Sartor, 2009] contrasts the idea of vehicles of inference with the idea
of legal concepts as “categories” in a domain ontology.6 In the latter per-
spective, meaning inheres in words or terms, and the meaning of sentences
results from the meaning of their lexical components. (See [Sartor, 2009,
pp. 236f.]. In jurisprudential writing, systematization is sometimes achieved
by the ordering of legal concepts in conceptual trees or pyramids.7 (As a
well-known analogue from natural science, we may think of the Linnaean
system of plants, which influenced eighteenth century conceptual jurispru-
dence in Germany.) If such an ordering is to be congruent with an existing
normative system, however, it should accord with the role the concepts have
as vehicles of inference within the system. If A and B are subcategories of
category C, then category C indicates some properties which members of A
and B have in common.8 As regards concepts in a normative system, these
common properties may regard either grounds or consequences or both,
according to the rules of the system in view.

Since there are many legal systems, there are (to take an example) many
concepts of ownership, more or less similar. Thus one concept of ownership
is ownership as a vehicle of inference in Swedish private law on January 1st
2010. This concept of ownership is determined by the particular normative
system referred to; consequently, the concept is replaced by another when-
ever the grounds or consequences of ownership in the system are changed.
We note that, when several different concepts (for example, ownership in
actual Swedish law and ownership in Anglo-Saxon common law) are called
“concepts of ownership”, it is suggested that these varieties have proper-
ties in common, justifying that they are called “concepts of ownership”. In
particular, the concepts in view can have a common historical origin, and
the “institution” that they are used for expressing (the institution of owner-
ship) can have the same social purpose or function in the different systems.

6An earlier version of Sartor’s paper is [Sartor, 2007].
7Cf. [Lindahl, 2000], in particular pp. 166f., on the reasoning of the German eigh-

teenth century jurist Georg Friedrich Puchta. A systematization of concepts appears
as well in the arrangement of norms in civil codes such as the German Bürgerliches
Gesetzbuch and the French Code Civil.

8A recent development is the idea of semantic networks and inheritance, see [Horty et
al., 1990], (referred to by [Sartor, 2009, p. 243, n. 27]. The focus in [Horty et al., 1990] is
on defeasibility, in this case “multiple inheritance with exceptions”.
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Considerations of this kind are relevant for a critical assessment of the own-
ership rules of particular normative systems, and may cause assessment of
what is the “essential content” of ownership.9

1.7.4 Reductionism

In the Ross-Wedberg example on ownership, the set of legal rules illustrated
by the picture can be reformulated in two rules:

(1) (F1 ∨ ... ∨ Fm)→ O.

(2) O → (S1 ∧ ... ∧ Sn).

If the middle term M is eliminated, we get the single rule:

(3) (F1 ∨ ... ∨ Fm)→ (S1 ∧ ... ∧ Sn).

The most economical way to express the rules of the two arrays above
would seem to be by a single sentence like (3). By reductionism regarding
intermediaries is meant the idea that legal reasoning might in general pro-
ceed directly from facts to normative consequences so as to dispense with
intermediate concepts.

Concerning the accomplishment of reduction, two complications have to
be born in mind. Firstly, the bulk of so-called “legal” concepts are interme-
diaries, and these intermediaries constitute complex networks. (Cf. [Lin-
dahl and Odelstad, 2011]) Secondly, many legal intermediaries are vague or
“open textured”, so that power to decide on grounds and consequences for
the intermediaries is conferred on judges and other persons who apply the
law (see below, Section 5.2.2).

The question whether, in principle, it is possible to do away with the
intermediaries is complex and will not be answered here. A formal theory
for handling intermediaries, however, is needed both for any attempt to
eliminate them and for representing the system as it is without reduction.

1.7.5 Open legal concepts

As mentioned, there are numerous cases where legal concepts are vague or
“open textured”, and power to interpret the concepts is conferred on judges
and other persons who apply the law. Obvious examples are such concepts
as “negligent” or “reasonable” but considerable openness also is a feature
of such concepts as “public interest”, “contract” and “ownership”.

9To exemplify, in German constitutional law there is a guarantee of protection for
the “essential content” (Wesensgehalt) of the basic rights of the German Constitution.
In an essay by the Swedish philosopher Ingemar Hedenius, Max Weber’s idea of “ideal
types” is applied to the concept of ownership, where normative systems are represented
as different alternatives of fulfilment on each of several dimensions. (See [Hedenius, 1977,
pp. 130-55].) According to Hedenius’ proposal, the concept of ownership in particular
normative systems can be critically assessed according to their degree of fulfilment on
the dimensions introduced.
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An example might be the legal rule stipulating the ground for what, in
Swedish law, is called “having a relationship similar to being married”. If
two persons are not married, nevertheless they can have a relationship sim-
ilar to being married. From such a condition particular legal consequences
follow by the law. First, if the relationship is dissolved, property acquired
by one of the parties for use in common shall be partitioned between the
parties according to rules similar to those applied when a marriage is dis-
solved. Secondly, if the relationship of the parties is dissolved, their dwelling
can be allotted to that party who needs it most.

The law does not specify exactly which facts give rise to a “relationship
similar to being married”.10 However, there are a number of criteria. Let
us consider the following eleven criteria, calling them F1, F2, ..., F11:

F1 : cohabiting, F2 : housekeeping in common, F3 : having chil-
dren in common, F4 : having sexual intercourse, F5 : having
confirmed the relation by a contract, F6 : living in emotional
fellowship, F7 : being faithful, F8 : giving mutual support, F9 :
sharing economic assets and debts, F10 : having no legal im-
pediments to marriage, F11 : having no similar relationship to
another person.

If all of the criteria are satisfied by persons i and j, their relationship is
“similar to being married“. Conversely, if none of them is satisfied, their
relationship is not “similar to being married”. These two rules belong to
established law.

However, the law does not say what is the result if some of the conditions
are satisfied while others are not. This means that, in a sense, the set of
grounds for having a relationship similar to being married is “open”, and
the grounds are not specified completely.

A great amount of legal concepts are “ground-open” like “relationship
similar to being married”. When such a concept occurs in a legal argu-
ment, there is room and need for decisions to be made by courts and other
authorities applying the law. This task is an obstacle to reductionist ef-
forts to do away with legal intermediaries in favor of rules attaching deontic
consequences directly to factual events, actions, circumstances. In legal ar-
gument from facts to deontic consequences, the argument is a sequence of
steps, passing through a number of stations involving legal concepts. Insofar
as the concepts are open, decisions have to be made step by step.

10In 2003, a new statute (SFS 2003: 376) on cohabitant partners (“sambor”) was
enacted in Sweden. In article 1, paragraph 1, there is a definition of “cohabitant part-
ners”, intended to be a little more precise: “By cohabitant partners is meant two persons
who live together permanently in a partner relationship and have their housekeeping in
common.” (Translated here.)
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“Relationship similar to being married” is a concept that is ground-
open, in the sense we have indicated. Similarly, a legal concept can be
consequence-open. Taking a concept like “ownership”, “citizenship” or
“matrimony”, for some deontic consequences it is established that they do
follow, for others it is established that they do not follow. However, there
are as well consequences for which it is not established whether they follow
or not. Then the concept is consequence-open.

“Being the owner of” can serve as an example of a concept that is to some
extent consequence-open. Thus it need not, for example, be entirely settled
to what extent and by what means the owner of an estate may exclude
others from entering on his/her ground.

The phenomenon of open concepts in a normative system is connected
with the limits on what can be achieved by a legislator. If a legislator at-
tempts to avoid openness, the probability increases that the norms enacted
become oversimplified. As clearly understood already by Aristotle, it is
not possible to create a complete legal code of “established law” without
incurring into error by oversimplification:

“.. all law is universal but about some things it is not possible
to make a universal statement which shall be correct. In those
cases, then, in which it is necessary to speak universally, but
not possible to do so correctly, the law takes the usual case,
though it is not ignorant of the possibility of error. And it is
none the less correct; for the error is [not] in the law nor in
the legislator but in the nature of the thing, since the matter
of practical affairs is of this kind from the start. When the law
speaks universally, then, and a case arises on it which is not
covered by the universal statement, then it is right, where the
legislator fails us and has erred by oversimplicity, to correct the
omission - to say what the legislator himself would have said
had he been present, and would have put into his law if he had
known. Hence the equitable is just, and better than one kind
of justice - not better than absolute justice but better than the
error that arises from the absoluteness of the statement. And
this is the nature of the equitable, a correction of law where it is
defective owing to its universality. In fact this is the reason why
all things are not determined by law, that about some things
it is impossible to lay down a law, so that a decree is needed.
For when the thing is indefinite the rule also is indefinite, like
the leaden rule used in making the Lesbian moulding; the rule
adapts itself to the shape of the stone and is not rigid, and so
too the decree is adapted to the facts.” [Aristotle, Nicomachean
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Ethics, EN 1137b]

The issue of open legal concepts will be dealt with in Section 5.2.2 below.

1.7.6 Intermediaries outside the realm of legal systems

The idea of intermediaries is applicable outside the realm of legal systems.
An example is Dummett’s theory of language. Dummett distinguishes be-
tween the conditions for applying a term and the consequences of its ap-
plication. According to Dummett both are parts of the meaning. Dum-
mett exemplifies by the use of the term “Boche” as a pejorative term Cf.
[Kremer, 1988; Lindahl and Odelstad, 2006a; Lindahl and Odelstad, 2008a;
Sartor, 2007; Sartor, 2009]. (Since the example is interesting from a philo-
sophical point of view, we use it even though it has the disagreeable feature
of being offensive to German nationals.)

“The condition for applying the term to someone is that he is
of German nationality; the consequences of its application are
that he is barbarous and more prone to cruelty than other Euro-
peans. We should envisage the minimal joinings in both direc-
tions as sufficiently tight as to be involved in the very meaning
of the word: neither could be severed without altering its mean-
ing. Someone who rejects the word does so because he does not
want to permit a transition from the grounds for applying the
term to the consequences of doing so. The addition of the term
‘Boche’ to a language which did not previously contain it would
produce a non-conservative extension, i.e., one in which certain
statements which did not contain the term were inferable from
other statements not containing it which were not previously
inferable.” [Dummett, 1973, p. 454]

Dummett’s example illustrates how the use of a word is determined by two
rules (1) and (2):

(1) Rule linking a concept a to an intermediary m : If a(x, y) then m(x, y),

(2) Rule linking intermediary m to a concept b : If m(x, y) then b(x, y).

The rules (1) and (2) can be compared to the rules of introduction and
rules of elimination, respectively, in Gentzen’s theory of natural deduction
in [Gentzen, 1934]. If this comparison is made, (1) is regarded as an in-
troduction rule and (2) as an elimination rule for m. (See [Lindahl and
Odelstad, 2008a, sect. 1.2.3].)

In natural science, the idea of “intermediate” has been applied to the term
“force” within physical theory. As is observed by [Wedberg, 1982, pp. 11ff.]



560 Lars Lindahl and Jan Odelstad

during the eighteenth century several thinkers thought of the forces spoken
of in mechanics as a kind of mathematical fictions, useful for describing the
movements of bodies in a convenient way. What exists in physical reality,
according to this view, are configurations of mass, speeds, and accelerations.
Forces are fictions, but they enable us to describe the interrelations of the
former entities in a compact way. As Wedberg mentions, Berkeley is among
the thinkers who held this opinion.

The position, held by Berkeley and others, that “force” is merely a device
for compact expression, closely resembles the idea of intermediaries. This
resemblance becomes even more obvious if the position in view is described
in Wedberg’s own words:

“If a body k with mass m is in a particular (spatial and tem-
poral) relation to certain other bodies, we say that a force of
magnitude f affects k. If a force of magnitude f affects k, then
k receives an acceleration a satisfying the equation:

(i) f = a ·m
Thus the force occurs as a middle term in the pair of hypothetical
statements:

(ii) Given a certain configuration of mass, a certain force exists.

(iii) Given a certain force, a certain acceleration results.

If the middle term is eliminated, we arrive at the conclusion:

(iv) Given a certain configuration of mass, a certain acceleration
results.” [Wedberg, 1982, p. 11]

An objection to Berkeley’s idea that forces are “fictions”, however, is
raised by Wedberg in pointing out that the term ”force” can be defined in
terms of such entities that Berkeley considers as real. Such a definition, in
Wedberg’s words, might be formulated as a definition of the entire statement
(see [Wedberg, 1982, p. 12]):

The body k exerts a force f upon the body k′.

A definition of this statement, then, can read as follows:

f is the product of the acceleration a, which k′ receives from k
and the mass of k′.

In connection with the possibility of defining “force” in terms of “real”
entities, we recall the possibility of defining ownership, either in terms of
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grounds or in terms of consequences (Wedberg’s “first” and “second” alter-
natives).

Another interesting example from physics is found in the work of Henri
Poincaré. Poincaré proposed that “gravitation” can be regarded as an in-
termediary (un intermédiaire). According to Poincaré, the proposition “the
stars obey Newton’s laws” can be broken up into two others, namely (1)
“gravitation obeys Newton’s laws” and (2) “gravitation is the only force
acting on the stars”. Among these, proposition (1) is a definition and not
subject to the test of experiment, while (2) is subject to such a test. “Grav-
itation”, according to Poincaré, is an intermediary. Poincaré maintains that
in science, when there is a relation between two facts A and B, an intermedi-
ary C is often introduced by the formulation of one relationship between A
and C, and another between C and B. The relation between A and C, then,
is often elevated to a principle, not subject to revision, while the relation
between C and B is a law, subject to such revision. See [Poincaré, 1907,
pp. 124f.], in the chapter “Is science artificial?” On the analogous question
of definition and norm in a normative system, cf. [Lindahl, 1997, p. 298].

Still another example concerns probability (see [Lindahl and Odelstad,
1999a]). Consider statements of the kind ”the probability of the event A
equals m” (where m is a real number). Using the notion of conditions,
introduced below in Section 4.2, page 596, one may speak of conditions on
events, for example the condition of having probability m. Such a condition
can be regarded as an intermediary between two conceptual structures, one
concerning frequencies and symmetries, and the other concerning how one
ought to choose between different games. It is a plausible idea that the
so-called objective, or frequency, interpretation of probability deals with
the structure of grounds for probability conditions, whereas the so-called
subjective interpretation deals with the structure of consequences. This
suggestion seems to assign a proper role to each of the two interpretations.

For a treatment of intermediate concepts in connection with weighing of
interests in urban planning, see [Odelstad, 2002; Odelstad, 2009].

1.7.7 Counts-as-theory

When a rule r of a legal system N attaches an intermediary m, e.g., “x and
y have made a contract to the effect that z“, to a conjunction a of facts, the
rule r can be expressed in different ways, e.g. “if a then m”, or, sometimes,
“a counts as m”. A logical analysis of sentences of the kind “x counts-as y in
s”, where s is an institution (s can be a normative system), was proposed in
[Jones and Sergot, 1996; Jones and Sergot, 1997].11 The work of Jones and

11The original motivation of Jones and Sergot was, so it seems, to give a formal char-
acterization of “institutionalized power”, see [Jones and Sergot, 1997, pp. 349ff.]. For a
comment on this matter, see [Lindahl and Odelstad, 2008a, sect. 3.5.3, n. 22].
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Sergot on “Counts-as” has been continued by a number of other authors,
in particular in the book-length study by Davide Grossi [Grossi, 2007]. For
further details on Counts-as, the reader is referred to Chapter “Constitutive
norms and counts as conditionals” of the present Handbook. A remark on
the interrelationship between Counts-as and TJS, see below, Section 6.2.1.

1.7.8 “Intervenient” as a technical notion in TJS

An essential part of the theory of joining-systems is the theory of interve-
nients. Though this theory aims at providing tools for analyzing interme-
diaries as they appear in law, language, morals, and so on, ”intervenient”
is a technical notion defined (see Definition 5.2, below, Section 5.1) at the
abstract algebraic level, used as a tool for analyzing different kinds of what,
informally, is called intermediaries. The notion of intervenient is tied to the
TJS approach, focusing on a normative system as a deductive mechanism
and on intermediaries as vehicles of inference. Therefore, in the develop-
ment of the theory of intervenients, the idea of economy of expression has a
central role. This relates both to the effective representation of a normative
system by intervenients and to changes in such a system accomplished by
changing grounds and/or consequences of intervenients.

Special themes regarding intervenients dealt with in this Chapter are
what we call “organic wholes” (Section 5.2.1), open concepts and “narrowing
of intervenients” (Section 5.2.2), and the typology of intervenients (Section
5.2.4).

1.8 Advice to readers

Though a substantial part of the chapter is abstract and formal, there are
as well several parts that are semi-formal. This holds for next Section
2, which is a first introduction to TJS, as well as for the subsections on
cis applications in Sections 4 and 5. More exactly, these subsections are:
Section 4.3 on subtraction and addition of norms, Section 4.4.1 on ownership
to an estate, Section 5.2.1 on organic wholes of intervenients, Section 5.2.2
on open concepts and the “narrowing” of intervenients, and Section 5.2.3
on the legal example of grounds and consequences of ownership and trust.

2 First introduction to TJS

2.1 General TJS irrespective of intervenients

2.1.1 Strata and joining systems

The structure of grounds as well as the structure of consequences will be
called a stratum. The word “stratum” is understood here in the sense of
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the result of arrangement of the parts or elements of something.12 More
precisely, in TJS, the general structure of a stratum is a set A of objects,
ordered by an implicative relation R, which is binary, reflexive and transi-
tive. It is not assumed that R is antisymmetric, nor that it is not. In other
words, a stratum is conceived of as a quasi-ordering 〈A,R〉 of objects from
a set A. (Another term for quasi-ordering is preordering.) The relation R
is a relation ordering the objects within a stratum, and, therefore, is called
an intrastratum relation.

In TJS, the relation J is an interstrata implicative relation from elements
of a stratum of grounds to elements of a stratum of consequences. As will be
made more explicit subsequently, the relation J (which, normally, is not a
function) provides a “correspondence” between these two strata, depicting
the set of grounds on the set of consequences and vice versa. In this respect,
relation J differs from relation R which is an intrastratum ordering relation.

As mentioned (see Section 1.3), a joining-system 〈A1,A2, J〉 consists of
two strata A1,A2 and a relation J . TJS leaves room for different kinds of
structures over each of A1,A2. For 1 ≤ i ≤ 2, a stratum can be a quasi-
ordering 〈Ai, Ri〉, where Ai is (simply) a set, or it can be a “lattice-based
quasi-ordering” 〈Li,∧,∨, Ri〉, where 〈Li,∧,∨〉 is a lattice, or it can be a
“Boolean quasi-ordering”, 〈Bi,∧,′ , Ri〉, where 〈Bi,∧,′ 〉 is a Boolean algebra.
A special case is where, for a lattice-based quasi-ordering 〈Li,∧,∨, Ri〉 or a
Boolean quasi-ordering 〈Bi,∧,′ , Ri〉, Ri is the relation ≤ of 〈Li,∧,∨〉 or of
〈Bi,∧,′ 〉, respectively.

As will appear, the definition of “joining-system” is the same, indepen-
dently of which is the type of the strata connected in the joining-system,
only provided that each stratum fulfills the minimum requirement of being a
quasi-ordering. Thus while there is flexibility as regards the types of strata,
the definition of joining-system gives stability to the theory: As we will see,
a joining-system exhibits a number of important properties, relevant for the
representation of a normative system.

While both the intrastratum R and the interstrata J express implication,
an essential difference between R and J is that between “one-sort” objects
and “two-sorts” objects. In TJS, the intrastratum R is a relation between
objects conceived of as being of the same sort; in contrast, the interstrata
relation J is a relation between objects thought of as being of two sorts. As
regards normative systems, the idea of two sorts applies in particular to the
difference between empirical/descriptive and normative. (In another area,
consider the difference between physical and mental.)

12Cf. the online Free Dictionary: “One of a number of layers, levels, or divisions in
an organized system.” Note that “stratum” as used here is not to be understood in the
sense of: “one of several parallel layers of material arranged one on top of another.”
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Norms are represented by ordered pairs 〈a1, a2〉 where a1, a2 are of dif-
ferent sorts. The most general version of TJS is where the strata A1,A2 of
a joining-system 〈A1,A2, J〉 are simply quasi-orderings. A substantial part
of TJS will be developed within this general framework. As will appear, in
this version, TJS yields a number of results for the formal representation
of normative systems. In particular, by the relation E of narrowness (see
above, end of Section 1.3), there is an implicative structure over the norms
of the system, and the system can be expressed in an economic way by its
set of “minimal joinings”.

2.1.2 Minimal joinings

Suppose that a norm 〈a1, a2〉 is a joining from a stratum A1 of grounds to
a stratum A2 of consequences. Then, if (in a sense to be defined) a1 is a
“weakest ground” for a2, and a2 is a “strongest consequence” of a1, the pair
〈a1, a2〉 represents what in TJS is called a minimal joining. If a normative
system fulfills a requirement called “connectivity”, any norm in the system
is always implied by a minimal joining.

In TJS, a normative system can be represented in a convenient way by
its set of minimal joinings, and therefore, minimality is decisive for how
economy of expression is accomplished and for how changes of a system
can be effectively achieved. Furthermore, in a well-structured normative
system, the set of minimal joinings has a number of perspicuous structural
properties. Thus, firstly, the set of minimal joinings can be ordered in an
interesting way as a lattice-like structure. Secondly, if 〈a1, a2〉 belongs to
the set J of joinings, let us call the ground a1 the “bottom” of the joining
〈a1, a2〉 and the consequence a2 the “top” of this joining. Then, as we will
see, there is a similarity between the set min J of minimal joinings and the
set of bottoms of min J as well as to the set of tops of min J.

2.2 Intervenients in TJS

Suppose that we have in view three joining-systems S1 = 〈A1,A2, J1,2〉,
S2 = 〈A2,A3, J2,3〉, S3 = 〈A1,A3, J1,3〉 such that these systems constitute
a chain in the sense that by J1,2 you can go from A1 to A2, by J2,3 you
can go from A2 to A3, and by J1,3 (using relative product) you can go
directly from A1 to A3. In a sense, the stratum A2 is intermediate between
A1 and A3. Certain elements in A2 can be intervenients between elements
in A1 and elements in A3.

13 (See Figure 3 on page 565.) If a1 ∈ A1, and
a2 ∈ A2 and a3 ∈ A3, a2 corresponds to the pair 〈a1, a3〉 if, in a sense to be
defined, later, a1 is the weakest ground in A1 for a2 and a3 is the strongest

13Note that we use calligraphic letters A1, A2, A3 for the quasi-orderings
〈A1, R1〉, 〈A2, R2〉, 〈A3, R3〉 and we use italics A1, A2, A3 for the domains of these
quasi-orderings.
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consequence in A3 of a2. The investigation of intervenients following in this

Consequences

Grounds

Intervenients

Figure 3

chapter has in view the structure and properties of the intervenients. To
this subject-matter belongs a number of special issues. A few examples are
as follows. If economy of expression is related to the notion of minimal
joinings, what can be said about intervenients and minimality? Is there
a typology of intervenients and minimality? Under what conditions can a
normative system be represented by a base of intervenients? Furthermore,
there is the issue of Boolean operations (conjunction, disjunction, negation)
on intervenients. If a2, b2 are intervenients from A1 to A3, then what
can be said about a2 ∧ b2, a2 ∨ b2 and (the negations) a′2, b

′
2? How do

Boolean compounds of intervenients relate to corresponding compounds of
grounds and of consequences? All of these questions are essential to the
formal structure of intervenients and have a direct bearing on the formal
representation of intermediaries in a normative system.

2.2.1 Subject-matter of sections 3-5

The following three main Sections 3-5 are organized as follows. (We recall
what was said in Section 2.1.1 about joining as a relation between elements
of two strata.) In Section 3, the basic theory of joining-systems is devel-
oped, while Section 4 is devoted to the theory of different kinds of strata. In
Section 3, dealing with joining-systems in general, very little is presupposed
about the structure of strata. In Section 4, on the other hand, the character
of strata is the subject-matter of more differentiation. Here, what is in view
is joining-systems where strata are Boolean-like structures or lattice-like
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structures. Since the development in Section 4 is intended for the repre-
sentation of normative systems, the focus there will mainly be on so-called
Boolean joining-systems. Section 5 is devoted to the theory of intervenients
in Boolean joining-systems.

It should be observed that the general results regarding lattice-like struc-
tures in Section 3 are essential for the analysis of joining-systems, including
the analysis of Boolean joining-systems (later pursued in Section 4) and the
analysis of intervenients (in Section 5).

3 Formal development of TJS

3.1 Basic concepts

Much of the study of ordering relations in mathematics seems to have partial
orderings as its basic structure. Lattices and Boolean algebras, for example,
are partially ordered sets. In the study of norms and conceptual systems,
it is more convenient to take quasi-orderings as the formal framework. The
reason for choosing quasi-orderings instead of partial orderings is that in a
quasi-ordering 〈A,R〉 two objects a and b can be similar with respect to R
(for example, by having the same extension) without being identical. This
feature is useful when dealing with concepts.

In the next subsection (Section 3.1.1), the notion of quasi-ordering is
defined. After that, in the subsequent subsubsections, we generalize some
well-known mathematical notions, so as to apply to quasi-orderings.

3.1.1 Quasi-orderings

First a note on terminology. Suppose that R is ν-ary relation on a set A
and that X is a subset of A. Then R ∩ Xν is denoted R/X and is called
the restriction of R to X.

Definition 3.1 The binary relation R is a quasi-ordering on A if R is
transitive and reflexive in A.

(As mentioned, another name for quasi-ordering is preordering.)
Writing Q for the equality part of R we say that xQy holds iff xRy and

yRx. Also, writing P for the strict part of R we put xPy iff xRy and not
yRx.

A quasi-ordering is closely related to a partial ordering. If 〈A,R〉 is
a quasi-ordering and Q is the equivalence part of R, then R generates a
partial ordering on the set of Q-equivalence classes generated from A.

Definition 3.2 Suppose that R is a quasi-ordering on A and that X ⊆ A
and x ∈ X. Then,
(1) x is a minimal element in X with respect to R iff there is no y ∈ X
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such that yPx,
(2) x is a maximal element in X with respect to R iff there is no y ∈ X
such that xPy.
(3) The set of minimal elements in X with respect to R is denoted minRX
and the set of maximal elements of X with respect to R is denoted maxRX.
(4) x is a least element in X with respect to R iff for all y ∈ X, xRy,
(5) x is a greatest element in X with respect to R iff for all y ∈ X, yRx.

Note that in a quasi-ordering 〈A,R〉, a greatest and a least element in a
set X ⊆ A need not be unique. But if x and y are greatest elements (or
least elements) in X with respect to R, then xQy.

3.1.2 Quasi-lattices and complete quasi-lattices

As will appear in Section 3.2.2, the notions of least upper bound and greatest
lower bound are important in the definition of a joining-system. These
notions are usually defined for partial orderings and not for quasi-orderings.
Since quasi-ordering is a basic structure in TJS, we generalize the notions of
least upper bound and greatest lower bound to quasi-orderings. We use ub
and lb as abbreviations for upper bound and lower bound respectively, and
lub and glb for least upper bound and greatest lower bound respectively.
We note that (in contrast to what holds for partial orderings) a least upper
bound or a greatest lower bound relative to a quasi-ordering 〈A,R〉 need
not be unique.

Definition 3.3 Let R be a quasi-ordering on a set A with X ⊆ A. Then
ubRX = {a ∈ A | ∀x ∈ X : xRa}
lbRX = {a ∈ A | ∀x ∈ X : aRx}
lubRX = {a ∈ A | a ∈ ubRX & ∀b ∈ ubRX : aRb}
glbRX = {a ∈ A | a ∈ lbRX & ∀b ∈ lbRX : bRa}.

According to standard algebraic terminology, a partially ordered set 〈L,≤〉
is a lattice if for all a, b ∈ L, sup≤ {a, b} and inf≤ {a, b} exist in L. (In con-
nection with partial orderings, we prefer to use sup and inf instead of lub
and glb respectively.) 〈L,≤〉 is complete if inf≤X and sup≤X exist for all
X ⊆ L. We generalize these notions to quasi-orderings.14

Definition 3.4 If 〈A,R〉 is a quasi-ordering such that

lubR {a, b} 6= ∅ and glbR {a, b} 6= ∅ for all a, b ∈ A,
14Note that the concept of completeness for lattices, quasi-lattices, and quasi-orderings

should not be confounded with completeness in the sense that an ordering relation R on
a set A is called complete if for all x, y ∈ A it holds that xRy or yRx.
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then 〈A,R〉 will be called a quasi-lattice. If lubRX 6= ∅ and glbRX 6= ∅
for all X ⊆ A, then 〈A,R〉 is a complete quasi-lattice.

If 〈A,≤〉 is a partial order then a ∈ sup≤∅ iff a is the smallest element
in A with respect to ≤ and a ∈ inf≤∅ iff a is the greatest element in A
with respect to ≤. (See for example [Grätzer, 2011, p. 5].) Analogously, if
〈A,R〉 is a quasi-order then

(i) a ∈ lubR∅ iff a is a smallest element in A with respect to R

(ii) a ∈ glbR∅ iff a is a greatest element in A with respect to R.

We note that if a quasi-lattice is finite, then it is complete.

Theorem 3.5 Suppose that 〈A,R〉 is a quasi-lattice, that Q is the indifference-
part of R, and that AQ is the set of Q-equivalence classes generated by el-
ements of A. Then 〈AQ, R∗〉, where [a]QR

∗ [b]Q iff aRb, is a lattice. If
〈A,R〉 is a complete quasi-lattice then 〈AQ, R∗〉 is a complete lattice.

In analogy with what holds of complete lattices, see [Grätzer, 2011, p. 50],
the following holds of a complete quasi-lattice.

Theorem 3.6 Let 〈A,R〉 be a quasi-ordering in which glbRX 6= ∅ for all
X ⊆ A. Then 〈A,R〉 is a complete quasi-lattice.

By duality, the theorem holds if instead lubRX 6= ∅ for all X ⊆ A.
In lattice theory the notion of a sublattice is introduced. Suppose 〈L,≤〉

is a lattice and ∅ 6= M ⊆ L. Let, furthermore, ≤∗= ≤ /M . Then 〈M,≤∗〉
is a sublattice of 〈L,≤〉 if a, b ∈ M implies that sup≤∗ {a, b} = sup≤ {a, b}
and inf≤∗ {a, b} = inf≤ {a, b}. We now generalize the notion of a sublattice
to quasi-lattices and define the notion of a subquasi-lattice.

Definition 3.7 Suppose that 〈A,R〉 is a quasi-lattice, X ⊆ A and S =
R/X. Then 〈X,S〉 is a subquasi-lattice of 〈A,R〉 if x, y ∈ X implies that
lubR {x, y} ⊇ lubS {x, y} 6= ∅ and glbR {x, y} ⊇ glbS {x, y} 6= ∅.

Theorem 3.8 If 〈A,R〉 is a quasi-lattice and 〈X,S〉 a subquasi-lattice of
〈A,R〉, then 〈XQ, S

∗〉 is a sublattice of 〈AQ, R∗〉.
(See the notation introduced in Theorem 3.5.)

3.2 Joining-systems

3.2.1 Narrowness

In TJS, the relation of “narrowness” is highly important. It is used in the
definition of a joining-system, since it determines the relation of implication
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between norms and the set of minimal joinings (cf. above Section 2.1.2).
The minimal joinings are essential in a normative system, since they serve
as the tool for a succinct representation of the system.

Definition 3.9 (1) The narrowness relation determined by the quasi-order-
ings 〈A1, R1〉 and 〈A2, R2〉 is the binary relation E on A1 × A2 such that
〈a1, a2〉 E 〈b1, b2〉 iff b1R1a1 and a2R2b2.
(2) 〈x1, x2〉 is a minimal element in X ⊆ A1 × A2 with respect to 〈A1, R1〉
and 〈A2, R2〉 if 〈x1, x2〉 is a minimal element in X with respect to E. The
set of minimal elements in X with respect to E is denoted minR2

R1
X. (When

there is no risk of ambiguity we write just minX.)

Note that E is a quasi-ordering, i.e. transitive and reflexive. Let w denote
the equality part of E and C the strict part of E. Then the following holds:

〈a1, a2〉 w 〈b1, b2〉 iff b1Q1a1 & a2Q2b2
〈a1, a2〉 C 〈b1, b2〉 iff (b1P1a1 & a2R2b2) or (b1R1a1 & a2P2b2)

where Qi is the equality-part of Ri and Pi is the strict part of Ri.

The notion of narrowness is illustrated in Figure 4. Note that 〈x1, x2〉 is

a1

b1

a2

b2

A2

A1

〈b1,b2〉 is narrower than
〈a1,a2〉

Figure 4

a minimal element in X ⊆ A1 × A2 with respect to 〈A1, R1〉 and 〈A2, R2〉
if there is no 〈y1, y2〉 ∈ X such that 〈y1, y2〉 C 〈x1, x2〉, i.e. if there is no
element 〈y1, y2〉 ∈ X such that x1R1y1 & y2P2x2, or x1P1y1 & x2R2y2.
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In TJS, up-sets with respect to the narrowness-relation will be of spe-
cial interest. We give an explicit definition of up-set with respect to the
narrowness-relation here.15

Definition 3.10 Suppose that A1 = 〈A1, R1〉 and A2 = 〈A2, R2〉 are quasi-
orderings and K ⊆ A1×A2. Then we say that K is an up-set with respect to
E if the following holds: For all a1, b1 ∈ A1 and a2, b2 ∈ A2, if 〈a1, a2〉 ∈ K
and 〈a1, a2〉 E 〈b1, b2〉, then 〈b1, b2〉 ∈ K.

3.2.2 The definition of a joining-system

As mentioned in Section 2.1.1, while TJS is flexible as regards the character
of strata A1 and A2, in TJS the definition of “joining-system” is the same,
independently of which is the type of the strata connected in the joining-
system, only provided that each stratum fulfills the minimum requirement
of being a quasi-ordering.

The definition of joining-system is as follows.

Definition 3.11 A joining-system (Js), is an ordered triple 〈A1,A2, J〉
such that A1 = 〈A1, R1〉 and A2 = 〈A2, R2〉 are quasi-orderings, and J ⊆
A1×A2, and the following conditions are satisfied where E is the narrowness
relation determined by A1 and A2:
(1) for all a1, b1 ∈ A1 and a2, b2 ∈ A2, if 〈a1, a2〉 ∈ J and 〈a1, a2〉 E 〈b1, b2〉,
then 〈b1, b2〉 ∈ J,
(2) for any X1 ⊆ A1 and a2 ∈ A2, if 〈a1, a2〉 ∈ J for all a1 ∈ X1, then
〈b1, a2〉 ∈ J for all b1 ∈ lubR1 X1,
(3) for any X2 ⊆ A2 and a1 ∈ A1, if 〈a1, a2〉 ∈ J for all a2 ∈ X2, then
〈a1, b2〉 ∈ J for all b2 ∈ glbR2

X2.

(In what follows, when we use the expression 〈A1,A2, J〉, we presuppose
that A1 = 〈A1, R1〉 and A2 = 〈A2, R2〉.)

If 〈A1,A2, J〉 is a joining-system, then the elements in J are called join-
ings from A1 to A2, and we call J the joining-space in 〈A1,A2, J〉. We call
A1 the bottom-structure and A2 the top-structure in the Js 〈A1,A2, J〉.

Requirement (1) in the definition of a joining-system means that the
joining-space J is an up-set with respect to the narrowness-relation. Note
that from requirement (1) it follows, for example, that if A1,A2 are lattices
such that a1, b1 ∈ A1, a2, b2 ∈ A2 and 〈a1, a2〉 ∈ J then, 〈a1 ∧ b1, a2〉 ∈ J
and 〈a1, a2 ∨ b2〉 ∈ J.

As an analogy, in propositional logic, for the implicative connective →
it holds that from the conjunction of p1 → q1 and p2 → q2 it follows that

15For the notion of “up-set” in general, see for example [Davey and Priestley, 2002,
p. 20].
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if q1 → p2 then p1 → q2. Requirement (1) stipulates a similar result for a
combination of the three implicative relations R1, R2 and J in a joining-
system.

For a joining-system 〈A1,A2, J〉 conceived of as representing a normative
system, let us interpret a formula 〈x1, x2〉 ∈ J so as to mean that 〈x1, x2〉
is a norm in 〈A1,A2, J〉 . Then the import of requirement (1) is that if
it holds that 〈a1, a2〉 is a norm in 〈A1,A2, J〉 and b1Ra1 and a2Rb2 then
〈b1, b2〉 as well is a norm in 〈A1,A2, J〉 . This requirement is a corner-stone
in the TJS approach to normative systems as deductive mechanisms. In a
sense, a normative system 〈A1,A2, J〉 is represented by the quasi-ordering
〈J,E〉. As we shall see, however, there are other representations that are
more economical in expression.

The import of requirements (2) and (3) is easier to see if we suppose
that 〈A1, R1〉 and 〈A2, R2〉 are lattices so that ∧ and ∨ are defined for the
elements in A1 and A2, respectively. In this case, from requirements (2)
and (3) it follows: If 〈a1, a2〉 ∈ J and 〈b1, a2〉 ∈ J then 〈a1 ∨ b1, a2〉 ∈ J
(requirement (2)). And if 〈a1, a2〉 ∈ J and 〈a1, b2〉 ∈ J then 〈a1, a2 ∧ b2〉 ∈ J
(requirement (3)).

We note that a joining-system as here defined gives rise to a closure
system (see Section 3.2.5 below). Also, we note that in requirement (2)
we do not presuppose that lubR1

X1 6= ∅ and in requirement (3) we do
not presuppose that glbR2

X2 6= ∅. Furthermore note that 〈A1,A2,∅〉 and
〈A1,A2, A1 ×A2〉 are joining-systems, the empty joining-system and the
trivial joining-system respectively. A joining-system that is not empty or
trivial is called a proper joining-system.

In the definition of a joining-system, we do not presuppose that the do-
mains in the quasi-orderings are disjunct sets. This is indeed the case in
many intended applications, but in a large number of typical applications
there is some overlap between the domains. The following remark will elu-
cidate this situation.

Suppose that B1 = 〈B1,∧1, ′1〉 and B2 = 〈B2,∧2, ′2〉 are Boolean algebras
and that ≤1 and ≤2 are the partial orderings determined by the Boolean al-
gebras B1 and B2 respectively. Suppose further that 〈〈B1,≤1〉 , 〈B2,≤2〉 , J〉
is a joining-system. From a formal point of view, it is possible that B1 and
B2 are independent of each other, so that, for example the zero and unit
elements in B1 are different from the zero and unit elements in B2.

In many applications, however, B1 and B2 are subalgebras of a common
Boolean algebra B = 〈B,∧,′ 〉, and if ⊥ is the zero element in B and > is
the unit element in B, then this holds in B1 and B2 as well, and, hence, ⊥
and > are elements in the intersection of B1 and B2. In this case it is also
natural to denote ∧1 and ∧2 with ∧ and, furthermore, ′1 and ′2 with ′. In
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this chapter, when there is no risk of misunderstanding, we often use ∧ and
′ (without subscript) in various Boolean algebras even when the domains
and operations are different.

3.2.3 Joinings as correspondences

For a joining-system 〈A1,A2, J〉 (where A1 = 〈A1, R1〉 and A2 = 〈A2, R2〉),
the difference in kind between relations R1, R2 on one hand, and J on the
other, becomes more perspicuous when we introduce the distinction between
ordering relations and correspondences. Obviously, both relations R1, R2

and the relation J are sets of ordered pairs, i.e., relations in the sense of set
theory. However, while the point of each of R1 and R2 is to order objects
in a set, the point of J is to assign objects in one set A2 to objects in
another set A1, or vice versa.16 This idea of J as a correspondence between
sets will prove to be useful in what follows. In particular, under some
general conditions, by transition through equivalence classes, an “ordering
preserving” correspondence will result in an isomorphism.

The triple 〈X,Y, γ〉 is a correspondence with X as domain and Y as
codomain if X and Y are sets, γ is a binary relation, and γ ⊆ X × Y .17

Suppose that 〈X,Y, γ〉 is a correspondence. If Z ⊆ X we define:

γ [Z] = {y ∈ Y | ∃x ∈ Z : xγy} .

If W ⊆ Y then

γ−1 [W ] =
{
x ∈ X | ∃y ∈W : yγ−1x

}
= {x ∈ X | ∃y ∈W : xγy} .

The correspondence 〈X,Y, γ〉 is on X if γ−1 [Y ] = X, onto Y if γ [X] = Y .
If there is no risk of ambiguity, we denote γ [{a}] with γ [a] and γ−1 [{b}]
with γ−1 [b].

If 〈A1,A2, J〉 is a Js then 〈A1, A2, J〉 is a correspondence with A1 as
domain and A2 as codomain, and we can also say that J is a correspondence
from A1 to A2.

Definition 3.12 Suppose that 〈A1, A2, γ〉 is a correspondence from A1 to
A2. If A1 = 〈A1, R1〉 and A2 = 〈A2, R2〉 are quasi-orderings, we say that
Γ = 〈A1,A2, γ〉 is a quasi-ordering correspondence, abbreviated qo-corr.

16Obviously, the idea of J as a correspondence should be distinguished from the fact
that there are ordering relations over the set J of ordered pairs. As we have seen, in TJS
the relation of narrowness is an ordering relation over the ordered pairs in J . Another
ordering relation over J (to be introduced later on) is the relation “at least as low as”.

17If the triple 〈X,Y, γ〉 is a correspondence, it is sometimes more convenient to say
that γ is a correspondence from X to Y and that γ−1 is a correspondence from Y to X.
If γ is a correspondence from X to Y, Y is often called the image of X by γ, or, shorter,
the γ-image of X.



The Theory of Joining-Systems 573

If 〈A1,A2, J〉 is a Js, then 〈A1, A2, J〉 is a qo-corr and J [A1] ⊆ A2, where
J [A1] contains the second components (belonging to A2) of the ordered pairs
that are joinings from A1 to A2. Conversely, J−1[A2] ⊆ A1, where J−1[A2]
contains the first components (belonging to A1) of the joinings from A1 to
A2.. Then J−1 [A2] is the set of grounds and J [A1] the set of consequences
of the joinings in 〈A1,A2, J〉.

The relative product of two correspondences γ and δ is denoted γ|δ. If
〈A1,A2, J〉 is a joining-system, then R1|J |R2 = J and, therefore, J can
be said to “absorb” R1 and R2. Note that x1(R1|J |R2)x2 iff ∃y1, y2 :
x1R1y1 & y1Jy2 & y2R2x2.

3.2.4 Order-preservation and order-similarity

The notion of qo-corr is a basis for the notions of “order-preservation”
and “order-similarity”. Suppose A1 = 〈A1, R1〉 and A2 = 〈A2, R2〉 are
two strata, and that J is a qo-corr from A1 to A2. If 〈A1,A2, J〉 is order-
preserving, Q1-similar grounds in A1 have the same consequences in A2,
Q2-similar consequences in A2 have the same grounds in A1, and if 〈a1, a2〉,
〈b1, b2〉 are joinings from A1 to A2, then the R1-structure on {a1, b1} is
similar to the R2-structure on {a2, b2} insofar as a1R1b1 iff a2R2b2. The
general definition is as follows.

Definition 3.13 Suppose that Γ = 〈〈A1, R1〉 , 〈A2, R2〉 , γ〉 is a qo-corr. We
say that Γ is order-preserving if the following holds for a1, b1 ∈ A1 and
a2, b2 ∈ A2:

(1) If a1Q1b1 then (a1γa2 iff b1γa2).

(2) If a2Q2b2 then (a1γa2 iff a1γb2).

(3) If a1γa2 and b1γb2 then a1R1b1 iff a2R2b2.

Definition 3.14 Two quasi-orderings 〈A1, R1〉 and 〈A2, R2〉 are said to be
order-similar if there is γ ⊆ A1×A2 such that 〈〈A1, R1〉 , 〈A2, R2〉 , γ〉 is an
order-preserving qo-corr on A1 onto A2.

The notion of “order-preserving qo-corr” is elucidated by the fact that
by transition from quasi-orderings to equivalence classes you get an iso-
morphism between the resulting structures; also, if there is an isomorphism
between the equivalence classes, there is order-preservation between the
quasi-orderings.

Theorem 3.15 Suppose that 〈〈A1, R1〉 , 〈A2, R2〉 , γ〉 is a qo-corr on A1

onto A2. Let [a]i [b]i be the equivalence-classes with respect to Qi generated
by a and b, respectively (i = 1, 2). Let further A∗1 =

{
[a]1 | a ∈ γ−1 [A2]

}
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and A∗2 = {[a]2 | a ∈ γ [A1]} and let R∗i be defined as follows: [a]iR
∗
i [b]i iff

aRib.

(1) Suppose that 〈〈A1, R1〉 , 〈A2, R2〉 , γ〉 is an order-preserving qo-corr
and let γ∗ be defined by [a1]1 γ

∗ [a2]2 iff a1γa2. Then γ∗ is an iso-
morphism on 〈A∗1, R∗1〉 onto 〈A∗2, R∗2〉. If 〈A1, R1〉 and 〈A2, R2〉 are
quasi-lattices (see Definition 3.4), then γ∗ is an isomorphism on the
lattice 〈A∗1, R∗1〉 onto the lattice 〈A∗2, R∗2〉.

(2) If ϕ is an isomorphism on 〈A∗1, R∗1〉 onto 〈A∗2, R∗2〉, then

〈〈A1, R1〉 , 〈A2, R2〉 , γ〉

is an order-preserving qo-corr on A1 onto A2, where γ is defined by
a1γa2 iff ϕ ([a1]1) = [a2]2.

3.2.5 Joining-closure and the generating of joining-spaces

An important aspect of TJS is that it gives a method (the forming of
a “joining-closure”) for representing an “elaborated” version of a set of
“crude” conditional norms. Suppose that A1 is a quasi-ordering of grounds
and A2 is a quasi-ordering of consequences. Let us suppose that K is a set
of conditional norms with the antecedents taken from A1 and the conse-
quences taken from A2. Hence, K ⊆ A1 × A2 and K is a correspondence
from A1 to A2. The set K can be thought of as a crude representation of a
normative system N . Then we can generate a set K∗ by forming the “join-
ing closure” of K such that 〈A1,A2,K

∗〉 is a joining-system, which will be
explained below.

The next theorem shows that if A1 and A2 are quasi-orderings and

J = {J ⊆ A1 ×A2 | 〈A1,A2, J〉 is a Js} ,

then J is a closure system.18 Note that J is the family of all joining-spaces
from A1 to A2.

Theorem 3.16 If J = {J ⊆ A1 ×A2 | 〈A1,A2, J〉 is a Js} and K ⊆ J ,
then ∩K ∈ J .

Proof. If ∩K = ∅, then 〈A1,A2,∩K〉 is the empty joining-system and
hence ∩K ∈ J . Now suppose that ∩K 6= ∅.

(I) Firstly, we prove that condition (1) in the definition of a joining-system
is satisfied. Suppose therefore that bi, ci ∈ Ai for i = 1, 2 and 〈b1, b2〉 ∈ ∩K
and 〈b1, b2〉 E 〈c1, c2〉. Let K ∈ K. Then ∩K ⊆ K and thus 〈b1, b2〉 ∈ K.

18For definition and results of closure systems, see for example [Grätzer, 1979, p. 23f.].
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Since K ∈ J and 〈b1, b2〉 E 〈c1, c2〉 it follows that 〈c1, c2〉 ∈ K. Hence, for
all K ∈ K, 〈c1, c2〉 ∈ K which implies 〈c1, c2〉 ∈ ∩K.

(II) Secondly, we prove that condition (2) in the definition of a joining-
system is satisfied. Suppose that C1 ⊆ A1, b2 ∈ A2, and 〈c1, b2〉 ∈ ∩K
for all c1 ∈ C1. Then 〈c1, b2〉 ∈ K for all c1 ∈ C1 and K ∈ K. Since
K ∈ J it follows that 〈a1, b2〉 ∈ K for all a1 ∈ lubR1

C1. Hence, for all
K ∈ K, 〈a1, b2〉 ∈ K for all a1 ∈ lubR1

C1, which implies 〈a1, b2〉 ∈ ∩K for
all a1 ∈ lubR1

C1.
(III) Thirdly, we prove that condition (3) in the definition of a joining-

system is satisfied. Suppose that C2 ⊆ A2, b1 ∈ A1, and 〈b1, c2〉 ∈ ∩K
for all c2 ∈ C2. Then 〈b1, c2〉 ∈ K for all c2 ∈ C2 and K ∈ K. Since
K ∈ J it follows that 〈b1, a2〉 ∈ K for all a2 ∈ glbR2

C2. Hence, for all
K ∈ K, 〈b1, a2〉 ∈ K for all a2 ∈ glbR2

C2, which implies 〈b1, a2〉 ∈ ∩K for
all a2 ∈ glbR2

C2. �

From the theorem follows that if K ⊆ A1 ×A2 and

[K]J = ∩{J | J ∈ J , J ⊇ K} ,

then [K]J is the joining-space, here called the joining-closure, over A1

and A2 generated by K. (Note that since A1 × A2 is a joining space,
{J | J ∈ J , J ⊇ K} 6= ∅.)

If J is the joining-closure from A1 to A2 generated by K but J is not
generated by any proper subset of K, then we say that J is the joining-
closure non-redundantly generated by K.

3.3 Weakest grounds, strongest consequences and minimal
joinings

3.3.1 Weakest grounds and strongest consequences

Definition 3.17 Suppose that S = 〈A1,A2, J〉 is a joining-system, and
that C1 ⊆ A1 and C2 ⊆ A2. Then,

1. a1 ∈ C1 ⊆ A1 is one of the weakest grounds of a2 ∈ A2 in C1 with
respect to S, which is denoted WGS (a1, a2, C1), if

〈a1, a2〉 ∈ J and, for any b1 ∈ C1,

it holds that 〈b1, a2〉 ∈ J implies b1R1a1.

2. a2 ∈ C2 ⊆ A2 is one of the strongest consequences of a1 ∈ A1 in C2

with respect to S, which is denoted SCS (a2, a1, C2), if

〈a1, a2〉 ∈ J , and, for any b2 ∈ C2,

it holds that 〈a1, b2〉 ∈ J implies a2R2b2.
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In Section 3.3.2, the interrelationship between minimal joinings and weak-
est grounds, strongest consequences will be further developed. Below, how-
ever, are some basic results. (Cf. [Lindahl and Odelstad, 2011, sect. 3.2].)

Theorem 3.18 Let 〈A1,A2, J〉 be a joining-system.
(1) Suppose that WG (a1, a2, A1) and WG (b1, b2, A1). If a2R2b2, then a1R1b1.
(2) Suppose that SC (a2, a1, A2) and SC (b2, b1, A2) If a1R1b1, then a2R2b2.
(3) Suppose that WG (a1, a2, A1) and WG (b1, b2, A1) . For all c1 ∈ A1 and
c2 ∈ A2, if c1 ∈ glbR1

{a1, b1} and c2 ∈ glbR2
{a2, b2}, then WG (c1, c2, A1).

(4) Suppose that SC (a2, a1, A2) and SC (b2, b1, A2) . For all c1 ∈ A1 and
c2 ∈ A2, if c1 ∈ lubR1 {a1, b1} and c2 ∈ lubR2 {a2, b2}, then SC (c2, c1, A2).

Proof. We prove (3). Note that a1Ja2 and b1Jb2. Suppose that c1 ∈
glbR1

{a1, b1} and c2 ∈ glbR2
{a2, b2}. Hence, c1Ja2 and c1Jb2 and ac-

cording to condition (3) in the definition of a joining-system, c1Jc2. Sup-
pose that d1Jc2. Then d1Ja2 and d1Jb2, and since WG (a1, a2, A1) and
WG (b1, b2, A1) it follows that d1R1a1 and d1R1b1 which implies that d1R1c1.
Thus WG (c1, c2, A1). �

Item (1) in Theorem 3.18 is illustrated by Figure 5, and item (2) by
Figure 6.
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Figure 5

a2

a1A1

A2

b1

b2

SC

SC

Thick line is conclusion

Figure 6

Theorem 3.19 Let 〈A1,A2, J〉 be a joining-system.
(1) Suppose that A1 is a complete quasi-lattice (see Definition 3.4). Then
WG (a1, a2, A1) iff a1 ∈ lubR1

J−1 [a2].
(2) Suppose that A2 is a complete quasi-lattice. Then SC (a2, a1, A2) iff
a2 ∈ glbR2

J [a1].
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Proof. We prove (1) above. (i) Suppose that WG (a1, a2, A1). Hence,
a1 ∈ J−1 [a2]. Since A1 is a complete quasi-lattice it follows that there
is b1 ∈ lubR1

J−1 [a2] and a1R1b1. From condition (2) of a joining-system
it follows that 〈b1, a2〉 ∈ J . Since WG(a1, a2, A1), it follows that b1R1a1.
Together with a1R1b1, this implies a1Q1b1. Thus a1 ∈ lubR1 J

−1 [a2]. (ii)
Suppose that a1 ∈ lubR1

J−1 [a2]. If 〈b1, a2〉 ∈ J then b1 ∈ J−1 [a2] and
hence b1R1a1. From this follows that WG (a1, a2, A1). (Note that this part
of the proof does not require that A2 is a complete quasi-lattice.) The proof
of (2) is analogous. �

3.3.2 Minimal joinings

Minimal joinings in a Js will be a central theme in the subsequent presenta-
tion. The formal definition is as follows (we recall the definition of “minimal
element” with respect to narrowness in Definition 3.9).

Definition 3.20 Suppose that 〈A1,A2,K〉 is a qo-corr. A minimal element
in 〈A1,A2,K〉 is a minimal element 〈a1, a2〉 in K with respect to A1 and
A2. The set of minimal elements in 〈A1,A2,K〉 is denoted min 〈A1,A2,K〉
or just minK.

If 〈A1,A2, J〉 is a joining-system, then the elements in min J are often
called minimal joinings. The connection between the notion of minimal
joining on one hand and the notions of weakest ground and strongest con-
sequence on the other side is made clear in the following theorem.

Theorem 3.21 Suppose that 〈A1,A2, J〉 is a joining-system. Then 〈a1, a2〉 ∈
min J iff WG (a1, a2, A1) and SC (a2, a1, A2). See Figure 7.

A proof of the theorem under the assumption that 〈A1,A2, J〉 is a Boolean
joining-system is given in [Lindahl and Odelstad, 2011, theorem 36, p. 126],
but it is easy to see that the theorem holds even if 〈A1,A2, J〉 is a mere
joining-system.

3.4 Connectivity

As stated in the introductory Section 2.1.2, if a normative system fulfils
a requirement called “connectivity”, any norm in the system will always
be implied by a minimal joining. Therefore, the idea of connectivity will
be essential in the theory of minimal joinings to be developed in the next
subsections. The definition of connectivity is given next.

Definition 3.22 A qo-corr 〈A1,A2,K〉 such that K is an up-set with re-
spect to E satisfies connectivity if whenever 〈c1, c2〉 ∈ K there is 〈b1, b2〉 ∈
K such that 〈b1, b2〉 is a minimal element in K with respect to E and
〈b1, b2〉 E 〈c1, c2〉.
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Definition 3.23 Suppose that 〈A1,A2,K〉 is a qo-corr. Then the set

{〈a1, a2〉 ∈ A1 ×A2 | ∃ 〈b1, b2〉 ∈ K : 〈b1, b2〉 E 〈a1, a2〉}

is called the enclosure of K and is denoted ↑K .

Note that ↑K is an up-set (with respect to E) and the smallest up-set
containing K. (For the notion of up-set see Definition 3.10 in Section 3.2.1.)
To use an expression from lattice theory, ↑K is read ‘up K’ (with respect to
E). (See [Davey and Priestley, 2002, p. 20].) Note also that K is an up-set
if and only if K = ↑K .

Theorem 3.24 Suppose that 〈A1,A2,K〉 is a qo-corr such that K is an
up-set with respect to E. Then 〈A1,A2,K〉 satisfies connectivity iff K =
↑ minK.

Proof. (I) Suppose 〈A1,A2,K〉 satisfies connectivity. (i) Suppose 〈a1, a2〉 ∈
K. Then there is 〈b1, b2〉 ∈ minK such that 〈b1, b2〉 E 〈a1, a2〉 and hence
〈a1, a2〉 ∈↑ minK. This shows that K ⊆↑ minK. (ii) Suppose 〈a1, a2〉 ∈↑
minK. Then there is 〈b1, b2〉 ∈ minK such that 〈b1, b2〉 E 〈a1, a2〉. Since
〈A1,A2,K〉 is a qo-corr such thatK is an up-set with respect toE, 〈a1, a2〉 ∈
K. Hence, ↑ minK ⊆ K.

(II) Suppose that K =↑ minK and that 〈a1, a2〉 ∈ K. Then 〈a1, a2〉 ∈↑
minK and there is 〈b1, b2〉 ∈ minK such that 〈b1, b2〉 E 〈a1, a2〉. This shows
that 〈A1,A2,K〉 satisfies connectivity. �
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If a joining-system satisfies connectivity, then the set of minimal joinings
determines the system in an interesting way, which will be explained below.

Corollary 3.25 If the joining–system 〈A1,A2, J〉 satisfies connectivity, then
J = ↑ min J, that is,

J = {〈a1, a2〉 ∈ A1 ×A2 | ∃〈b1, b2〉 ∈ min J : 〈b1, b2〉 E 〈a1, a2〉} .

The corollary shows that there is an interesting way of representing a
normative system in terms of E -minimal elements. This way of representing
is different from the method of “joining-closure” presented above in Section
3.2.5 and we will here develop it a little further.

Note that we have not so far said anything about how to get a joining-
system using the enclosure of a qo-corr (Definition 3.23). We will return to
this problem in Section 3.6.

Theorem 3.26 If A1 = 〈A1, R1〉 and A2 = 〈A2, R2〉 are complete quasi-
lattices (see Definition 3.4, Section 3.1.2), and 〈A1,A2, J〉 is a joining-
system, then 〈A1,A2, J〉 satisfies connectivity.

Proof. Suppose 〈c1, c2〉 ∈ J. Let X1 = {x1 ∈ A1| 〈x1, c2〉 ∈ J} . Since A1 is
a complete quasi-lattice it holds that lubX1 6= ∅. Let b1 ∈ lubX1. From
(2) in the definition of a joining-system follows that 〈b1, c2〉 ∈ J and hence
b1 ∈ X1. Let X2 = {x2 ∈ A2| 〈b1, x2〉 ∈ J} . Since 〈b1, c2〉 ∈ J, X2 6= ∅. A2 is
a complete quasi-lattice and therefore it holds that glbX2 6= ∅. Let b2 ∈ glb
X2. From (3) in the definition of a joining-system follows that 〈b1, b2〉 ∈ J
and hence b2 ∈ X2. Since c1 ∈ X1 and b1 ∈ lubX1 then c1R1b1. And since
c2 ∈ X2 and b2 ∈ glbX2 then b2R2c2. Hence, 〈b1, b2〉 E 〈c1, c2〉 .

Suppose now that 〈a1, a2〉 ∈ J and 〈a1, a2〉 E 〈b1, b2〉. Thus c1R1b1R1a1

and a2R2b2R2c2, which implies that 〈a1, a2〉 E 〈a1, c2〉 and 〈a1, a2〉 E
〈b1, a2〉. According to condition (1) in the definition of a joining-system,
it follows that 〈a1, c2〉, 〈b1, a2〉 ∈ J and thus a1 ∈ X1 and a2 ∈ X2. Since
b1 ∈ ubR1

X1 it follows that a1R1b1, and since b2 ∈ lbR2
X2 it follows that

b2R2a2. Hence, a1Q1b1 and a2Q2b2, and we conclude that 〈b1, b2〉 is a min-
imal element in 〈A1,A2, J〉. �

The next theorem states that if connectivity holds, then a weakest ground
of an element is the bottom of a minimal joining and a strongest consequence
of an element is the top of a minimal joining.

Theorem 3.27 Suppose that 〈A1,A2, J〉 is a joining-system which satisfies
connectivity (see Definition 3.22).Then:
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1. If WG (a1, a2, A1) then there is b2 ∈ A2 such that 〈a1, b2〉 ∈ min J and
b2R2a2.

2. If SC (a2, a1, A2) then there is b1 ∈ A1 such that 〈b1, a2〉 ∈ min J and
a1R1b1.

(For a proof, see [Odelstad, 2008, pp. 50f.].)
Considering a joining-system 〈A1,A2, J〉, a useful device is the introduc-

tion of projections π1 [J ] ⊆ A1 and π2 [J ] ⊆ A2, which implies that each
a1 ∈ π1 [J ] is a “ground” for some element a2 of A2 and, conversely, each
a2 ∈ π2 [J ] is a “consequence” of some element a1 of A1. The general defi-
nition is as follows.

Definition 3.28 For sets A1 and A2, if X ⊆ A1 × A2 then for i = 1, 2,
πi : X → Ai is such that πi (x1, x2) = xi is the projection of X on the ith
coordinate.

Note that ifX ⊆ A1×A2 then π1 [X] = {x1 ∈ A1 | ∃x2 ∈ A2 : 〈x1, x2〉 ∈ X}

π2 [X] = {x2 ∈ A2 | ∃x1 ∈ A1 : 〈x1, x2〉 ∈ X}

The subsequent Theorem 3.30 might be easier to grasp if we first consider
the special case of a joining-system 〈L1,L2, J〉 where L1 = 〈L1,∧,∨〉 , L2 =
〈L2,∧,∨〉 are lattices and ≤1, ≤2 are the partial orderings determined by
these lattices. Then, according to Theorem 3.30, if 〈a1, a2〉 , 〈b1, b2〉 ∈ min J ,
there is c2 ∈ L2, d1 ∈ L1 such that

(1) 〈a1 ∧ b1, c2〉 ∈ min J,

(2) 〈d1, a2 ∨ b2〉 ∈ min J ,

(3) c2 ≤2 a2 ∧ b2,

(4) a1 ∨ b1 ≤1 d1.

The following theorem is used in the proof of Theorem 3.30.

Theorem 3.29 Suppose that 〈A1,A2, J〉 is a joining-system that satisfies
connectivity. Then the following holds:

(i) If 〈a1, a2〉 ∈ min J , then 〈a1, b2〉 ∈ J implies a2R2b2 and 〈b1, a2〉 ∈ J
implies b1R1a1. (See Figure 8 on page 581.)

(ii) If 〈a1, a2〉 , 〈b1, b2〉 ∈ min J then a1R1b1 iff a2R2b2.

(iii) If 〈a1, a2〉 ∈ min J then 〈a1, b2〉 ∈ min J implies a2Q2b2 and 〈b1, a2〉 ∈
min J implies a1Q1b1. (See Figure 9 on page 582.)
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(For a proof, see [Odelstad, 2008, p. 51].)

Theorem 3.30 Suppose that 〈A1,A2, J〉 is a joining-system and that A1 =
〈A1, R1〉 and A2 = 〈A2, R2〉 are complete quasi-lattices. If X ⊆ min J and
X 6= ∅ then the following holds:

(1) There is c2 ∈ A2 such that for all a1 ∈ glbR1
π1 [X], 〈a1, c2〉 ∈ min J ,

and, furthermore, it holds that c2R2a2 for all a2 ∈ glbR2
π2 [X].

(2) There is d1 ∈ A1 such that for all b2 ∈ lubR2
π2 [X], 〈d1, b2〉 ∈ min J ,

and, furthermore, it holds that b1R1d1 for all b1 ∈ lubR1
π1 [X].

Proof. SinceA1 andA2 are complete quasi-lattices it follows from Theorem
3.26 that 〈A1,A2, J〉 satisfies connectivity.
(I) We prove (1). Since A1 is a complete quasi-lattice, it follows that there
is a1 ∈ glbR1

π1 [X]. Suppose that x2 ∈ π2 [X]. Then there is x1 ∈ π1 [X]
such that 〈x1, x2〉 ∈ X and 〈x1, x2〉 E 〈a1, x2〉. Since X ⊆ J it follows
that 〈a1, x2〉 ∈ J and this holds for all x2 ∈ π2 [X]. Since A2 is a complete
quasi-lattice, it follows that glbR2

π2 [X] 6= ∅. Let a2 ∈ glbR2
π2 [X]. From

condition (3) in the definition of a Js it follows that 〈a1, a2〉 ∈ J . Since
J satisfies connectivity it follows that there is 〈c1, c2〉 ∈ min J such that
〈c1, c2〉 E 〈a1, a2〉. Let 〈z1, z2〉 ∈ X, which implies that 〈z1, z2〉 ∈ min J and
since z2 ∈ π2 [X] and a2 ∈ glbR2

π2 [X] it follows that a2R2z2. Furthermore,
c2R2a2 and thus c2R2z2, which implies according to (ii) in theorem 3.29,
that c1R1z1. Hence, c1 ∈ lbR1

π1 [X]. Since a1 ∈ glbR1
π1 [X] it follows that

c1R1a1, and since a1R1c1 this implies a1Q1c1. This shows that 〈a1, c2〉 ∈
min J . Note that c2R2a2.
(II) The proof of (2) is analogous. �
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An illustration in a lattice framework of (1) and (2) in Theorem 3.30 is
provided in Figures 10 on page 583 and Figure 11 on page 584, respectively.

3.5 Lowerness

In the literature on partial orderings, the notion “coordinatewise ordering”
of a Cartesian product of partial ordered sets is introduced (see for example
[Davey and Priestley, 2002, p. 18].) It is straight forward to generalize this
notion to quasi-ordered sets. This is done in the definition below. With the
interpretation of TJS in this chapter as a theory of normative systems, we
call the relation “coordinatewise ordering” the lowerness-relation.

Definition 3.31 The lowerness relation determined by the quasi-orderings
〈A1, R1〉 and 〈A2, R2〉 is the binary relation - on A1 ×A2 such that for all
〈a1, a2〉 , 〈b1, b2〉 ∈ A1 ×A2

〈a1, a2〉 - 〈b1, b2〉 iff a1R1b1 and a2R2b2.

For elements in A1 × A2 we read - as “at least as low as”. If j1 and j2
are elements in A1 × A2, then j1 is at least as low as j2, i.e. j1 - j2, if the
“bottom” of j1 is at least as low as, i.e. stands in the relation R1 to, the
“bottom” of j2, and the “top” of j1 is at least as low as, i.e. stands in the
relation R2 to, the “top” of j2. See Figure 12 on page 585. (As a contrast,
see Figure 4 on page 569.) Note that - is a quasi-ordering, i.e. transitive
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Figure 1.10.

Theorem 32. Suppose that hA1;A2; Ji is a joining-system that satisÖes
connectivity (See DeÖnition 22). Then for i = 1; 2; i : minJ ! i [minJ ]
is surjective, and the following holds:

for all ;  2 minJ ,  -  i§ i ()Rii () .

Proof. Follows from Theorem 29, (ii). 

Corollary 33. If hA1;A2; Ji is a joining-system satisfying connectivity,
then

hh1 [minJ ] ,R1i ; h2 [minJ ] ,R2i ;minJi

is an order-preserving quasi-order correspondence (cf. DeÖnitions 13 and
12).

The corollary says that in a joining-system hA1;A2; Ji; the R1-structure
of set of ìbottomsî of minJ is order similar to the R2-structure of the set
of ìtopsî of minJ . (See Theorem 3.2.4 for how this result can be expressed
in terms of the notion of isomorphism.)

Figure 10

and reflexive. Let ∼ denote the equality part of - and ≺ the strict part of
-. Then the following holds:

〈a1, a2〉 ∼ 〈b1, b2〉 iff b1Q1a1 & a2Q2b2
〈a1, a2〉 ≺ 〈b1, b2〉 iff (a1P1b1 & a2R2b2) or (a1R1b1 & a2P2b2)

where Qi is the equality-part of Ri and Pi is the strict part of Ri.
The structure of the minimal joinings in a joining-system is similar to

the structure of their “bottoms” and “tops”. We recall the definition of
projections πi (Definition 3.28 in Section 3.4).

Theorem 3.32 Suppose that 〈A1,A2, J〉 is a joining-system that satisfies
connectivity (See Definition 3.22). Then for i = 1, 2, πi : min J −→
πi [min J ] is surjective, and the following holds:

for all α, β ∈ min J , α - β iff πi (α)Riπi (β) .

Proof. Follows from Theorem 3.29, (ii). �

Corollary 3.33 If 〈A1,A2, J〉 is a joining-system satisfying connectivity,
then

〈〈π1 [min J ] ,R1〉 , 〈π2 [min J ] ,R2〉 ,min J〉
is an order-preserving quasi-order correspondence (cf. Definitions 3.13 and
3.12).
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The corollary says that in a joining-system 〈A1,A2, J〉, the R1-structure
of set of “bottoms” of min J is order similar to the R2-structure of the set
of “tops” of min J . (See Theorem 3.15 for how this result can be expressed
in terms of the notion of isomorphism.)

3.5.1 A remark on the interrelation between narrowness and
lowerness

Given the quasi-orderings 〈A1, R1〉 and 〈A2, R2〉, we have introduced two
quasi-orderings on A1×A2, viz. the narrowness relation E and the lowerness
relation -. The interrelation between these two orderings is of great interest
in the study of joining-systems.

How narrowness and lowerness are connected becomes more transparent
if we if we restrict ourselves to consider lattices instead of quasi-orderings.
Suppose that 〈L1,≤1〉 and 〈L2,≤2〉 are lattices. Let - be the lowerness-
relation with respect to ≤1 and ≤2, i.e. for all 〈a1, a2〉 , 〈b1, b2〉 ∈ L1 × L2

〈a1, a2〉 - 〈b1, b2〉 iff a1 ≤1 b1 and a2 ≤2 b2.

Then 〈L1 × L2,-〉 is a lattice and is the product of 〈L1,≤1〉 and 〈L2,≤2〉.
Let 〈L1,∧1,∨1〉 and 〈L2,∧2,∨2〉 be the algebraic formulation of 〈L1,≤1〉
and 〈L2,≤2〉 respectively. Define

(∧2

∧1

)
: L1 × L2 −→ L1 × L2
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such that

〈a1, a2〉
(∧2

∧1

)
〈b1, b2〉 = 〈a1 ∧1 b1, a2 ∧2 b2〉 .

And define (∨2

∨1

)
: L1 × L2 −→ L1 × L2

such that

〈a1, a2〉
(∨2

∨1

)
〈b1, b2〉 = 〈a1 ∨1 b1, a2 ∨2 b2〉 .

Then 〈
L1 × L2,

(∧2

∧1

)
,

(∨2

∨1

)〉

is the coordinatewise product lattice of 〈L1,∧1,∨1〉 and 〈L2,∧2,∨2〉 and is
the algebraic version of 〈L1 × L2,-〉, see [Davey and Priestley, 2002, p. 42].

Suppose as above that 〈L1,≤1〉 and 〈L2,≤2〉 are lattices. Let E be the
narrowness-relation with respect to ≤1 and ≤2, i.e. for all 〈a1, a2〉 , 〈b1, b2〉 ∈
L1 × L2

〈a1, a2〉 E 〈b1, b2〉 iff b1 ≤1 a1 and a2 ≤2 b2.

It can be shown that 〈L1 × L2,E〉 is a lattice. Let

〈L1,∧1,∨1〉 and 〈L2,∧2,∨2〉
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be the algebraic formulation of 〈L1,≤1〉 and 〈L2,≤2〉 respectively. Define

(∧2

∨1

)
: L1 × L2 −→ L1 × L2

such that

〈a1, a2〉
(∧2

∨1

)
〈b1, b2〉 = 〈a1 ∨1 b1, a2 ∧2 b2〉 .

And define (∨2

∧1

)
: L1 × L2 −→ L1 × L2

such that

〈a1, a2〉
(∨2

∧1

)
〈b1, b2〉 = 〈a1 ∧1 b1, a2 ∨2 b2〉 .

Then 〈
L1 × L2,

(∧2

∨1

)
,

(∨2

∧1

)〉

is a lattice and is the algebraic version of 〈L1 × L2,E〉.
3.6 The structure on minimal joinings

The next theorem gives a characterization of the structure, with respect to
the lowerness-relation, of the elements in a joining-space that are maximally
narrow, i.e., those called minimal joinings. Note that with minJ is meant
minE J .

We recall the definition 3.4 on page 567 of a complete quasi-lattice.

Theorem 3.34 Suppose that 〈A1,A2, J〉 is a Js and that A1 and A2 are
complete quasi-lattices and denote the relation - /min J as -∗. Let X ⊆
min J . Then

(i) lub-∗ X 6= ∅ and glb-∗ X 6= ∅

(ii) if X 6= ∅ then π2

[
lub-∗ X

]
⊆ lubR2 π2 [X]

(iii) if X 6= ∅ then π1

[
glb-∗ X

]
⊆ glbR1

π1 [X].

Proof. Suppose that X ⊆ min J . Note that since A1 = 〈A1, R1〉 and
A2 = 〈A2, R2〉 are complete quasi-lattices, then glbR1

π1 [X] 6= ∅ and
lubR2

π2 [X] 6= ∅.
(I) We prove (iii). Suppose that X 6= ∅. From (1) in Theorem 3.30 it

follows that there is c2 ∈ A2 such that if a1 ∈ glbR1
π1 [X], 〈a1, c2〉 ∈ min J ,
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and, furthermore, it holds that c2R2a2 for all a2 ∈ glbR2
π2 [X]. We shall

now show that

〈a1, c2〉 ∈ glb-∗ X.

Suppose that 〈x1, x2〉 ∈ X. Hence, x1 ∈ π1 [X] and x2 ∈ π2 [X]. Since
a1 ∈ glbR1

π1 [X], it follows that a1R1x1. Suppose that a2 ∈ glbR2
π2 [X].

Then a2R2x2 and since c2R2a2 it follows that c2R2x2. From a1R1x1 and
c2R2x2 follows that 〈a1, c2〉 - 〈x1, x2〉 and since 〈a1, c2〉 , 〈x1, x2〉 ∈ min J it
follows that

〈a1, c2〉 -∗ 〈x1, x2〉 .
Since 〈x1, x2〉 is an arbitrary element in X, it follows that

〈a1, c2〉 ∈ lb-∗ X.

Suppose now that 〈y1, y2〉 ∈ min J and 〈y1, y2〉 ∈ lb-∗ X. We shall prove
that

〈y1, y2〉 -∗ 〈a1, c2〉 .
Suppose z1 ∈ π1 [X]. Then there is z2 ∈ π2 [X] such that 〈z1, z2〉 ∈ X and
hence 〈y1, y2〉 -∗ 〈z1, z2〉, which implies that y1R1z1. Thus y1 ∈ lbR1

π1 [X]
and since a1 ∈ glbR1

π1 [X], it follows that y1R1a1. Since

〈a1, c2〉 , 〈y1, y2〉 ∈ min J and y1R1a1

it follows from (ii) in Theorem 3.29 that y2R2c2, which implies that

〈y1, y2〉 -∗ 〈a1, c2〉 .

This shows that 〈a1, c2〉 ∈ glb-∗ X and hence glb-∗ X 6= ∅. Note that

a1 ∈ π1

[
glb-∗ X

]
and a1 ∈ glbR1

π1 [X]. Suppose that x1 ∈ π1

[
glb-∗ X

]
.

Then there is x2 such that 〈x1, x2〉 ∈ glb-∗ X. Since 〈a1, c2〉 ∈ glb-∗ X it
follows that

〈x1, x2〉 ∼∗ 〈a1, c2〉
which implies x1Q1a1. Since a1 ∈ glbR1

π1 [X] it follows that x1 ∈ glbR1
π1 [X].

This shows that

π1

[
glb-∗ X

]
⊆ glbR1

π1 [X] .

(II) The proof of (ii) is analogous with the proof of (iii).
(III) That (i) holds when X 6= ∅ follows from the proof of (ii) and (iii).

The proof that lub-∗ ∅ 6= ∅ and glb-∗ ∅ 6= ∅ follows from the lemma
below. (To see this, cf. as well the remark above Theorem 3.5.) �
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Lemma 3.35 Suppose that 〈A1,A2, J〉 is a non-empty joining-system and
that A1 = 〈A1, R1〉 and A2 = 〈A2, R2〉 are complete quasi-lattices. Then

(i) there are a1 ∈ lubR1
π1 [J ] and a2 ∈ glbR2

J [a1] and the following
holds: 〈a1, a2〉 ∈ min J and 〈a1, a2〉 is a greatest element in min J
with respect to -.

(ii) there are b2 ∈ glbR2
π2 [J ] and b1 ∈ lubR1 J

−1 [b2] and the following
holds: 〈b1, b2〉 ∈ min J and 〈b1, b2〉 is a least element in min J with
respect to -.

Proof. (I) We prove (i). Since Ai (i = 1, 2) is a complete quasi-lattice,
there is gi ∈ Ai such that gi is a greatest element in Ai with respect to
Ri and li ∈ Ai such that li is a least element in Ai. According to the
assumption, J 6= ∅. Suppose that 〈x1, x2〉 ∈ J . Note that x2R2g2 and from
condition (1) in the definition of a joining-system follows 〈x1, g2〉 ∈ J . Since
A1 is a complete quasi-lattice it follows that lubR1

π1 [J ] 6= ∅. Suppose
that a1 ∈ lubR1 π1 [J ]. From condition (2) of a joining-system follows that
〈a1, g2〉 ∈ J . Since A2 is a complete quasi-lattice glbR2

J [a1] 6= ∅. Suppose
that a2 ∈ glbR2

J [a1]. Then 〈a1, a2〉 ∈ J according to condition (3) of a
joining-system. Suppose that 〈y1, y2〉 ∈ J and 〈y1, y2〉 C 〈a1, a2〉. Then

(∗) a1R1y1&y2P2a2

or

(∗∗) a1P1y1&y2R2a2

Since y1 ∈ π1 [J ] and a1 ∈ lubR1 π1 [J ] it follows that y1R1a1 and therefore
(∗∗) above does not hold. a1R1y1 implies y1Q1a1 and hence y2 ∈ J [a1].
Since a2 ∈ glbR2

J [a1] it follows that a2R2y2. This shows that (∗) above
does not hold. Thus 〈a1, a2〉 ∈ min J . Suppose that 〈z1, z2〉 ∈ min J . Then
z1 ∈ π1 [J ] and since a1 ∈ lubR1

π1 [J ] it follows that z1R1a1 and thus
〈z1, z2〉 - 〈a1, a2〉.

(II) The proof of (ii) is analogous with the proof of (i). �

Corollary 3.36 Given the assumption in Theorem 3.34, 〈min J,-∗〉 is a
complete quasi-lattice.

The theorem 3.37 below is a kind of converse of the theorem 3.34 above.
We recall that ↑K is the enclosure of K (see definition 3.23 above on page
578).
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Theorem 3.37 Suppose that A1 = 〈A1, R1〉 and A2 = 〈A2, R2〉 are quasi-
orderings and K ⊆ A1 × A2 is such that for all 〈a1, a2〉 ∈ K, 〈a1, a2〉 is
a minimal element in K with respect to E. Suppose further that -K is
the relation - on A1 × A2 restricted to K and that 〈K,-K〉 is a complete
quasi-lattice and the following two conditions hold:

(i) For all X ⊆ K,π2

[
lub-K

X
]
⊆ lubR2 π2 [X].

(ii) For all X ⊆ K,π1

[
glb-K

X
]
⊆ glbR1

π1 [X].

Then 〈A1,A2, ↑K 〉 is a joining-system and min ↑K = K.

Proof. (I) Proof of condition (1) in the definition of a joining-system.
Suppose that 〈a1, a2〉 ∈ ↑K and 〈a1, a2〉 E 〈b1, b2〉. Then there is 〈c1, c2〉 ∈
K such that 〈c1, c2〉 E 〈a1, a2〉, and it follows that 〈c1, c2〉 E 〈b1, b2〉, which
implies that 〈b1, b2〉 ∈ ↑K .

(II) Proof of condition (2) in the definition of a joining-system. Suppose
that C1 ⊆ A1, b2 ∈ A2 and that a1 ∈ lubR1

C1. Suppose further that for all
c1 ∈ C1, 〈c1, b2〉 ∈ ↑K . We show that 〈a1, b2〉 ∈ ↑K . For all c1 ∈ C1, there
is an element 〈c∗1, bc12 〉 ∈ K such that 〈c∗1, bc12 〉 E 〈c1, b2〉. Since 〈K,-K〉 is a
complete quasi-lattice it follows that there is 〈x1, x2〉 ∈ K such that

(∗ ∗ ∗) 〈x1, x2〉 ∈ lub-K
{〈c∗1, bc12 〉 | c1 ∈ C1} .

Hence,
x2 ∈ π2

[
lub-K

{〈c∗1, bc12 〉 | c1 ∈ C1}
]
.

From the assumption (i) follows that

x2 ∈ lubR2 π2 [{〈c∗1, bc12 〉 | c1 ∈ C1}]

and hence
x2 ∈ lubR2 {bc12 | c1 ∈ C1} .

Note that
b2 ∈ ubR2

{bc12 | c1 ∈ C1}
which implies that x2R2b2.

From (∗ ∗ ∗) above it follows that for all c1 ∈ C1

〈c∗1, bc12 〉 -K 〈x1, x2〉

and hence c∗1R1x1. For all c1 ∈ C1

〈c∗1, bc12 〉 E 〈c1, b2〉
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which implies c1R1c
∗
1 and hence c1R1x1. Thus x1 ∈ ubR1

C1 and since
a1 ∈ lubR1

C1 it follows that a1R1x1. This together with 〈x1, x2〉 ∈ K and
x2R2b2 implies (see part (I) in this proof) 〈a1, b2〉 ∈ ↑K .

(III) Proof of condition (3) in the definition of a joining-system is analo-
gous to the proof of condition (2) in (II).

(IV) Proof of min ↑K = K. Suppose that 〈a1, a2〉 ∈ K and show that
〈a1, a2〉 ∈ min ↑K . Suppose that 〈b1, b2〉 ∈ ↑K such that 〈b1, b2〉 E 〈a1, a2〉.
Since 〈b1, b2〉 ∈ ↑K there is 〈c1, c2〉 ∈ K such that 〈c1, c2〉 E 〈b1, b2〉. Hence,
〈c1, c2〉 E 〈a1, a2〉 and since 〈a1, a2〉 , 〈c1, c2〉 ∈ K and all elements in K are
minimal elements in K with respect to E, it follows that 〈a1, a2〉 w 〈c1, c2〉,
which implies that 〈a1, a2〉 w 〈b1, b2〉 and 〈a1, a2〉 ∈ min ↑K .

Suppose that 〈a1, a2〉 ∈ min ↑K . Then 〈a1, a2〉 ∈ ↑K and there is
〈b1, b2〉 ∈ K such that 〈b1, b2〉 E 〈a1, a2〉. According to what have just
been proven, from 〈b1, b2〉 ∈ K follows that 〈b1, b2〉 ∈ min ↑K . This implies
that 〈b1, b2〉 w 〈a1, a2〉, and thus 〈a1, a2〉 ∈ K. �

3.7 Networks of joining-systems

A normative system is not always represented by just one joining-system.
More complex normative systems are usually represented by a network of
joining-systems. (A rudimentary network is shown in Section 5.2.3.) In
such representations, the relative product of joining spaces is an important
operation for the construction of new joining-systems. The theorem below
describes the situation.

Note that, when more than two joining-systems are involved, the sign
J for a set of joinings will be annexed with two indices. Thus, the set
of joinings from a quasi-ordering Ai to a quasi-ordering Aj will be denoted
Ji,j . Accordingly, the joining-system from Ai to Aj is denoted 〈Ai,Aj , Ji,j〉 .

Theorem 3.38 Suppose that 〈A1,A2, J1,2〉 and 〈A2,A3, J2,3〉 are joining-
systems and that A2 is a complete quasi-lattice. Then 〈A1,A3, J1,2|J2,3〉
is a joining-system and is called the relative product of 〈A1,A2, J1,2〉 and
〈A2,A3, J2,3〉 .

Proof. We begin by proving condition (1) in the definition of a Js (Defini-
tion 3.11 in Section 3.2.2). Suppose that 〈a1, a3〉 ∈ J1,2|J2,3 and 〈a1, a3〉 E
〈b1, b3〉 . From 〈a1, a3〉 ∈ J1,2|J2,3 follows that there is a2 ∈ A2 such that
〈a1, a2〉 ∈ J1,2 and 〈a2, a3〉 ∈ J2,3. From 〈a1, a3〉 E 〈b1, b3〉 follows that
b1R1a1 and a3R3b3. Since 〈A1,A2, J1,2〉 is a joining-system, b1R1a1 and
〈a1, a2〉 ∈ J1,2 implies that 〈b1, a2〉 ∈ J1,2. And a3R3b3 and 〈a2, a3〉 ∈ J2,3

implies that 〈a2, b3〉 ∈ J2,3, since 〈A2,A3, J2,3〉 is a joining-system. From
〈b1, a2〉 ∈ J1,2 and 〈a2, b3〉 ∈ J2,3 follows that 〈b1, b3〉 ∈ J1,2|J2,3.
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We now prove condition (2) in the definition of a Js. Suppose that C1 ⊆
A1 and C1 6= ∅ such that for all c1 ∈ C1, 〈c1, b3〉 ∈ J1,2|J2,3 and suppose
a1 ∈ lubR1

C1. Let

C
(2)
1 = {c2 ∈ A2 | ∃c1 ∈ C1 : 〈c1, c2〉 ∈ J1,2 & 〈c2, b3〉 ∈ J2,3}

Hence, for all c2 ∈ C
(2)
1 , 〈c2, b3〉 ∈ J2,3. Since A2 is a complete quasi-

lattice (Definition 3.4), it follows that lubR2
C

(2)
1 6= ∅. Suppose that a2 ∈

lubR2
C

(2)
1 . Since 〈A2,A3, J2,3〉 is a Js it follows that 〈a2, b3〉 ∈ J2,3. For all

c1 ∈ C1, there is c
(2)
1 ∈ C(2)

1 such that
〈
c1, c

(2)
1

〉
∈ J1,2. Since 〈A1,A2, J1,2〉

is a Js, this implies that 〈c1, a2〉 ∈ J1,2 for all c1 ∈ C1, and, consequently,
〈a1, a2〉 ∈ J1,2. Since 〈a2, b3〉 ∈ J2,3 it follows that 〈a1, b3〉 ∈ J1,2|J2,3.

The proof of condition (3) is analogous and is omitted. �

Note that from the assumption J1,2|J2,3 = J1,3 and the requirement of
connectivity it follows that min J1,2|min J2,3 ⊆ min J1,3. Also, however,
note that ⊆ cannot generally be strengthened to = (Cf. [Lindahl and Odel-
stad, 2011, sect. 3.3.2]).

3.8 Intervenients

The notion of “intervenient” (cf. above, Section 2.2) will be treated in
detail in Section 5, in connection with Boolean quasi-orderings and Boolean
joining-systems. As a general notion, it is, however, introduced here.

Let us consider three joining-systems

S1 = 〈A1,A2, J1,2〉 ,S2 = 〈A2,A3, J2,3〉 , S3 = 〈A1,A3, J1,3〉 ,

where Ai = 〈Ai, Ri〉. There can be a1 ∈ A1, a2 ∈ A2, and a3 ∈ A3 such that
〈a1, a2〉 ∈ J1,2, 〈a2, a3〉 ∈ J2,3, and 〈a1, a3〉 ∈ J1,3. A case of special interest
then, is when WGS1 (a1, a2, A1) and SCS2 (a3, a2, A3), i.e., when, in S1, a1

is among the weakest grounds in A1 for a2, and a3 is among the strongest
consequences in A3 of a2. (Cf. above, Section 3.3). In this case, a2, in
a sense, is “intermediate” between a1 and a3 and “mediates” the joining
〈a1, a3〉. Therefore, in this case we call a2 an intervenient.

In order to give a more detailed formal exposition of what is said above,
we first give the following definition of a simple Js-triple.

Definition 3.39 Suppose that S1 = 〈A1,A2, J1,2〉, S2 = 〈A2,A3, J2,3〉 and
S3 = 〈A1,A3, J1,3〉 are joining-systems where Ai = 〈Ai, Ri〉. 〈S1,S2,S3〉
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is a simple Js-triple if A1, A2 and A3 are pair-wise disjunct, and, for the
relative product J1,2|J2,3 it holds that J1,3 = J1,2|J2,3.19

(For Bjs-triples of Boolean joining-systems, cf. Section 5.1.)

Then the notion of intervenient in a simple Js-triple is defined as follows.

Definition 3.40 In a simple Js-triple 〈S1,S2,S3〉, the element a2 ∈ A2, is
an intervenient from A1 to A3 corresponding to the joining 〈a1, a3〉 ∈ J1,3,
denoted a2 y 〈a1, a3〉 , if a1 is a weakest ground of a2 in S1 and a3 is a
strongest consequence of a2 in S3.

Since weakest grounds and strongest consequences are related to min-
imal joinings, the same holds for intervenients. If a2 is an intervenient
corresponding to 〈a1, a3〉, there is b2 ∈ A2 such that 〈a1, b2〉 is a minimal
joining and b2R2a2. And, further, there is c2 ∈ A2 such that 〈c2, a3〉 is a
minimal joining and a2R2c2. If 〈a1, a2〉 is a minimal element, then, since a2

is minimal with respect to the ground a1, a2 is called ground-minimal. If
〈a2, a3〉 is a minimal element, then, since a2 is minimal with respect to the
consequence a3, a2 is called consequence-minimal. A very convenient way
of representing a normative system is if all intervenients are ground- and
consequence-minimal and the operation relative product is used. Changes
of the normative system are then simplified and the notion of open inter-
mediate concepts is elucidated.

A step towards analyzing more general structures in the law is tak-
ing into account chains of four or more quasi-orderings. Let us pay re-
gard to joining-systems involving four quasi-orderings A1,A2,A3,A4 such
that a2 y 〈a1, a3〉 and a3 y 〈a2, a4〉. (See Figure 13.) From this follows
that WG (a2, a3, A2) & SC (a3, a2, A3). This conjunction is equivalent to
〈a2, a3〉 ∈ min J2,3, see Theorem 3.21. (This is illustrated by the thick line
in Figure 13.) Note that a chain of four quasi-orderings can be continued at
any length by adding A5,A6, and so on. The notion of intervenient is of par-
ticular interest when the three joining-systems are Boolean joining-systems.
This will be the subject-matter of the subsequent Section 5, where con-
junctions, disjunctions and negations of intervenients are studied, organic
wholes of intervenients discussed and a typology of intervenients presented.
Also, section 5 will contain several examples of legal intervenients.

19The triple is simple in the following sense. The presupposition of disjunct strata
will make it possible in the present section to disregard the problem with “degenerated”
weakest grounds and/or strongest consequences. This problem will be dealt with in
connection with intervenients in Boolean joining systems.
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denoted a2 y ha1; a3i ; if a1 is a weakest ground of a2 in S1 and a3 is a
strongest consequence of a2 in S2.

Since weakest grounds and strongest consequences are related to min-
imal joinings, the same holds for intervenients. If a2 is an intervenient
corresponding to ha1; a3i, there is b2 2 A2 such that ha1; b2i is a minimal
joining and b2Ra2. And, further, there is c2 2 A2 such that hc2; a3i is a
minimal joining and a2Rc2. If ha1; a2i is a minimal element, then, since a2
is minimal with respect to the ground a1; a2 is called ground-minimal. If
ha2; a3i is a minimal element, then, since a2 is minimal with respect to the
consequence a3; a2 is called consequence-minimal. A very convenient way
of representing a normative system is if all intervenients are ground- and
consequence-minimal and the operation relative product is used. Changes
of the normative system are then simpliÖed and the notion of open inter-
mediate concepts is elucidated.

A step towards analyzing more general structures in the law is taking
into account chains of four or more quasi-orderings. Let us pay regard
to joining-systems involving four quasi-orderings A1;A2;A3;A4 such that
a2 y ha1; a3i and a3 y ha2; a4i: (See Figure 1.13 on page 49.) From this
follows that WG(a2; a3; A2) & SC (a3; a2; A3). This conjunction is equiv-
alent to ha2; a3i 2 minJ2;3, see Theorem 21. (This is illustrated by the
thick line in Figure 1.13.) Note that a chain of four quasi-orderings can
be continued at any length by adding A5; A6; and so on. The notion

a4

A1

A3

A2a2

A4

a1

a3

Figure 1.13.

Figure 13

4 TJS for Boolean joining-systems

In the representation of a normative system, the connectives “and”, “or”
and “not” are often essential. This is neatly illustrated in the example of
Amendment XIV in the U.S. Constitution, quoted above (Section 1.7.1):

“All persons born or naturalized in the United States, and sub-
ject to the jurisdiction thereof, are citizens of the United States
and of the State wherein they reside. No State shall make or
enforce any law which shall abridge the privileges or immuni-
ties of citizens of the United States; nor shall any State deprive
any person of life, liberty, or property, without due process of
law; nor deny to any person within its jurisdiction the equal
protection of the laws.”

With a view to the connectives referred to, in the present Section 4 and
the subsequent Section 5, we consider strata of Boolean quasi-orderings
(Bqo’s) and joining-systems that are Boolean joining-systems (Bjs’). As
mentioned, the development of TJS for Bqo’s and Bjs’s in this chapter of
the Handbook relies much on earlier papers by the present authors and the
reader will often be referred to these papers for further details and for proofs
of the results.

4.1 Boolean quasi-orderings and Boolean joining-systems

4.1.1 Boolean quasi-orderings

The notion of Boolean quasi-ordering is defined as follows.
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Definition 4.1 The relational structure B = 〈B,∧,′ , R〉 is a Boolean quasi-
ordering (Bqo) if 〈B,∧,′ 〉 is a Boolean algebra and R is a quasi-ordering,
⊥ is the zero element and > is the unit element, such that R satisfies the
additional requirements:

(1) aRb and aRc implies aR(b ∧ c),

(2) aRb implies b′Ra′,

(3) (a ∧ b)Ra,

(4) not >R⊥.

Note that if ≤ is the partial ordering determined by 〈B,∧,′ 〉, from require-
ment (3) it follows that a ≤ b implies aRb. As usual, ≤ is defined by a ≤ b
if and only if a ∧ b = a.

Requirements (3) and (4) can be expressed equivalently by saying that
R is a non-total super-relation of the Boolean ordering ≤. More exactly,
suppose that 〈B,∧,′ 〉 is a Boolean algebra, that ≤ is the partial ordering
determined by the algebra, and that R is a transitive relation on B. Then
the conjunction of (3) and (4) is equivalent to the conjunction of (i) ≤ is a
subset of R, and (ii) R is a proper subset of B ×B.

Some general notions relating to Bqo’s are as follows (see [Lindahl and
Odelstad, 2004, sect. 2.1]):

If 〈B,∧,′ , R〉 is a Bqo then we say that the Boolean algebra 〈B,∧,′ 〉 is
the reduct of 〈B,∧,′ , R〉. In what follows, the reduct 〈B,∧,′ 〉 of a Bqo B
will be denoted Bred. Suppose that B = 〈B,∧,′ , R〉 is a Bqo and Q is the
indifference part of R. The quotient algebra of B with respect to Q is a
structure 〈B/Q,∩,−,≤Q〉 such that 〈B/Q,∩,−〉 is a Boolean algebra and
≤Q is the partial ordering determined by this algebra. The natural mapping
of 〈B,∧,′ 〉 onto 〈B/Q,∩,−〉 is a homomorphism (cf. [Odelstad and Lindahl,
2000]). We call 〈B/Q,∩,−〉 the quotient reduction of B. Thus there are two
Boolean algebras which should be kept apart, namely Bred, i.e. the reduct
of B, and the quotient reduction of B. If the quotient reduction of B is
isomorphic to Bred, R =≤, and we say that B is conservatively reducible.

As just mentioned, the transition to the quotient algebra of 〈B,∧,′ , R〉
with respect to the equality part Q of R will result in a new Boolean algebra.
In what follows we will not make this transition. The point is that, in the
models we have in mind, even though, for a and b it holds that aQb (and
therefore a and b belong to the same Q-equivalence class), we may want
to distinguish a and b because they can have different meaning. We get
possibilities of finer divisions when we can distinguish the three possibilities:
1. a = b, 2. a 6= b and aQb, 3. a 6= b and not aQb. Therefore, there is
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a point in remaining within the framework of Boolean quasi-orderings as
defined above.

Note that if B = 〈B,∧,′ , R〉 is a Bqo, then

(a ∨ b) ∈ lubR {a, b} ,
(a ∧ b) ∈ glbR {a, b} .

If B = 〈B,∧,′ , R〉 is a Bqo, then 〈B,R〉 is a quasi-ordering and, of course,
what is said about quasi-orderings in section 3 is applicable to B. We
say that the Bqo 〈B,∧,′ , R〉 is complete if the quasi-ordering 〈B,R〉 is a
complete quasi-lattice.

4.1.2 Boolean joining systems

A fundamental construction for the representation of a normative system is
that of a Boolean joining-system. If N is a two-strata system of conditional
norms, then N can be represented by a Bjs 〈B1,B2, J〉 where J is a set
of conditional norms, where B1 is a Bqo of grounds, and B2 is a Bqo of
normative consequences.

Definition 4.2 〈B1,B2, J〉 is a Boolean joining system (Bjs) if

B1 = 〈B1,∧,′ , R1〉 , B2 = 〈B2,∧,′ , R2〉

are Boolean quasi-orderings and 〈〈B1, R1〉 , 〈B2, R2〉 , J〉 is a joining-system.

With the definition of a Bjs now given it is clear that the results for
joining-systems in Section 3 apply to the Bjs version of joining-systems.
This holds e.g., for the notions of weakest ground, strongest consequence,
minimal joinings and connectivity.

In the study of Bjs’s, structures that are not Bqo’s play an essential role.
This is exemplified by the following theorem, which is proved in [Lindahl
and Odelstad, 2011, p. 128].

Theorem 4.3 Suppose that 〈B1,B2, J〉 is a Bjs that satisfies connectivity.
Then 〈min J,-〉 is a quasi-lattice.

Cf. Corollary 3.36 above.
If 〈B1,B2, J〉 is a Boolean joining system, it is often reasonable that

falsum in B1 and in B2 are the same element ⊥ and that the same holds
for verum >. From this follows that in J there are joinings, which are
degenerated in the sense that they do not seem to fulfill the intuitive idea
behind the notion of a joining, for example 〈⊥,⊥〉 and 〈>,>〉.

Referring to a Bjs 〈B1,B2, J〉, however, we introduce a distinction be-
tween “degenerated” and “non-degenerated” for weakest ground, strongest
consequences and joining.
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(1) If WG (⊥, a2,B1) , the weakest ground in B1 for a2 is degenerated;
similarly, if SC(>, a1,B2〉, the strongest consequence in B2 of a1 is degen-
erated.

(2) As joinings from B1 to B2, the elements in

{〈⊥,⊥〉 , 〈>,>〉 , 〈b1,>〉 , 〈⊥, b2〉}

are degenerated joinings.
Note that 〈⊥,⊥〉 , 〈>,>〉 ∈ J , and even 〈⊥,⊥〉 , 〈>,>〉 ∈ min J . Note

further that if b2 ∈ B2 and there is no b1 ∈ B1� {⊥} such that 〈b1, b2〉 ∈ J ,
then 〈⊥, b2〉 ∈ min J . Analogously, if b1 ∈ B1 and there is no b2 ∈ B2� {>}
such that 〈b1, b2〉 ∈ J , then 〈b1,>〉 ∈ min J .

4.2 The condition implication model (cis)

We recall the statement by [Alchourrón and Bulygin, 1971] (referred to in
the introductory Section 1), that a set α of sentences deductively correlates
a pair 〈p, q〉 of sentences if q is a deductive consequence of {p}∪α, (or, using
the relation Cn of consequence, if q ∈ Cn({p} ∪ α).) Also, we recall our
remark that if propositional logic is used as a basis, it is usually presupposed
that p, q are closed sentences with no free variables,( i.e., for example, p is
the sentence “Smith has promised to pay Jones $100” and q is “Smith has
an obligation to pay $100 to Jones”). Thus, in such sentences, individuals
are referred to by individual constants (names).

A sentence such as “Smith has an obligation to pay $100 to Jones” is often
said to express an “individual norm”. Owing to its general character, the
Bjs theory can be used for representing correlations of conditional individual
norms and derivation of individual norms.

As mentioned in Section 1, however, a normative system usually expresses
general rules where no individual names occur. If the task is to represent
a normative system of this ordinary kind, the feature of generality has to
be taken into account. What will here be called the theory of condition
implication structures (cis’s) is a special variety of the Bjs theory where
the elements of B in a Bqo 〈B,∧,′ , R〉 are conditions.

In general terms, a cis is a structure 〈C,→〉 where C is a set of conditions
and→ is an implicative relation. In what follows we have in view especially
the case of a cis-Bqo 〈B,∧,′ , R〉, where B is a set of conditions and R is
the implicative relation. A cis-Bjs is a Bjs 〈B1,B2, J〉 where the Bqo’s B1

and B2 are cis’. Part of a normative system can often be represented by
a cis-Bjs 〈B1,B2,J〉 where B1,B2 are cis’, and J is a correspondence from
the set B1 of conditions to the set B2 of conditions.

In simple cases, conditions can be denoted by expressions using the sign of
the infinitive, such as “to be 21 years old”, “to be a citizen of the U.S.”, “to
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be a child of”, “to be entitled to inherit”, or by corresponding expressions
in the ing-form, like “being 21 years old” etc. Often, however, conditions
should appropriately be expressed by open sentences, like “x promises to
pay $y to z”, “x is a citizen of state y”, “x is entitled to inherit y”.

When a condition is expressed by an open sentence, free variables like
x, y, z, ... occurring in the sentence merely are place-holders for expressing
the condition in a convenient way and keeping track of the order of the
places. In simple cases like, “committing murder implies being liable to
imprisonment”, place-holders are not needed. For details about Boolean
operations on conditions, the reader is referred to [Lindahl and Odelstad,
2004, sect. 3].

In a cis-Bqo 〈B,∧,′ , R〉, a condition a in B, such as “x promises to pay
$y to z ”, is said to be fulfilled or non-fulfilled by a particular triple, like
〈Smith,100,Jones〉. The fulfillment of a condition by a particular n−tuple
of individuals is expressed by a closed sentence naming the individuals of
the n−tuple.

A framework with implication between conditions seems to accord with
the presupposed ontology of legal language, where terms such as “citizen-
ship”, “inheritance”, “ownership”, denote conditions that are treated as ob-
jects between which there is an implicative relation of “ground-consequence”,
often expressed in terms of “gives rise to” or “causes”, or “implies”. Thus
inheritance is said to give rise to ownership, and ownership is said to imply
a bundle of liberties, claims, and immunities.

Let us recall the remark after Definition 3.12 that if 〈A1,A2, J〉 is a
joining-system, then R1|J |R2 = J and, therefore, J can be said to “absorb”
R1 and R2. From this it follows that if we have in view a cis-Bjs 〈B1,B2, J〉,
where a1, b1, a2, b2 are conditions such that a1, b1 ∈ B1 and a2, b2 ∈ B2, we
can use the following schema of derivation:

(1) a1R1b1
(2) 〈b1, a2〉 ∈ J
(3) a2R2b2
—————
(4) 〈a1, b2〉 ∈ J

In this schema, the joining (4) of two conditions is derived from the joining
(2) together with implications (1) and (3).

4.2.1 A note on cis models with lattice-based quasi-orderings

Some kinds of conditions do not constitute Boolean algebras. One example
is equality-relations. The term “equality-relation” here refer to a relation of
equality with respect to some aspect α, and it is presupposed in this context
that an equality-relation is always an equivalence-relation, i.e. a reflexive,
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transitive and symmetric relation. Let A be a non-empty set and let E (A)
be the set of equivalence relations on A. Define the binary relation ≤ on
E (A) in the following way: For all ε1, ε2 ∈ E (A)

ε1 ≤ ε2 iff xε1y implies xε2y.

The reader should be reminded of the fact that E (A) = 〈E (A) ,≤〉 is
a complete lattice. Note that the negation ε′ of an equivalence relation
ε ∈ E (A) is not an equivalence relation, i.e. ε′ /∈ E (A). 〈E (A) ,≤〉 ,
therefore, does not constitute a Boolean algebra. (Cf. [Odelstad, 2008,
pp. 38f.].)

As appear from the foregoing, a Boolean quasi-ordering is a Boolean
algebra extended with a quasi-ordering satisfying certain conditions. We
can define an analogous structure based on a lattice instead of a Boolean
algebra.

Definition 4.4 The relational structure 〈L,∧,∨, R〉 is a lattice-based quasi-
ordering (Lqo) if 〈L,∧,∨〉 is a lattice and R is a quasi-ordering such that
R satisfies the additional requirements:

(1) aRb and aRc implies aR(b ∧ c),

(2) aRc and bRc implies (a ∨ b)Rc,

(3) (a ∧ b)Ra,

(4) aR(a ∨ b).

The transition to the quotient algebra of 〈L,∧,∨〉 with respect to the
equality part of R will result in a lattice. (Cf. [Lindahl and Odelstad, 1999a,
p. 171].) Let ≤ be the partial ordering determined by the lattice-based
quasi-ordering 〈L,∧,∨, R〉.20 From requirement (3) for lattice-based quasi-
orderings it follows that a ≤ b implies aRb. If 〈A,∧,∨, R〉 is a lattice-based
quasi-ordering then 〈L,R〉 is a quasi-lattice. Note that a Bqo determines a
Lqo.

4.3 Subtraction and addition of norms: an example

In Section 1.6 above, we mentioned that TJS deals with subtraction and
addition of norms in terms of the structure of the set minJ of minimal
joinings. In the present subsection we illustrate this issue by a cis concerning
the legal effects of an illegal transfer of goods belonging to someone else.
(Cf. [Lindahl and Odelstad, 2003].)

20As usual, ≤ is defined by a ≤ b if and only if a ∧ b = a.
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Consider the following example. Goods belonging to owner have been
sold without owner’s consent by transferrer to transferee by a contract. (We
can suppose that transferrer has stolen or hired the goods from owner and
had it in possession at the time of the contract with transferee.) The nor-
mative problem is: Under what conditions is there an obligation (denoted
O1) for transferrer to deliver the goods to owner? Under what conditions
is there an obligation (denoted O2) for transferee to deliver the goods to
owner?

We consider four systems and for all of them we assume that the stra-
tum of grounds coincides with its reduct and similarly for the stratum of
consequences, i.e. Ri coincides with ≤i.

The example is a cis-application representing four normative systems
with general norms where descriptive conditions imply normative condi-
tions. For convenience, the conditions involved will be referred to in an
abbreviated way. So, for example, condition P below (“Transferee has the
goods in possession”) refers to a complex condition C(x1, ..., xn) fulfilled
or not fulfilled by an n-tuple of individuals 〈i1, ..., in〉 in a situation s. For
details on conditions in the cis of the present example, the reader is referred
to [Lindahl and Odelstad, 2003, pp. 86ff.].

The conditions dealt with in this example are the following (where ′
signifies negation):

Grounds
P = Transferee has (= the transferrer has not) the goods in possession.
F = Transferee was in good faith at the time of the transfer.
R = the owner offers to pay ransom to transferee for the goods.

Normative consequences
O1 = Transferrer has an obligation to deliver the goods to owner.
O2 = Transferee has an obligation to deliver the goods to owner.

Verum and falsum
⊥ falsum
> verum

To simplify the example, we stipulate that it is assumed that the goods
are either in the possession of transferrer or in the possession of transferee
(no third possibility).

The example is intended to illustrate that, by means of Theorems 3.34
and 3.37, we get a test for whether a legal system is a joining-system, useful
in situations of subtraction of norms from a system and addition of norms
to a system.

We consider four systems, SI ,SII ,SIII , SIV , where

• SI is a joining-system,
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• SII , the result of subtraction from SI , is not a joining-system,

• SIII , the result of a more comprehensive subtraction from SI , is a
joining-system, and,

• SIV , the result of an addition to SIII , is a joining-system.

We make the following assumptions concerning the Bqo’s involved in the
example:

1. The Bqo
B1 = 〈B1,∧,′ , R1〉, where R1 =≤1,

of grounds is the same for the systems SI ,SII ,SIII ; B1 consists of the
Boolean combinations of F and P.
(The Bqo of grounds in SIV will be indicated later).

2. The Bqo
B2 = 〈B2,∧,′ , R2〉, where R2 =≤2,

of consequences is the same for all of SI ,SII ,SIII , SIV ; B2 consists
of the Boolean combinations of O1 and O2;

We introduce the following names for some of the norms in SI − SIII :

a = 〈F′∧P,O2〉
b = 〈P,O1′〉
c = 〈F∧P,O1′∧O2′〉
d = 〈F′∨P′,O1∨O2〉
e = 〈F∨P′,O2′〉
f = 〈P′,O1〉
〈⊥,⊥〉
〈>,>〉

In System SI (which is a qo-corr but, at this stage, not assumed to be a
Js) the answer to the normative problem stated above depends on whether
transferee has possession of the goods (denoted P) and whether transferee
was in good faith at the time of the contract (denoted F). Let

KI = {a,b, c,d, e, f ,〈⊥,⊥〉, 〈>,>〉}

be the set of norms in SI that are minimal with respect to E. Figure 14 on
page 601 shows the six minimal, non-degenerated norms and their interrela-
tion in system SI : 〈KI ,- /KI〉 is a lattice, see Figure 15 on page 602. The
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but (F^P)2 glbR1

1 [fb; eg]. And so, though

hKII ;- =KIIi is a lattice (and complete since it is Önite), it does not sat-
isfy requirement (ii) in Theorem 34. Therefore, hB1;B2; "KII i is not a Js.
If c is subtracted, in order to obtain a joining-system, the legislator has

to subtract either b or e, or both, as well. Since elimination of b would
seem unreasonable from a legal point of view, the appropriate choice would

be to eliminate e. The resulting system will here be called System SIII .
System SIII (which is a qo-corr, but, at this stage, is not assumed to be

a joining-system) is such that

KIII = fa;b;d; f ; h?;?i ; h>;>ig

See Figure 1.17.

hKIII ;-KIII
i is a lattice. See Figure 1.18. Moreover, the assumptions in

Theorem 37 are satisÖed. Hence, it follows that S III = hB1;B2; "KIII i is a
Bjs.
S III , however, is legally unsatisfactory, since it is merely the result of

subtraction, without positively stipulating anything about the relevance of

ownerís o§ering/not o§ering to pay ransom for the goods. The next system

Figure 14

assumptions in Theorem 3.37 are satisfied. From Theorem 3.37 it follows
that SI = 〈B1,B2, ↑KI 〉 is a Bjs and that min ↑KI = K.

We note that, for some X ⊆ KI , 〈⊥,⊥〉 ∈ glb-X. Thus, for exam-
ple, 〈⊥,⊥〉 ∈ glb-{a,c}. Similarly, for some X ⊆ KI , 〈>,>〉 ∈ lub-X.
Thus,〈>,>〉 ∈ lub-{b,d,e}.

From the point of view of legal justice, System SI may be thought to
be unreasonable since it does not attach relevance to the possibility that
owner can be willing to pay a ransom to transferee for getting the goods
back. System SII takes this consideration into account by elimination of
some norms in the system. Suppose that the legislator in the set KI of
minimal joinings subtracts the minimal joining c = 〈F∧P,O1′∧O2′〉, while
a, b, d, e, f, 〈⊥,⊥〉 and 〈>,>〉 are left.

System SII , where the set of minimal norms is

KII = {a,b,d, e, f , 〈⊥,⊥〉 , 〈>,>〉}

is a qo-corr but not a Js. Indeed, 〈KII ,- /KII〉 is a lattice, see Fig-
ure 16. Greatest lower bound of b and e in this lattice is 〈⊥,⊥〉 , i.e.
〈⊥,⊥〉 ∈ glb-/KII

{b, e}. Note, however, that c ∈ glb- {b, e}. Hence,

⊥ ∈ π1

[
glb-/KII

{b, e}
]

but (F∧P)∈ glbR1
π1 [{b, e}]. And so, though
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to be considered, therefore, is System SIV:, where ìRansomî is introduced:
The Bqo of grounds in S IV is

B3 = hB3;^;0 ; R3i with R3 =3;

where B3 consists of Boolean combinations of F, P and R. In SIV the fol-
lowing norms are added:

hP^R;O2i: If transferee has the goods in possession and owner pays ran-
som for the good, then transferee has the obligation to deliver the good to

owner.

hF^P^R0;O20i: If transferee has the good in possession and fulÖlls the
good faith condition, and owner does not pay ransom, then transferee has no

obligation to deliver the good back to owner. These added norms however,

are not minimal elements.

In SIV (which is assumed to be a qo-corr but not a Js) the set of minimal
norms is

KIV = fb; f ;g;h; i; j;h?;?i; h>;>ig

where

g = hP^(F0_R);O2i
h = hF^P^R0;O10^O20i
i = hF0_P0_R;O1_O2i
j = hP0 _ (F^R0);O20i

Figure 15

〈KII ,- /KII〉 is a lattice (and complete since it is finite), it does not sat-
isfy requirement (iii) in Theorem 3.34. Therefore, 〈B1,B2, ↑KII 〉 is not a
Js.

If c is subtracted, in order to obtain a joining-system, the legislator has
to subtract either b or e, or both, as well. Since elimination of b would
seem unreasonable from a legal point of view, the appropriate choice would
be to eliminate e. The resulting system will here be called System SIII .

System SIII (which is a qo-corr, but, at this stage, is not assumed to be
a joining-system) is such that

KIII = {a,b,d, f , 〈⊥,⊥〉 , 〈>,>〉}

See Figure 17.

〈KIII ,-KIII
〉 is a lattice. See Figure 18. Moreover, the assumptions in

Theorem 3.37 are satisfied. Hence, it follows that S III = 〈B1,B2, ↑KIII 〉 is
a Bjs.

S III , however, is legally unsatisfactory, since it is merely the result of
subtraction, without positively stipulating anything about the relevance of
owner’s offering/not offering to pay ransom for the goods. The next system
to be considered, therefore, is System SIV , where “Ransom” is introduced.
The Bqo of grounds in S IV is

B3 = 〈B3,∧,′ , R3〉 with R3 =≤3;
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We note that, of the non-degenerated minimal norms in the original sys-

tem SI ; only b and f remain unchanged in SIV ; while, due to the relevance
of ransom, g, h, i, j are new minimal norms in SIV :
The set of non-degenerated norms in KIV and their interrelations is de-

picted in Figure 1.19. hKIV ;- =KIV i is a lattice, and hence complete,
since it is Önite. See Figure 1.20 on page 64. Moreover, the assumptions

in Theorem 37 are satisÖed and hence, it follows that hB3;B2; "KIV i is a
joining-system.21 For further details on the example, cf. [Lindahl and Odel-

stad, 2003], developed within a slightly di§erent framework (cf. Section 6.1

below).

4.4 The cis version of normative positions
The Kanger-Lindahl theory A natural approach to formulate normative

concepts such as obligation and permission is to do so in terms of so-called

normative positions, constructed by a combination of deontic logic and ac-
tion logic. As is further developed in Marek Sergotís chapter "The Theory

of Normative Positions" of the present Handbook, the Örst version of the

theory of normative positions, in its modern logical form, was developed by

the Swedish logician Stig Kanger ([Kanger 1957, 1963]). Kangerís theory

was inspired by the system of ìfundamental jural relationsî proposed by the

American jurist W.N. Hohfeld in 1913. As realized by Kanger, standard de-

21Basically, this was the system of Swedish legislation before 2003. That year, the law

was changed so that, when the original owner has lost possession by theft, no ransom is

required fˆr getting the goods back.

Figure 16

where B3 consists of Boolean combinations of F, P and R. In SIV the fol-
lowing norms are added:
〈P∧R,O2〉. If transferee has the goods in possession and owner pays ran-

som for the good, then transferee has the obligation to deliver the good to
owner.
〈F∧P∧R′,O2′〉. If transferee has the good in possession and fulfills the

good faith condition, and owner does not pay ransom, then transferee has no
obligation to deliver the good back to owner. These added norms however,
are not minimal elements.

In SIV (which is assumed to be a qo-corr but not a Js) the set of minimal
norms is

KIV = {b, f ,g,h, i, j,〈⊥,⊥〉, 〈>,>〉}
where

g = 〈P∧(F′∨R),O2〉
h = 〈F∧P∧R′,O1′∧O2′〉
i = 〈F′∨P′∨R,O1∨O2〉
j = 〈P′ ∨ (F∧R′),O2′〉
We note that, of the non-degenerated minimal norms in the original sys-

tem SI , only b and f remain unchanged in SIV , while, due to the relevance
of ransom, g, h, i, j are new minimal norms in SIV .

The set of non-degenerated norms in KIV and their interrelations is de-
picted in Figure 19. 〈KIV ,- /KIV 〉 is a lattice, and hence complete, since it
is finite. See Figure 20 on page 607. Moreover, the assumptions in Theorem
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ontic logic, with a deontic operator applied to sentences, is not adequate

for expressing the Hohfeldian distinctions. The improvement proposed by

Kanger was to combine a standard deontic operator Shall with an action
operator Do (for ìsees to it thatî) and to exploit the possibilities of exter-
nal and internal negation of sentences where these operators are combined.

Originally, Kangerís theory was conceived as a theory of rights (see [Lindahl,
1994]). As a theory of "legal" or "normative" positions, Kangerís theory

was further developed by Lars Lindahl in [Lindahl 1977]. Additional reÖne-

ments of the so-called Kanger-Lindahl theory have been made by Andrew

J.I. Jones and Marek Sergot ([Jones and Sergot, 1993, 1996], [Sergot, 1999,

2001]). A special feature of the work of Jones and Sergot is that applications

in computer science are in view.

A natural approach to the Öne-grained structure of a cis-Bjs hB1;B2; Ji
where the stratum B2 is normative, is to formulate B2 in terms of an alge-
braic version of the Kanger-Lindahl theory of normative positions (On this

theory, see Sergotís chapter ìThe Theory of Normative Positionsî in the

present Handbook). The system of normative positions dealt with in what

follows below is the system of one-agent types of normative position, in the
sense of [Lindahl, 1977, Chapter 3]. This system, chosen here since it is

Figure 17

3.37 are satisfied and hence, it follows that 〈B3,B2, ↑KIV 〉 is a joining-
system.21 For further details on the example, cf. [Lindahl and Odelstad,
2003], developed within a slightly different framework (cf. Section 6.1 be-
low).

4.4 The cis version of normative positions

The Kanger-Lindahl theory A natural approach to formulate norma-
tive concepts such as obligation and permission is to do so in terms of
so-called normative positions, constructed by a combination of deontic logic
and action logic. As is further developed in Marek Sergot’s chapter “The
theory of normative positions” of the present Handbook, the first version
of the theory of normative positions, in its modern logical form, was devel-
oped by the Swedish logician Stig Kanger ([Kanger, 1957; Kanger, 1963]).
Kanger’s theory was inspired by the system of “fundamental jural rela-
tions” proposed by the American jurist W.N. Hohfeld in 1913. As realized
by Kanger, standard deontic logic, with a deontic operator applied to sen-
tences, is not adequate for expressing the Hohfeldian distinctions. The im-
provement proposed by Kanger was to combine a standard deontic operator
Shall with an action operator Do (for “sees to it that”) and to exploit the
possibilities of external and internal negation of sentences where these oper-
ators are combined. Originally, Kanger’s theory was conceived as a theory

21Basically, this was the system of Swedish legislation before 2003. That year, the law
was changed so that, when the original owner has lost possession by theft, no ransom is
required för getting the goods back.
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relatively simple, can easily be generalized to n-agent types, see Sergotís
chapter and cf. Talja in [Talja 1980].
To the Boolean connectives of negation, conjunction etc., are added the

modal expressions ìShallì and ìDoî. If F is a state of a§airs and x is an
agent,22 Shall F is to be read ìIt shall be the case that F" and Do(x; F )
should be read \x sees to it that F". The expression MayF is an abbrevia-
tion for :Shall:F:
The basic idea in the Kanger-Lindahl theory is to exploit the possibilities

of combining the deontic operator Shall with the action operator Do. One
example is Shall Do(x; F ) which means that it shall be that x sees to it that
F ; another is : Shall Do(y;:F ) which means that it is not the case that it
shall be that y sees to it that not F .
The logical postulates for Shall and Do assumed in the construction of

one-agent types are as follows (cf. [Lindahl 1977, pp. 68 §]):

Rules for Do

RI. If ` (A ! B); then ` (Do(s;A) !Do(s;B)):
A1. Do(s;A)! A:

22A state of a§airs in Kangerís sense might be, for example, that Mr. Smith gets back
the money lent by him to Mr. Black, or that Mr. Smith walks outside Mr. Blackís shop.

Figure 18

of rights (see [Lindahl, 1994]). As a theory of “legal” or “normative” posi-
tions, Kanger’s theory was further developed by Lars Lindahl in [Lindahl,
1977]. Additional refinements of the so-called Kanger-Lindahl theory have
been made by Andrew J.I. Jones and Marek Sergot ([Jones and Sergot, 1993;
Jones and Sergot, 1996; Sergot, 1999; Sergot, 2001]). A special feature of
the work of Jones and Sergot is that applications in computer science are
in view.

A natural approach to the fine-grained structure of a cis-Bjs 〈B1,B2, J〉
where the stratum B2 is normative, is to formulate B2 in terms of an al-
gebraic version of the Kanger-Lindahl theory of normative positions. (On
this theory, see Sergot’s chapter “The theory of normative positions” in the
present Handbook.) The system of normative positions dealt with in what
follows below is the system of one-agent types of normative position, in the
sense of [Lindahl, 1977, ch. 3]. This system, chosen here since it is relatively
simple, can easily be generalized to n-agent types, see Sergot’s chapter and
cf. Talja in [Talja, 1980].

To the Boolean connectives of negation, conjunction etc., are added the
modal expressions “Shall“ and “Do”. If F is a state of affairs and x is an
agent,22 Shall F is to be read “It shall be the case that F” and Do(x, F )
should be read “x sees to it that F”. The expression MayF is an abbrevia-
tion for ¬Shall¬F.

The basic idea in the Kanger-Lindahl theory is to exploit the possibilities
of combining the deontic operator Shall with the action operator Do. One
example is Shall Do(x, F ) which means that it shall be that x sees to it that

22A state of affairs in Kanger’s sense might be, for example, that Mr. Smith gets back
the money lent by him to Mr. Black, or that Mr. Smith walks outside Mr. Black’s shop.
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Rules for Shall

RII. If ` A; then `ShallA.
A2. Shall (A! B)! (ShallA!ShallB).
A3. ShallA! :Shall:A:

The systems of normative positions can serve as a tools for describing

the normative positions of di§erent agents x; y; z::: with regard to states of
a§airs F;G;H; :::. For example, if x is the Swedish Government and F is the
state of a§airs that a paper on normative positions by Sergot is published

in Sweden, the position, according to Swedish law, of x with regard to F
can be described by Shall(:Do(x; F ) & :Do(x;:F )), expressing that the
Government is not allowed either to bring about or prevent the publication.

If x is an agent and F is a state of a§airs, the seven one-agent types of

position are as follows (See [Lindahl, 1977, p. 92]):

T1(x; F ) : MayDo(x; F ) & MayPass(x; F ) & MayDo(x;:F ):
T2(x; F ) : MayDo(x; F ) & MayPass(x; F ) & :MayDo(x;:F ):
T3(x; F ) : MayDo(x; F ) & :MayPass(x; F ) & MayDo(x;:F ):
T4(x; F ) : :MayDo(x; F ) & MayPass(x; F ) & MayDo(x;:F ):
T5(x; F ) : MayDo(x; F ) & :MayPass(x; F ) & :MayDo(x;:F ):

Figure 19

F ; another is ¬ Shall Do(y,¬F ) which means that it is not the case that it
shall be that y sees to it that not F .

The logical postulates for Shall and Do assumed in the construction of
one-agent types are as follows (cf. [Lindahl, 1977, p. 68]):

Rules for Do

RI. If ` (A←→ B), then ` (Do(s,A)←→Do(s,B)).

A1. Do(s,A)→ A.

Rules for Shall

RII. If ` A, then `ShallA.

A2. Shall (A→ B)→ (ShallA→ShallB).

A3. ShallA→ ¬Shall¬A.

The systems of normative positions can serve as a tools for describing
the normative positions of different agents x, y, z... with regard to states of
affairs F,G,H, .... For example, if x is the Swedish Government and F is the
state of affairs that a paper on normative positions by Sergot is published
in Sweden, the position, according to Swedish law, of x with regard to F
can be described by Shall(¬Do(x, F ) & ¬Do(x,¬F )), expressing that the
Government is not allowed either to bring about or prevent the publication.
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T6(x; F ) : :MayDo(x; F ) & MayPass(x; F ) & :MayDo(x;:F ):
T7(x; F ) : :MayDo(x; F ) & :MayPass(x; F ) & MayDo(x;:F ):

The numbering of the Ti conforms to the numbering of the corresponding
one-agent types of normative position in [Lindahl, 1977]. The numbering

suits the representation of the types in a Hasse diagram, exhibiting how

the types are partially ordered by the relation ìless free thanî (see [Lindahl

1977, pp. 105 §]).

The simplest way to combine the TJS approach with an algebraic version

of the theory of one-agent normative positions is to transform the one-agent

formulas T1(x; F ); :::; T7(x; F ) into seven conditions T1q; :::; T7q. Thus Ti;
when occurring in Tiq; is an operator on conditions, and the result is a nor-
mative condition, deÖned in terms of one-agent type Ti. A set fT1q; :::; T7qg
of seven normative conditions is obtained, and Boolean compounds of these

seven conditions are formed by ^;0 ;_.
Next we construct a normative position cis. Let B = hB;^;0 ; Ri be a

cis-Bqo with a domain B of descriptive conditions q1; q2; ::: : Furthermore,
let

TB = fTiq j q 2 B  f?;>g; 1  i  7g;

Figure 20

If x is an agent and F is a state of affairs, the seven one-agent types of
position are as follows (see [Lindahl, 1977, p. 92]), where Pass(x, F ) is an
abbreviation for ¬Do(x, F ) & ¬Do(x,¬F ) :

T1(x, F ) : MayDo(x, F ) & MayPass(x, F ) & MayDo(x,¬F ).
T2(x, F ) : MayDo(x, F ) & MayPass(x, F ) & ¬MayDo(x,¬F ).
T3(x, F ) : MayDo(x, F ) & ¬MayPass(x, F ) & MayDo(x,¬F ).
T4(x, F ) : ¬MayDo(x, F ) & MayPass(x, F ) & MayDo(x,¬F ).
T5(x, F ) : MayDo(x, F ) & ¬MayPass(x, F ) & ¬MayDo(x,¬F ).
T6(x, F ) : ¬MayDo(x, F ) & MayPass(x, F ) & ¬MayDo(x,¬F ).
T7(x, F ) : ¬MayDo(x, F ) & ¬MayPass(x, F ) & MayDo(x,¬F ).

The numbering of the Ti conforms to the numbering of the corresponding
one-agent types of normative position in [Lindahl, 1977]. The numbering
suits the representation of the types in a Hasse diagram, exhibiting how
the types are partially ordered by the relation “less free than” (see [Lindahl
1977, pp. 105 ff]).

The simplest way to combine the TJS approach with an algebraic version
of the theory of one-agent normative positions is to transform the one-agent
formulas T1(x, F ), ..., T7(x, F ) into seven conditions T1q, ..., T7q. Thus Ti,
when occurring in Tiq, is an operator on conditions, and the result is a nor-
mative condition, defined in terms of one-agent type Ti. A set {T1q, ..., T7q}
of seven normative conditions is obtained, and Boolean compounds of these
seven conditions are formed by ∧,′ ,∨.

Next we construct a normative position cis. Let B = 〈B,∧,′ , R〉 be a
cis-Bqo with a domain B of descriptive conditions q1, q2, ... . Furthermore,
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let

TB = {Tiq | q ∈ B − {⊥,>}, 1 ≤ i ≤ 7},

i.e., TB is the set of all normative positions with regard to the descriptive
conditions in B. Next, let T ∗B be the closure of TB under ∧,′ . Then T =
〈T ∗B,∧,′ 〉 is a Boolean algebra, called a Boolean normative position algebra.

Finally, from T we construct a cis-Bqo 〈T ∗B,∧,′ , R〉, called a normative
position cis. Such as cis is to fulfil the requirements of deontic logic and
action logic described in the theory of one-agent normative positions. These
requirements are incorporated in the following definition.

Definition 4.5 A cis 〈T ∗B,∧,′ , R〉 is a normative position cis with regard
to B if for any q, r ∈ B it holds that
(1) if i 6= j, then Tiq ∧ Tjq R ⊥ (for i, j ∈ {1, ..., 7}),
(2) > R (T1q ∨ ... ∨ T7q),
(3) T1q QT1q

′, T3q QT3q
′, T6q QT6q

′, T2q QT4q
′, T5q QT7q

′,
(4) if q Q r, then Tiq Q Tir,
(5) if i = 1, 3, 4, 7, then Ti>Q⊥, and,
(6) if i = 1, 2, 3, 5, then Ti⊥Q⊥.

Requirements (1)-(4) in the definition express restrictions on the relation
R in a normative position algebra and correspond to three features of one
agent types in the Kanger-Lindahl theory. Thus requirement (1) expresses
that T1q, ..., T7q are mutually incompatible, (2) that they are jointly ex-
haustive, and (3) that T1, T3, T6 are neutral, while T4 is the converse of
T2 and T7 the converse of T5. Requirements (4)-(6), finally, follow from the
logic of Shall and Do, where (4) corresponds to the “extensionality” feature
for combinations of operators Shall and Do in the Kanger-Lindahl theory,
and (5) and (6) follow from the theorem ¬MayDo(x,⊥). (See [Lindahl and
Odelstad, 2004, sect. 1.2, 4 and 6] for details.)

Liberty conditions For seeing more clearly what various conditions in
a normative position cis amount to in deontic terms, the notion of lib-
erty conditions can be introduced (cf. Lindahl 1977, pp. 106 ff.). This
device is available since each normative position condition equals a Boolean
compound of liberty conditions.

There are three liberty operators L1, L2 and L3. These can be called
action permissibility, passivity permissibility and counter-action permissi-
bility, respectively. In terms of May and Do we can read non-negated liberty
conditions as follows.

Action permissibility: L1

L1q(x1, ..., xν , xν+1) iff May Do(xν+1, q(x1, ..., xν))
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Passivity permissibility: L2

L2q(x1, ..., xν , xν+1) iff May Pass(xν+1, q(x1, ..., xν))

Counter-action permissibility: L3

L3q(x1, ..., xν , xν+1) iff May Do(xν+1, q(x1, ..., xν)′)

Liberty conditions L1, L2, L3 can be defined in terms of disjunctions of
basic np-conditions.

Definition 4.6 L1, L2, L3 are operators on conditions such that, if q is a
condition:
(1) L1q is defined as: T1q ∨ T2q ∨ T3q ∨ T5q.
(2) L2q is defined as: T1q ∨ T2q ∨ T4q ∨ T6q.
(3) L3q is defined as: T1q ∨ T3q ∨ T4q ∨ T7q.

Accordingly, it holds that (where ′ signifies negation),
T1q Q L1q ∧ L2q ∧ L3q,
T2q Q L1q ∧ L2q ∧ (L3q)

′,
T3q Q L1q ∧ (L2q)

′ ∧ L3q,
T4q Q (L1q)

′ ∧ L2q ∧ L3q,
T5q Q L1q ∧ (L2q)

′ ∧ (L3q)
′,

T6q Q (L1q)
′ ∧ L2q ∧ (L3q)

′,
T7q Q (L1q)

′ ∧ (L2q)
′ ∧ L3q.

Accordingly, if Liq is denoted by 1 and (Liq)
′
by 0, the basic np-conditions

can be represented by the semi-lattice in Figure 21 (cf. [Lindahl, 1977, p.
105] and [Talja, 1980]).

66

L3q(x1; :::; x ; x+1) i§ May Do(x+1; q(x1; :::; x)
0)

Liberty conditions L1; L2; L3 can be deÖned in terms of disjunctions of
basic np-conditions.

DeÖnition 46. L1; L2; L3 are operators on conditions such that, if q is a
condition:

(1) L1q is deÖned as: T1q _ T2q _ T3q _ T5q:
(2) L2q is deÖned as: T1q _ T2q _ T4q _ T6q:
(3) L3q is deÖned as: T1q _ T3q _ T4q _ T7q:

Accordingly, it holds that (where 0 signiÖes negation),
T1q Q L1q ^ L2q ^ L3q;
T2q Q L1q ^ L2q ^ (L3q)0;
T3q Q L1q ^ (L2q)0 ^ L3q;
T4q Q (L1q)

0 ^ L2q ^ L3q;
T5q Q L1q ^ (L2q)0 ^ (L3q)0;
T6q Q (L1q)

0 ^ L2q ^ (L3q)0;
T7q Q (L1q)

0 ^ (L2q)0 ^ L3q:
Accordingly, the basic np-conditions can be represented by the semi-

lattice in Figure 1.21 on page 66 (cf. [Lindahl 1977, p. 105]).
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010 001
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011

Figure 1.21.

Figure 21
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4.4.1 An example: ownership to an estate

Suppose we represent a normative system by a cis model of a joining-system
with two strata one of which is a descriptive cis, and the other is a nor-
mative position-cis. We illustrate this representation by a simple example
concerning the normative position of owners of real property in a legal sys-
tem S. We consider a cis model of a Boolean joining-system 〈B1,B2, J〉
where B1 = 〈B1,∧,′ , R1〉 is descriptive, while B2 = 〈B2,∧,′ , R2〉 is a nor-
mative position-cis.

The two strata considered
The descriptive stratum B1.

We assume that conditions a1 and b1, appearing in the descriptive lower
stratum B1 are as follows:
a1: Being the owner of an estate E.23

b1: Being the owner of an estate adjacent to estate E.
We furthermore assume that B1 is as depicted in the following diagram

(where α 1 β is an abbreviation for (α ∧ β) ∨ (α′ ∧ β′) and where lines
representing R1 (implication) are omitted as being evident):

B1 >

a1 ∨ b1 a1 ∨ b′1 a′1 ∨ b1 a′1 ∨ b′1

a1 b1 a1 1 b1 a1 1 b′1 b′1 a′1

a1 ∧ b1 a1 ∧ b′1 a′1 ∧ b1 a′1 ∧ b′1

⊥

We note that B1 coincides with its reduct 〈B1,∧,′ 〉 and that, therefore,
in B1, R1 coincides with ≤1. As appears from the diagram, it is assumed
that conditions a1 ∧ b1, a1 ∧ b′1, a′1 ∧ b1, a′1 ∧ b′1 are atoms in B1.

23Letter E is to be regarded as a parameter, in the sense of a a quantity which is
constant in a particular case considered, but which varies in different cases.
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The normative stratum B2

Let conditions q1, ..., q4 be as follows:

q1: Main building of estate E being painted white,
q2: Main building on estate adjacent to E being painted white,
q3: Cows of estate E entering land of adjacent estate,
q4: Erecting a fence, going around estate E and adjacent estate.

Let B = 〈B,∧,′R〉 be a cis such that the descriptive conditions q1, q2, q3, q4

are among the elements of its domain. Furthermore, as in Section 4.4, let
TB = {Tiq | q ∈ B − {⊥,>}, 1 ≤ i ≤ 7}, let T ∗B be the closure of TB under
∧,′ and let T = 〈T ∗B,∧,′ 〉 be a Boolean normative position algebra with
regard to B. Finally, let B2 = 〈T ∗B,∧,′ , R2〉 be a normative position cis
with regard to B (see above definition 4.5). Since T is the reduct of B2, the
Boolean relation ≤T of T is a subset of the relation R2 of B2.

Joining assumptions
We assume that in the Boolean joining-system 〈B1,B2, J〉, when referring
to non-degenerated joinings, the following holds:

(i) (a1 ∧ b1) J (T1q1 ∧ T1q2 ∧ T1q3 ∧ T1q4),

(ii) (a1 ∧ b′1) J (T1q1 ∧ T6q2 ∧ T7q3 ∧ T4q4),

(iii) (a′1 ∧ b1) J (T6q1 ∧ T1q2 ∧ T4q3 ∧ T4q4),

(iv) (a′1 ∧ b′1) J (T6q1 ∧ T6q2 ∧ T6q3 ∧ T6q4).

Given the intended interpretation of conditions Tiqj in terms of Shall,
May and Do, the joinings (i)-(iv) are plausible for a legal system. This
can be seen by inspection of the different grounds and consequences corre-
lated. For this purpose, the notion of liberty conditions is useful (on liberty
conditions, see above Section 4.4). To exemplify, a1 ∧ b1 means being the
owner of both estate E and adjacent estate. This condition is a ground for
T1q1∧ T1q2∧ T1q3∧ T1q4, which is the normative position-condition denot-
ing full freedom (operator T1) with regard to all of q1, ..., q4 (painting the
two buildings, letting the cows move around, erecting a surrounding fence).
In contrast, a1 ∧ b′1 means owning estate E but not adjacent estate. This
condition is ground for T1q1 ∧T6q2 ∧T7q3 ∧T4q4.This condition denotes full
freedom regarding the painting of building on estate E, no freedom to bring
about or prevent painting of building on adjacent estate, obligation to see
to it that cows from estate E do not enter land of adjacent estate, and,



612 Lars Lindahl and Jan Odelstad

finally, freedom to prevent erection of the fence surrounding the estates and
freedom to be passive about the matter, but no freedom to bring about the
fence’s being erected.

For further development of the example, see [Lindahl and Odelstad, 2004,
sect. 6].

5 Intervenients for Boolean joining-systems

5.1 Introductory remarks on intervenients in Bjs’

In the present main section (Section 5) we will investigate the structure
of a stratum 〈B2, R2〉 with intervenients, between one stratum 〈B1, R1〉
of grounds and one stratum 〈B3, R3〉 of consequences. In the present first
subsection (Section 5.1), we introduce some notation and some basic results,
in particular as regards Boolean operations on intervenients. Since these
remarks have been dealt with extensively in [Lindahl and Odelstad, 2011],
the general remarks are kept brief, and the reader is referred to [Lindahl
and Odelstad, 2011] for proofs and further details.

One possible use of intervenients, not dealt with in the present chapter,
is for characterizing a Boolean joining-system. Intervenients from B1 to
B3 can be used for defining or characterizing the Boolean joining-system
〈B1,B3, J1,3〉. Cf. [Lindahl and Odelstad, 2008a, sect. 2.3.5 and 4], on gic-
systems, proto-intervenients and the methodology of intermediate concepts.

After these remarks, attention will be paid in particular to cis applica-
tions regarding some important issues. In particular, networks of strata with
intervenients, organic wholes of intervenients and narrowing of intervenients
will be dealt with.

In Section 3.8, the notion of an intervenient was defined with respect to
simple Js-triples presupposing that the joinings of the strata are disjunct
sets. This presupposition is not appropriate when it comes to intervenients
in systems of Bjs’s, which can be seen in the following way. Suppose that
S1 = 〈B1,B2, J1,2〉, S2 = 〈B2,B3, J2,3〉 and S3 = 〈B1,B3, J1,3〉, where Bi =
〈Bi,∧,′ , Ri〉, are Bjs’ s and that Bi ∩ Bj = {⊥,>} if i 6= j, 1 ≤ i, j ≤ 3.
Then it can be the case that for some a2 ∈ B2, ⊥ is the weakest ground
of a2 or > is the strongest consequence of a2. In either case, a2 is not a
proper intervenient since 〈⊥, a2〉 and 〈a2,>〉 are degenerated joinings (cf.
Section 4.1.2). We say that a2 is a non-degenerated intervenient if a2 is an
intervenient and a2 y 〈a1, a3〉, where 〈a1, a3〉 is a non-degenerated joining.

Definition 5.1 Suppose that S1 = 〈B1,B2, J1,2〉, S2 = 〈B2,B3, J2,3〉 and
S3 = 〈B1,B3, J1,3〉 are joining-systems where Bi = 〈Bi,∧,′ , Ri〉 are complete
and Bi ∩Bj = {⊥,>} for i 6= j, 1 ≤ i, j ≤ 3. If J1,3 ⊇ J1,2|J2,3 we say that
〈S1,S2,S3〉 is a Bjs-triple.
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(Concerning completeness, see Section 4.1.1.)

Definition 5.2 In a Bjs-triple 〈S1,S2,S3〉, the element a2 ∈ B2, is a
non-degenerated intervenient from B1 to B3 corresponding to the joining
〈a1, a3〉 ∈ J1,3, denoted a2 y 〈a1, a3〉 , if a1 is a non-degenerated weakest
ground of a2 in S1 and a3 is a non-degenerated strongest consequence of a3

in S2.

Suppose that Φ = 〈S1,S2,S3〉 is a Bjs-triple. Note that if a2 ∈ B2 is an
intervenient in Φ from B1 to B3 then there is a1 ∈ B1 and a3 ∈ B3 such
that a2 is situated between B1 and B3 in S in the sense that 〈a1, a2〉 ∈ J1,2,
〈a2, a3〉 ∈ J2,3 and 〈a1, a3〉 ∈ J1,3. Now, let us look at the converse of this
statement. Suppose that 〈a1, a2〉 ∈ J1,2, 〈a2, a3〉 ∈ J2,3 and 〈a1, a3〉 ∈ J1,3.
Then, if a1 is not similar to falsum and a3 not similar to verum, then a2 is
an intervenient from B1 to B3. However, it is important to notice that, even
though a2 is an intervenient from B1 to B3 in Φ, it is not guaranteed that
a2 y 〈a1, a3〉, i.e., that a2 corresponds to 〈a1, a3〉. But if 〈a1, a2〉 ∈ min J1,2,
and 〈a2, a3〉 ∈ min J2,3, this holds. Note also that if 〈a1, a3〉 ∈ min J1,3 then
there is b2 ∈ B2 such that b2 is an intervenient in Φ from B1 to B3 and
b2 y 〈a1, a3〉. (See [Lindahl and Odelstad, 2004, sect. 4] for details.)

5.1.1 Conjunction, disjunction and negation of intervenients

If we apply the Boolean operations conjunction, disjunction and negation on
intervenients, will the result be intervenients as well? Which is the relation-
ship between the conjunction of the weakest grounds of two intervenients
and the weakest ground of their conjunction, and similarly for disjunction
and negation? The same question arises with regard to strongest conse-
quences. We will here consider conjunction and disjunction of pairs of in-
tervenients. Of special interest is Boolean operations in connection with
minimality.

Conjunction and disjunction of intervenients
In a Bjs-triple Φ = 〈S1,S2,S3〉, we let Iv (B2, B1, B3) denote the set of

elements in B2 which are intervenients from B1 to B3 in Φ. We state some
results presented in [Lindahl and Odelstad, 2011, sect. 4.2].

The following theorem states a necessary and sufficient condition for a
conjunction of intervenients being an intervenient, and similarly for a dis-
junction of intervenients.

Theorem 5.3 Suppose that B1 and B3 are complete and that a2 y 〈a1, a3〉
and b2 y 〈b1, b3〉. Then

1. ⊥P1(a1 ∧ b1) iff (a2 ∧ b2) ∈ Iv (B2, B1, B3) , and
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2. (a3 ∨ b3)P3> iff (a2 ∨ b2) ∈ Iv (B2, B1, B3).

The following theorem states the relationships between the Boolean op-
erations on intervenients and the corresponding operations on grounds and
consequences, respectively. These relationships are important for the dis-
cussion of organic wholes of intervenients in the Section 5.2.1.

Theorem 5.4 Suppose that B1 and B3 are complete and that a2 y 〈a1, a3〉 ,
b2 y 〈b1, b3〉. Then,

1. If (a2 ∧ b2) ∈ Iv (B2, B1, B3) then there is c3 ∈ B3 such that a2∧ b2 y
〈a1 ∧ b1, c3〉.

2. If (a2 ∨ b2) ∈ Iv (B2, B1, B3) then there is c1 ∈ B1 such that a2∨ b2 y
〈c1, a3 ∨ b3〉.

The following theorems connect Boolean operations of intervenients to
minimality.

Theorem 5.5 Suppose that a2 y 〈a1, a3〉 ∈ min J1,3 and b2 y 〈b1, b3〉 ∈
min J1,3 and not a1 ∧ b1R1⊥ and not >R3a3 ∨ b3. Then the following holds:

1. If 〈a1 ∧ b1, a3 ∧ b3〉 ∈ min J1,3, then a2 ∧ b2 y 〈a1 ∧ b1, a3 ∧ b3〉.

2. If 〈a1 ∨ b1, a3 ∨ b3〉 ∈ min J1,3, then a2 ∨ b2 y 〈a1 ∨ b1, a3 ∨ b3〉 .

Theorem 5.6 Suppose that a2 y 〈a1, a3〉 ∈ min J1,3 and b2 y 〈b1, b3〉 ∈
min J1,3 and, furthermore, not a1 ∧ b1R1⊥ and not >R3a3 ∨ b3. Then there
are c2, d2 ∈ B2, c3 ∈ B3 and d1 ∈ B1 such that

1. c2 y 〈a1 ∧ b1, c3〉 ∈ min J1,3, where c3R3(a3 ∧ b3), and

2. d2 y 〈d1, a3 ∨ b3〉 ∈ min J1,3, where (a1 ∨ b1)R1d1.

Negations of intervenients
Negations of intervenients is an interesting subject. We will here give

an overview. (For details and proofs, see [Lindahl and Odelstad, 2008a]).
Suppose that a2 is an intervenient from B1 to B3 corresponding to the
joining 〈a1, a3〉 ∈ J1,3 in the Bjs-triple Ψ = 〈S1,S2,S3〉. Then there are two
possibilities with regard to the negation a′2 of a2:

1. a′2 is an intervenient from B1 to B3 in the Bjs-triple Ψ.

2. a′2 is not an intervenient from B1 to B3 in the Bjs-triple Ψ.
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If a′2 is not an intervenient we can distinguish between three possibilities:

(i) a′2 has a non-degenerated weakest ground inB1 but no non-degenerated
strongest consequence in B3.

(ii) a′2 has no non-degenerated weakest ground inB1 but a non-degenerated
strongest consequence in B3.

(iii) a′2 has neither a non-degenerated weakest ground in B1 nor a non-
degenerated strongest consequence in B3.

If a′2 is an intervenient it is important to note the relation between the
joining corresponding to a2 and to a′2. Suppose that a2 y 〈a1, a3〉 and
a′2 y 〈b1, b3〉 . Then:

(I) 〈a′1, a′3〉 E 〈b1, b3〉.

(II) If 〈a1, a3〉 ∈ min J1,3, then 〈a′1, a′3〉 w 〈b1, b3〉.

(III) If 〈a′1, a′3〉 , 〈b′1, b′3〉 ∈ J1,3, then 〈a′1, a′3〉 w 〈b1, b3〉.

Note that if a′2 is an intervenient this constitutes a restriction on the
possibility of narrowing a2 (see Section 5.2.2 below), since a narrowing of
a2 implies a widening of 〈a′1, a′3〉, and (I) above gives a restriction of how
wide 〈a′1, a′3〉 can be. If a2 y 〈a1, a3〉 and 〈a1, a3〉 ∈ min J1,3 and a′2 is
an intervenient, then a2 cannot be narrowed. The same holds if a2 y
〈a1, a3〉 , a′2 y 〈b1, b3〉 and 〈a′1, a′3〉 , 〈b′1, b′3〉 ∈ J . The subject of negations
of intervenients is important in connection with open intermediaries (see
Section 5.2.2 below).

5.2 cis’ with intervenients

As appears from the foregoing, in TJS for intervenients, “intervenient” is
a technical notion defined at the abstract algebraic level. The notion is
intended as a tool for analyzing different kinds of what, informally, is called
“intermediaries” and the aim is to provide tools for analyzing intermediaries
as they appear in law, language, morals, and so on. For this reason cis’ with
intervenients is an important part of the chapter.

In the present Section 5.2, we assume that intervenients referred in the
text are non-degenerated intervenients (see Definition 5.2).

5.2.1 Organic wholes

Attention should be drawn to the possible occurrence in normative systems
of a phenomenon analogous to what G.E. Moore in Principia Ethica (first
published in 1903) called an “organic unity” or “organic whole“. Char-
acteristic of an organic unity, according to Moore, is “that the value of
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such a whole bears no regular proportion to the sum of the values of its
parts”[Moore, 1971, p. 27]. Using another terminology, the phenomenon
can be called “synergy”. In a context of norms, and within our algebraic
framework of Boolean joining-systems, the idea of organic wholes refers to
the normative impact of a Boolean compound of conditions rather than to
“values” in Moore’s sense. In the present section, this theme is dealt with
as regards the normative impact of conjunction and disjunction of interve-
nients.

Definition 5.7 Let a2 y 〈a1, a3〉 , b2 y 〈b1, b3〉, and (a2 ∧ b2), (a2 ∨ b2) ∈
Iv(B2, B1, B3).
(i) If there is c3 ∈ B3 such that a2 ∧ b2J2,3c3 and c3P3a3 ∧ b3, we say that
a2 ∧ b2 is a conjunctive organic whole of a2 and b2,
(ii) If there is c1 ∈ B1 such that c1J1,2a2 ∨ b2 and a1 ∨ b1P1c1, we say that
a2 ∨ b2 is a disjunctive organic whole of a2 and b2.

Note that a disjunctive organic whole is constructed as the dual of a
conjunctive organic whole.

A cis example of a conjunctive organic whole is a follows (cf. [Lindahl
and Odelstad, 2003, sect. 5.1, p. 101]):

We imagine an athletic competition, where there are two events, run-
ning and high jumping. We consider three Bqo’s where B1 (with a1, b1, ...)
concerns competition results in the two events, where B2 (with a2, b2, ...)
concerns winner’s titles, and where B3 (with a3, b3, c3, ...) concerns rights to
competition prizes.
a1 is to be the fastest runner, b1 is to jump the highest,
a2 is to be “master of running”, b2 is to be “master of jumping”, a2 ∧ b2

is to be “twofold master”.
a3 is to have the right of the running prize, b3 is to have the right of

the jumping prize, c3 = a3 ∧ b3 ∧ d3 is to have the right of the excellence
prize, namely (a3) the right of the running prize, and (b3) the right of the
jumping prize, and, in addition, (d3) the right of a special bonus prize for
the twofold master. The example is illustrated in Figure 22.

In the example we have: a2 y 〈a1, a3〉, b2 y 〈b1, b3〉, a2 ∧ b2 y 〈a1 ∧
b1, c3〉, where c3P3(a3∧ b3). Since we have c3P3(a3∧ b3), it holds in the Bjs-
triple 〈〈B1,B2, J1,2〉, 〈B2,B3, J2,3〉, 〈B1,B3, J1,3〉〉 that the intervenient a2∧b2
is an organic whole in relation to B3. In other words: a2 ∧ b2 is an organic
whole since the consequence c3 = a3 ∧ b3 ∧ d3 of the intervenient a2 ∧ b2 is
“stronger” (P3) than the “sum” a3 ∧ b3 of the consequence a3 of a2 and the
consequence b3 of b2.

A subset of the minimal joinings from B2 to B3 is depicted by the thick
lines in Figure 22.
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a2 b2

a3 b3

a2 ∧ b2

a3 ∧ b3

B2

B3

c3

Figure 1.22.

a2 are among the elements of the domain B1 of stratum B1 which includes
Boolean combinations of the following conditions a11 ; a12 ; :::; a111 :

a11 : cohabiting, a12 : housekeeping in common, a13 : having children in
common, a14 : having sexual intercourse, a15 : having conÖrmed the relation
by a contract, a16 : living in emotional fellowship, a17 : being faithful, a18 :
giving mutual support, a19 : sharing economic assets and debts, a110 : having
no legal impediments to marriage, a111 : having no similar relationship to
another person.

Let us suppose that the consequences of having a relationship similar to
being married are among the Boolean combinations of conditions a31 ; :::; a35
belonging to the domain B3 of stratum B3:
We assume that in the Bjs-triple ; a2 2 B2 is an intervenient between

(a11 ^ a12 ^ ::: ^ a111) 2 B1 and (a31 ^ ::: ^ a35) 2 B3; i.e.,

a2 y h(a11 ^ a12 ^ ::: ^ a111); (a31 ^ ::: ^ a35)i:

Thus we assume that in the Bjs-triple ; the conjunction a11^a12^:::^a111 is

Figure 22

We observe that, in the sense of Theorem 3.34,

glbR2
π1{〈a2, a3〉, 〈b2, b3〉} = glbR2

{a2, b2} = {a2 ∧ b2} =

π1[glb-/min J{〈a2, a3〉, 〈b2, b3〉}].

For a legal example concerning citizenship, see [Lindahl and Odelstad,
2003, sect. 5.1].

5.2.2 Open concepts and the narrowing of intervenients

Ground-narrowing We recall the issue of open legal concepts and the
example of “relationship similar to being married” (Section 1.7.5 above).
Let Ψ = 〈S1,S2,S3〉 be a Bjs-triple with

S1 = 〈B1,B2, J1,2〉, S2 = 〈B2,B3, J2,3〉, S3 = 〈B1,B3, J1,3〉.

Condition a2 ∈ B2 (where B2 is the domain of stratum B2) is the con-
dition of having a relationship similar to being married. The grounds for
a2 are among the elements of the domain B1 of stratum B1 which includes
Boolean combinations of the following conditions a11 , a12 , ..., a111 :

a11
: cohabiting, a12

: housekeeping in common, a13
: having children in

common, a14 : having sexual intercourse, a15 : having confirmed the relation
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by a contract, a16
: living in emotional fellowship, a17

: being faithful, a18
:

giving mutual support, a19
: sharing economic assets and debts, a110

: having
no legal impediments to marriage, a111

: having no similar relationship to
another person.

Let us suppose that the consequences of having a relationship similar to
being married are among the Boolean combinations of conditions a31

, ..., a35

belonging to the domain B3 of stratum B3.
We assume that in the Bjs-triple Ψ, a2 ∈ B2 is an intervenient between

(a11
∧ a12

∧ ... ∧ a111
) ∈ B1 and (a31

∧ ... ∧ a35
) ∈ B3, i.e.,

a2 y 〈(a11
∧ a12

∧ ... ∧ a111
), (a31

∧ ... ∧ a35
)〉.

Thus we assume that in the Bjs-triple Ψ, the conjunction a11
∧a12

∧...∧a111
is

the weakest ground in B1 for a2 and a31
∧...∧a35

is the strongest consequence
in B3 of a2.

Next we consider a Bjs-triple Ψ∗ = 〈S∗1 ,S2,S∗3 〉 where B1,B2,B3 are
the same as in Ψ and where S2 remains unchanged but where J∗1,2 and
J∗1,3 in Ψ∗ are different from J1,2 and J1,3 in Ψ. We assume that S∗1 =
〈B1,B2, J

∗
1,2〉 and S∗3 = 〈B1,B3, J

∗
1,3〉 in Ψ∗ are different from S1 and S3 in

Ψ since in Ψ∗,

a2 y 〈(a11 ∧ a12 ∧ a19 ∧ a111), (a31 ∧ ... ∧ a35)〉.

Thus in Ψ∗, the conjunction of a11 ∧ a12 ∧ a19 ∧ a111 is the weakest ground
for a2. This means that in Ψ∗, the weakest ground for a2 is the conjunction
of:
a11 : cohabiting, a12 : housekeeping in common, a19 : sharing economic

assets and debts, a111
: having no similar relationship to another person.

Obviously, in both Ψ and Ψ∗ it holds that (a11 ∧ a12 ∧ ...∧ a111)R1(a11 ∧
a12 ∧a19 ∧a111). Therefore, the joining 〈(a11 ∧a12 ∧a19 ∧a111), a2〉 in J∗1,2 is
narrower than the joining 〈(a11

∧a12
∧ ...∧a111

), a2〉 in J1,2. Accordingly, it
also holds that the joining 〈(a11

∧a12
∧a19

∧a111
), (a31

∧ ...∧a35
)〉 in J∗1,3 is

narrower than the joining 〈(a11
∧a12

∧ ...∧a111
), (a31

∧ ...∧a35
)〉 in J1,3. We

describe the situation by saying that the intervenient a2 is ground-narrower
in Ψ∗ than in Ψ. This means that the weakest ground for a2 in Ψ∗ is less
restricted than in Ψ.

In general terms we can say: If Ψ = 〈S1,S2,S3〉, Ψ∗ = 〈S1,S∗2 ,S∗3 〉 are
Bjs-triples with Bi = B∗i (1 ≤ i ≤ 3) and a2 y 〈a1, a3〉 in Ψ, a2 y 〈b1, a3〉
in Ψ∗ and 〈b1, a3〉 C 〈a1, a3〉, then a2 is ground-narrower in Ψ∗ than in Ψ.24

24In [Lindahl and Odelstad, 2008a, sect. 3.5.1], we discuss the narrowing of “relation-
ship similar to being married” with a different framework and terminology.
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As an illustrative elaboration of the example, let us consider a normative
system such as “Swedish law” as a class of Bjs-triples Ψ, Ψ∗,Ψ∗∗... etc.
Then we might think of Ψ as a representation of “established Swedish law”
and of Ψ∗,Ψ∗∗... etc. as developments of Ψ, made by new authoritative
court decisions. Referring to the example, a new court decision resulting in
Ψ∗ still respects the established law in Ψ insofar as the joining 〈(a11

∧a12
∧

a19
∧ a111

), a2〉 in established law Ψ still remains in system Ψ∗.
The possibility of narrowing an intervenient while respecting established

law Ψ can be barred by a stipulation in Ψ that a certain combination of
elements in B1 is not a ground for the intervenient a2. As regards the han-
dling of this case, see [Odelstad and Lindahl, 2002, sect. 3.4] (cf. [Lindahl
and Odelstad, 1999b]).

If we say that “relationship similar to being married” is an “open” concept
in Swedish law, this might be taken to mean that established law in Ψ
represents only a part of what is considered to count as Swedish law, and
that Ψ∗ is a development of the first regulative step taken by establishing
Ψ.

Consequence-narrowing
What has been said about ground-narrowing has an analogous application

in consequence-narrowing. The outlines of an example might regard the
consequences of the intervenient being the owner of an estate. Let Ψ =
〈S1,S2,S3〉 be a Bjs-triple with

S1 = 〈B1,B2, J1,2〉, S2 = 〈B2,B3, J2,3〉, S3 = 〈B1,B3, J1,3〉,

with
a2: x is the owner of an estate,

and where in Ψ it holds that a2 is an intervenient between the disjunction
(a11
∨ a12

∨ ... ∨ a1m
) of grounds for ownership and the conjunction (a31

∧
a32 ∧ ... ∧ a3n) of consequences of ownership, i.e., where in Ψ it holds that

a2 y 〈(a11 ∨ a12 ∨ ... ∨ a1m), (a31 ∧ a32 ∧ ... ∧ a3n)〉

Let a3n+1
be a consequence that is not a conjunct in the conjunction

(a31
∧ a32

∧ ... ∧ a3n
); for example let a3n+1

be the condition
a3n+1 : x is permitted to erect a barbed-wire fence around the entire

estate preventing others from entering.
In Ψ∗ we have instead

a2 y 〈(a11
∨ a12

∨ ... ∨ a1m
), (a31

∧ a32
∧ ... ∧ a3n

∧ a3n+1
)〉

where a3n+1 is a conjunct in the conjunction of consequences.
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Since (a31
∧a32

∧ ...∧a3n
∧a3n+1

) R3 (a31
∧a32

∧ ...∧a3n
), it follows that

the joining 〈a2,(a31
∧a32

∧ ...∧a3n
∧a3n+1

) which is narrowest in Ψ∗ for the
consequences of a2 is narrower than the joining 〈a2, (a31

∧ a32
∧ ... ∧ a3n

)〉
which is narrowest in Ψ. In this sense, the intervenient a2 is consequence-
narrower in Ψ∗ than in Ψ. This means that the strongest consequence of a2

in Ψ∗ is richer than in Ψ.

In general terms: If Ψ = 〈S1,S2,S3〉, Ψ∗ = 〈S1,S∗2 ,S∗3 〉 are Bjs-triples
with Bi = B∗i (1 ≤ i ≤ 3) and the joinings in Ψ,Ψ∗ differ insofar as a2 y
〈a1, a3〉 in Ψ, a2 y 〈a1, b3〉 in Ψ∗ where 〈a1, b3〉 C 〈a1, a3〉, then a2 is
consequence-narrower in Ψ∗ than in Ψ.

What was said in the previous subsection of a normative system such as
“Swedish law” as a class of Bjs-triples Ψ, Ψ∗,Ψ∗∗... and of developing estab-
lished law by narrowing an intervenient applies to consequence-narrowing
in an analogous way.

5.2.3 A legal illustration of a network of strata

The present subsection (with Figure 23 on page 621) presents a cis example
of joining-systems with intervenients for a network of Bqo strata. (Cf. [Lin-
dahl and Odelstad, 2011]) The example is legal and concerns ownership and
trust as intervenients. The legal rules in this example are expressed in terms
of joinings between Bqo’s B1, B2, B4, B5 for ownership, and between B3,
B4 and B5 for trusteeship.25 Both of B2 and B4 are intermediate structures,
where B4 is supposed to contain the intervenients ownership and trusteeship
and B2 the intervenients purchase, barter, inheritance, occupation, specifi-
cation, expropriation (for public purposes or for other reasons), which are
grounds for ownership. B1 contains grounds for the conditions in B2, such
as making a contract for purchase or barter respectively, having particu-
lar kinship relationship to a deceased person, appropriating something not
owned, creating a valuable thing out of worthless material, getting a verdict
on disappropriation of property, either for public purposes or for other rea-
sons. B3 contains different grounds for trusteeship. B5 contains the legal
consequences of ownership and trusteeship, respectively, in terms of powers,
permissions and obligations.

The example is a useful illustration in several ways. Thus it illustrates a
TJS representation of a fairly complex normative system. Also, as will be
shown in the nest subsection, it illustrates various properties of intervenients
in terms of minimality.

25Trust is where a person (trustee) is made the nominal owner of property to be held
or used for the benefit of another. Trusteeship is the legal position of a trustee.
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Figure 23

5.2.4 The typology of intervenient-minimality

The previous sections illustrate the role of intervenient concepts in the rep-
resentation of a normative system. Of special interest is where intervenients
exhibit different kinds of minimality. (To the following, see [Lindahl and
Odelstad, 2011, pp. 132ff.]) Above, we have underlined the central role of
minimal joinings and the formal structure of the set of minimal joinings. The
previous sections provide tools for distinguishing between different kinds of
intervenient minimality. We presuppose a Bjs-triple 〈S1,S2,S3〉 in the sense
of Definition 5.1 and non-degenerated intervenients in the sense of Definition
5.2.

If a2 ∈ Iv (B2, B1, B3) and a2 y 〈a1, a3〉, we say that,



622 Lars Lindahl and Jan Odelstad

a2 is correspondence-minimal if 〈a1, a3〉 ∈ min J1,3,
a2 is ground-minimal if 〈a1, a2〉 ∈ min J1,2,
a2 is consequence-minimal if 〈a2, a3〉 ∈ min J2,3.

Combining the three cases,

(1) 〈a1, a3〉 ∈ min J1,3,

(2) 〈a1, a2〉 ∈ min J1,2,

(3) 〈a2, a3〉 ∈ min J2,3,

with their negations (1′), (2′), (3′), eight (23) cases are obtained. In the case
(1′)&(2′)&(3′), the intervenient a2 will be called non-minimal.

Not all eight cases are possible to realize. If J1,3 = J1,2|J2,3, then (1) is
implied by (2)&(3). Hence, under this supposition, the case (1′)&(2)&(3)
is impossible to realize.

As regards the importance of minimality emphasized above, note that
the following holds: Suppose that X2 ⊆ B2 is such that for any 〈x1, x3〉 ∈
min J1,3 there is x2 ∈ X2 such that x2 y 〈x1, x3〉. Then

J1,3 = {〈a1, a3〉 ∈ B1 ×B3 | ∃b2 ∈ X2 : 〈a1, b2〉 ∈ J1,2 and 〈b2, a3〉 ∈ J2,3} .

Hence, a set of correspondence-minimal intervenients can be a convenient
way for characterizing a set of joinings.

However, intervenients can be useful even if they are not correspondence-
minimal. A type worth considering is (1′)&(2)&(3′), i.e., where a2 is ground-
minimal but neither correspondence-minimal nor consequence-minimal. For
instance, murder and high treason can have the same legal consequence (life
imprisonment) notwithstanding that these crimes have different grounds.26

Thus let

a1 : grounds for murder, b1: grounds for high treason

a2 : murder, b2 : high treason,

a3 : life imprisonment

The example is illustrated by Figure 24.

We have a2 y 〈a1, a3〉, b2 y 〈b1, a3〉, a2∨b2 y 〈a1∨b1, a3〉. The interve-
nient a2∨b2 is correspondence-minimal as well as ground- and consequence-
minimal. Each of the intervenients a2 and b2, however, though ground-
minimal, is neither consequence-minimal nor correspondence-minimal.

26See also [Lindahl and Odelstad, 2008a, sect. 3.2], for the case of “Boche” in the
“Boche-Berserk” example. “Boche” and “Berserk” have different grounds but the same
consequence.
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Hence, a set of correspondence-minimal intervenients can be a convenient
way for characterizing a set of joinings.
However, intervenients can be useful even if they are not correspondence-

minimal. A type worth considering is (10)&(2)&(30); i.e., where a2 is ground-
minimal but neither correspondence-minimal nor consequence-minimal. For
instance, murder and high treason can have the same legal consequence (life
imprisonment) notwithstanding that these crimes have di§erent grounds.26

Thus let
a1 : grounds for murder, b1: grounds for high treason
a2 : murder, b2 : high treason,
a3 : life imprisonment
The example is illustrated by Figure 1.24 on page 79. We have a2 y

a1 b1
a1 ∨ b1

a2 ∨ b2
a2 b2

a3

B1

B2

B3

Figure 1.24.

ha1; a3i; b2 y hb1; a3i; a2 _ b2 y ha1 _ b1; a3i: The intervenient a2 _ b2 is
correspondence-minimal as well as ground- and consequence-minimal. Each
of the intervenients a2 and b2; however, though ground-minimal, is neither
consequence-minimal nor correspondence-minimal.

Types of intervenient minimality in the ownership/trust example
The ownership/trust example (Figure 1.23 on page 78) can be used for
illustrating some types of intervenient minimality.

1. ai2 (1  i  7) is an intervenient from B1 to B4. This holds since
WG


ai1; a

i
2; B1


and SC


a24; a

i
2; B4


and hence ai2 y


ai1; a

2
4


. Note

26See also [Lindahl and Odelstad, 2008a, Section 3.2], for the case of ìBocheî in the
ìBoche-Berserkî example. ìBocheî and ìBerserkî have di§erent grounds but the same
consequence.

Figure 24

Types of intervenient minimality in the ownership/trust example
The ownership/trust example (Figure 23 on page 621) can be used for

illustrating some types of intervenient minimality.

1. ai2 (1 ≤ i ≤ 7) is an intervenient from B1 to B4. This holds since
WG

(
ai1, a

i
2, B1

)
and SC

(
a2

4, a
i
2, B4

)
and hence ai2 y

〈
ai1, a

2
4

〉
. Note

that (it is assumed that)
〈
ai1, a

i
2

〉
∈ min J1,2. Hence, the intervenient

ai2 is ground-minimal. However, ai2 is neither correspondence-minimal
(since

〈
ai1, a

2
4

〉
/∈ min J1,4), nor consequence-minimal (since

〈
ai2, a

2
4

〉
/∈

min J2,4).

2. a1
2 ∨ ... ∨ a7

2 is an intervenient from B1 to B4. This holds since

WG
(
a1

1 ∨ ... ∨ a7
1, a

1
2 ∨ ... ∨ a7

2, B1

)

and
SC
(
a2

4, a
1
2 ∨ ... ∨ a7

2, B4

)

and hence
a1

2 ∨ ... ∨ a7
2 y

〈
a1

1 ∨ ... ∨ a7
1, a

2
4

〉
.

It is assumed that

〈
a1

1 ∨ ... ∨ a7
1, a

1
2 ∨ ... ∨ a7

2

〉
∈ min J1,2

and that
〈
a1

2 ∨ ... ∨ a7
2, a

2
4

〉
∈ min J2,4. It then follows that

〈
a1

1 ∨ ... ∨ a7
1, a

2
4

〉
∈

min J1,4. (See the remark at the end of Section 3.7.) Hence, a7
2∨...∨a7

2

is ground-, consequence- and correspondence-minimal.



624 Lars Lindahl and Jan Odelstad

3. a2
4 (being owner) is an intervenient from B2 to B5. This holds since

WG
(
a1

2 ∨ ... ∨ a7
2, a

2
4, B2

)

and SC
(
a2

5 ∧ ... ∧ a6
5, a

2
4, B5

)
and hence

a2
4 y

〈
a1

2 ∨ ... ∨ a7
2, a

2
5 ∧ ... ∧ a6

5

〉
.

It is assumed that
〈
a1

2 ∨ ... ∨ a7
2, a

2
4

〉
∈ min J2,4 and

〈
a2

4, a
2
5 ∧ ... ∧ a6

5

〉
∈ min J4,5.

It follows that

〈
a1

2 ∨ ... ∨ a7
2, a

2
5 ∧ ... ∧ a6

5

〉
∈ min J2,5.

Hence, the intervenient a2
4 is ground-, consequence- and correspondence-

minimal.

4. a1
4 (being trustee) is an intervenient from B3 to B5. This holds since

WG
(
a1

3 ∨ a2
3, a

1
4, B3

)

and SC
(
a1

5 ∧ a2
5 ∧ a3

5, a
1
4, B5

)
and hence

a1
4 y

〈
a1

3 ∨ a2
3, a

1
5 ∧ a2

5 ∧ a3
5

〉
.

It is assumed that
〈
a1

3 ∨ a2
3, a

1
4

〉
∈ min J3,4 and that

〈a1
4, a

1
5 ∧ a2

5 ∧ a3
5〉 ∈ min J4,5.

Once more it follows that

〈
a1

3 ∨ a2
3, a

1
5 ∧ a2

5 ∧ a3
5

〉
∈ min J3,5.

Hence, a1
4 is ground-, consequence- and correspondence-minimal. On

the other hand, since

〈
a1

4 ∨ a2
4, a

2
5 ∧ a3

5

〉
∈ J4,5

it follows that
〈
a1

4, a
2
5 ∧ a3

5

〉
/∈ min J4,5.

5. a2
4 (being an owner) is an intervenient from B1 to B5. (Cf. 3 above.)

This holds since
WG

(
a1

1 ∨ ... ∨ a7
1, a

2
4, B1

)
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and
SC
(
a2

5 ∧ ... ∧ a6
5, a

2
4, B5

)

and hence
a2

4 y
〈
a1

1 ∨ ... ∨ a7
1, a

2
5 ∧ ... ∧ a6

5

〉
.

Here, it is assumed that (i)

〈a1
1 ∨ ... ∨ a7

1, a
1
2 ∨ ... ∨ a7

2〉 ∈ min J1,2,

that (ii)
〈a1

2 ∨ ... ∨ a7
2, a

2
4〉 ∈ min J2,4

and that (iii)
〈a2

4, a
2
5 ∧ ... ∧ a6

5〉 ∈ min J4,5.

From (iii) it follows that a2
4 is consequence minimal. From (i)-(iii) and

(once more) the remark in Section 3.7 it follows that 〈a1
1∨...∨a7

1, a
2
4〉 ∈

min J1,4 (ground minimality for a2
4), and that

〈a1
1 ∨ ... ∨ a7

1, a
2
5 ∧ ... ∧ a6

5〉 ∈ min J1,5

(correspondence minimality for a2
4). Hence, a2

4 is ground-, consequence-
and correspondence minimal.

6 Related work

6.1 Previous work of ours

In our first major joint work on the subject of intermediate concepts, viz.
[Lindahl and Odelstad, 1999a], we presented a number of ideas to be further
developed in subsequent papers of ours.27 Our concern with intermediaries
originally was inspired by the Scandinavian legal and philosophical discus-
sion of intermediate concepts in the law, a discussion started in the 1940’s
by Ekelöf and Wedberg. Other sources of inspiration were Dummett’s the-
ory of language, Gentzen’s theory of natural deduction and the theory of
normative systems of Alchourrón and Bulygin. (See Section 1.7 above.)

Our aim in [Lindahl and Odelstad, 1999a] was to provide tools for a
rational reconstruction of a legal system with intermediaries; the formal
framework was that of a lattice 〈L,≤〉 of conditions and an implicative
relation ℘ over L such that 〈L℘,≤℘〉 is generated by the equivalence relation

27[Lindahl and Odelstad, 1999a] was based on our presentation at DEON’98 in Bologna.
Our joint theory was presented for the first time in 1996 at the workshop (a cura di V. A.
A. Martino) Logica, Informatica, Diritto, Pisa, 1996, in honor of Carlos Alchourrón. For
references to another preparatory joint work in 1996 see [Lindahl and Odelstad, 1999a].
An early paper in Swedish by Lindahl on intermediate concepts is [Lindahl, 1985].
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≈℘. Within this framework, we defined the notion of a lattice joining-
system 〈A,B,C〉, with A the under-lattice, B the over-lattice and C the
background lattice. We defined two kinds of linking relations between A
and C, viz. the relations of “connection” and “coupling”. We treated
themes such as couplings satisfying a constraint, the relations “narrower”
and “wider” for couplings, and the interrelation between coupling conditions
and the notion of “intermediary”.

In subsequent papers, we exchanged the main framework of lattices for
a framework of Boolean quasi-orderings (Bqo’s, cf. Section 4.1.1 above.)28

Connections and couplings now were thought of as relations between what
we called “fragments” of a Bqo. A Bqo 〈B,∧,′ , R〉 was thought of as the
“closure” of a supplemented Boolean algebra 〈B,∧,′ , ρ〉.29 Also, the alge-
braic framework was made more abstract, so as to consider “condition im-
plication structures” as models of the more abstract framework. Within this
framework, the theory was further developed in various respects. In [Lin-
dahl and Odelstad, 1999b], we introduced the idea of a normative system
as a set of Bqo’s, among which a “core” and a number of “amplifications”;
in [Lindahl and Odelstad, 2000], we treated the problem of intermediate
legal concepts that (like disposition concepts) express hypothetical conse-
quences; in [Odelstad and Lindahl, 2002], we further developed the theory of
connections; in [Lindahl and Odelstad, 2003], we treated the idea of subtrac-
tion and addition of norms; in [Lindahl and Odelstad, 2004], we proposed
a model for normative positions within the algebraic framework; and, in
[Lindahl and Odelstad, 2006b], we dealt summarily with open and closed
intermediaries.

A third stage of development with regard to the general framework ap-
peared with the introduction of Boolean joining-systems (Bjs’s, cf. above
Section 4), first presented in [Odelstad and Boman, 2004]. Instead of con-
sidering connections and couplings between two fragments of one single
Bqo, we now introduced the idea of a Bjs 〈B1,B2, J〉 with a joining rela-
tion J from one Bqo B1 to another Bqo B2. We adjusted the analyses of
the issues mentioned above to this framework and developed new themes.
In particular, in [Lindahl and Odelstad, 2006a], we introduced the notion
of “intervenient” as a formal tool for analyzing intermediaries in norma-
tive systems and began the development of a formal theory of intervenients.
The theory of intervenients was further developed in [Lindahl and Odelstad,
2008a] and included topics such as “bases of intervenients”, “extendable and
non-extendable intervenients”, and negations of intervenients. The formal

28The idea of Boolean quasi-orderings and fragments was first presented already in
1998, see references in [Odelstad and Lindahl, 2000].

29Cf. [Lindahl and Odelstad, 1999b].
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analysis of intervenients was continued in [Lindahl and Odelstad, 2008b;
Lindahl and Odelstad, 2011]. The focus of the latter paper is on inter-
venient minimality, conjunctions and disjunctions of intervenients, organic
wholes of intervenients, and a typology of different kinds of intervenients.
Also [Lindahl and Odelstad, 2011] pays attention to the properties of inter-
venients in a network of several Bjs’s, with “strata” of Bqo’s B1,B2,B3, ....

6.2 Recent work of others

6.2.1 A remark on the “Counts-as” theory

A logical analysis of external sentences of the kind “x counts-as y in s”,
where s is an institution (s can be a normative system), was proposed by
Jones and Sergot in [Jones and Sergot, 1996; Jones and Sergot, 1997]. The
work of Jones and Sergot on “Counts-as” has been continued by a number
of other authors. This subsequent work has many facets, developed over
the past ten years. The book-length study [Grossi, 2007] by Grossi provides
axiomatization and semantics of the different counts-as operators.

When a rule r of a legal system N attaches an intermediary m, e.g., “x
and y have made a contract to the effect that z“, to a conjunction a of facts,
the rule r can be expressed in different ways, e.g. “if a then m”, “a is a
ground for m” or, sometimes, “a counts as m”.

As appears from the foregoing, in our formal representation of N by a cis
model of Bjs-triples 〈Si,Sj ,Sk〉 we represent such a statement by aiRibi, or
(if different sorts of objects are in view) aiJi,jaj , which statements are read
“ai implies bi” and “ai is a ground for aj” respectively. In TJS, no counts-
as operator is introduced, and in the present chapter we do not examine
the question in which cases the counts-as vocabulary might be appropriate.
Rather, referring to the joint paper [Grossi et al., 2007] by Grossi, Meyer
and Dignum, we will be content, by an example, merely to suggest how some
of the material dealt with in the Counts-as theory might be represented in
our theory. (Cf. [Lindahl and Odelstad, 2008a, sect. 3.5.3].)

In [Grossi et al., 2007, p. 2], the following example is given of three kinds
of Counts-as:

“It is a rule of normative system Γ that conveyances transporting
people or goods count as vehicles; it is always the case that bikes
count as conveyances transporting people or goods but not that
bikes count as vehicles; therefore, in the context of normative
system Γ, bikes count as vehicles.”

According to [Grossi et al., 2007, p. 2], the first premise states a rule of
Γ and is a constitutive Counts-as, the second premise states a generally
acknowledged classification, thus states a general classificatory Counts-as,
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and the conclusion states a classification that holds in Γ and is a Counts-as
brought about by Γ though it is not a constitutive Counts-as.

The example can be further developed by the assumption that in Γ ve-
hicles are not admitted in public parks (cf. [Grossi et al., 2006, p. 615]).

If counts-as sentences are seen as internal to a normative system Γ, a
representation of the example might be made in terms of Figure 25 on
page 628. We can conceive of the example in such a way that “being a

minJ1,2 with
"constitutive"
Counts­as

Bqo B1 Bicycle

Conveyance

Vehicle

Prohibited
in parks

R1|minJ1,2
with
Counts­as
"brought
about by G"

Bqo B3

Bqo B2

Bjs’s 〈B1,B2,J1,2〉, 〈B2,B3,J2,3〉, 〈B1,B3,J1,3〉

R1 with
"general
classificatory"
Counts­as

Figure 25

vehicle” is an intervenient from B1 to B3 corresponding to the pair 〈being
a conveyance, being prohibited in parks〉 in B1 ×B3.

In this chapter, there is no room for going into possible developments
of the example. A brief comment should be made, however, on how we
might represent something similar to the distinction between three kinds of
Counts-as made by Grossi, Meyer and Dignum. We can assume that relation
R1 (a subset of B1 ×B1) represents implications that hold in an uncontro-
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versial way independently of the instituted rules of Γ. In contrast, the set of
minimal joinings minJ1,2 (a subset of B1×B2) can be seen as expressing im-
plications that are instituted by the rules in Γ. If this view is taken, distinc-
tions can be made as follows. (We write b, c, v for “bicycle”, “conveyance”,
“vehicle”.) Firstly, the general classification of bicycles as conveyances is
due to 〈b, c〉 ∈ R1 (“bikes always count as conveyances”). Secondly, the
classification of conveyances as vehicles is due to 〈c, v〉 ∈ min J1,2 (“Con-
veyances ... are to count as vehicles”). Thirdly, the classification of bicycles
as vehicles is due to 〈b, v〉 ∈ R1|min J1,2 (the relative product).

6.2.2 Input-output logic

In a series of papers, Makinson and van der Torre have developed a theory
called input-output logic, see for example [Makinson and van der Torre,
2000; Makinson and van der Torre, 2003]. Important similarities between
input-output logic and our approach are that we study normative systems
as deductive mechanisms yielding outputs for inputs and that norms are
represented as ordered pairs.30 Other similarities worth mentioning are
that neither the principal output operation in input-output logic, nor the
relation J in a Bjs, requires reflexivity or contraposition.

TJS, however, differs from input-output logic, as developed in [Makinson
and van der Torre, 2000; Makinson and van der Torre, 2003], in a number
of respects. Thus, in TJS,

1. if a pair 〈a1, a2〉 represents a norm, this is due to the normative char-
acter of a2 (see Sections 1 and 4.4);

2. a central theme is “intermediaries” (intermediate concepts) in the sys-
tem;

3. a normative system is represented as a network of subsystems and rela-
tions between them; the study comprises stratification of a normative
system with structures (“strata”) that are intermediate;

4. emphasis is put on the analysis of minimality of joinings and of close-
ness between strata; representation by a base of minimal joinings is of
special importance;

5. the strata of the kind of system called a Boolean joining-system are
Boolean structures (Bqo’s to be more precise); however, the strata of
joining-systems of other kinds need not in TJS be Boolean structures.
Thus, in Section 3 of the present chapter, there is a general algebraic

30Cf. [Lindahl and Odelstad, 1999b, sect. 1.1], with a reference to the work of Al-
chourrón and Bulygin in [Alchourrón and Bulygin, 1971].
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framework for joining-systems that need not be Boolean, for example
joining-systems containing strata of lattice-like structures. (In input-
output logic, the set of inputs constitutes a Boolean algebra and the
same holds for the set of outputs.)

The following remark sheds some light on the relation between input-
output logic and the theory of joining-systems. Suppose that 〈B1,B2, J〉 is
a Bjs where B1 = 〈B1,∧,′ , R1〉 and B2 = 〈B2,∧,′ , R2〉. Makinson and van
der Torre state a number of rules for the so-called “basic” output operator
(called out2) that they define. Translated to a Bjs these rules are as follows
(cf. Definitions 3.11 in Section 3.2):

Strengthening Input: From 〈a1, a2〉 ∈ J to 〈b1, a2〉 ∈ J whenever b1R1a1.
Follows from condition (1) of a Bjs.

Conjoining Output: From 〈a1, a2〉 ∈ J and 〈a1, b2〉 ∈ J to 〈a1, a2 ∧ b2〉 ∈ J .
Follows from condition (3) of a Bjs.

Weakening Output: From 〈a1, a2〉 ∈ J to 〈a1, b2〉 ∈ J whenever a2R2b2.
Follows from condition (1) of a Bjs.

Disjoining Input: From 〈a1, a2〉 ∈ J and 〈b1, a2〉 ∈ J to 〈a1 ∨ b1, a2〉 ∈ J .
Follows from condition (2) of a Bjs.

There are three conditions on a joining space in a Boolean joining-system.
The comparison with input-output logic above shows that it could be of
interest to define weaker kinds of systems characterized by, for example,
conditions (1) and (3).

In TJS the notion of completeness plays an important role. If in a joining-
system the quasi-orderings are complete quasi-lattices, then the joining-
system satisfies connectivity, one of the key feature in TJS. Even in the
definition of a joining-system itself, the notion of completeness is in some
sense present although in a concealed form. To see this, we recall condition
(2) and (3) in the definition of a joining-system. In these conditions, least
upper bounds (lub’s) and greatest lower bounds (glb’s) of arbitrary sets are
called for, although such bounds are not required to exist. Instead certain
things must hold for those lub’s or glb’s of infinite sets that exist. Admit-
tedly, however, this may in certain contexts be regarded as too demanding
a requirement: if so, it may seem reasonable to restrict attention to lub’s
and glb’s of pairs of objects. This reasoning leads to the following definition
of a kind of systems called prejoining-systems.

Definition 6.1 A prejoining-system, is an ordered triple 〈A1,A2, J〉 such
that A1 = 〈A1, R1〉 and A2 = 〈A2, R2〉 are quasi-orderings and J ⊆ A1×A2

and the following conditions are satisfied where E is the narrowness relation
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determined by A1 and A2:
(1) for all b1, c1 ∈ A1 and b2, c2 ∈ A2, if 〈b1, b2〉 ∈ J and 〈b1, b2〉 E 〈c1, c2〉,
then 〈c1, c2〉 ∈ J,
(2) for all b1, c1 ∈ A1 and b2 ∈ A2, if 〈b1, b2〉 ∈ J and 〈c1, b2〉 ∈ J, then
〈a1, b2〉 ∈ J for all a1 ∈ lubR1 {b1, c1} ,
(3) for all b2, c2 ∈ A2 and b1 ∈ A1, if 〈b1, b2〉 ∈ J and 〈b1, c2〉 ∈ J, then
〈b1, a2〉 ∈ J for all a2 ∈ glbR2

{b2, c2} .
Connectivity is not so firmly connected with prejoining-systems as with

TJS joining-systems. The reason is roughly that the occurrence of lub’s and
glb’s of infinite sets fits well with quasi-orderings satisfying completeness in
the sense of being complete quasi-lattices. The importance of connectivity
in TJS has been stressed several times.

A brief note on the role of the notion of closure system in TJS is in order.
An important aspect of TJS is that it gives a method for representing a set
of conditional norms in an elaborated way. Suppose that B1 is a Bqo of
grounds and B2 is a Bqo of consequences. Let us suppose that K is a set of
conditional norms with the antecedents taken from B1 and the consequences
taken from B2. Hence, K ⊆ B1×B2 and K is a correspondence from B1 to
B2. K can be thought of as a “crude” representation of a normative system
N . Then, a set K∗ can be generated by forming the “joining closure” of K
such that 〈B1,B2,K

∗〉 is a Bjs. This is an “elaborated” representation of
N .

The out-operations introduced by Makinson and van der Torre also use
a closure-operation, viz. classical consequence. With some simplification
one can say that Makinson and van der Torre form the closure of the input
and of the output but leave the set of norms as it is. However, it turns out
that, regarded only as deductive mechanisms, input-output logic and the
theory of joining-systems give rather similar results in spite of their use of
different closure-operations in different ways. As a conjecture we suggest
the following. Suppose that the Bqo’s B1and B2 are Boolean algebras, i.e.
for i = 1, 2, Ri is the partial ordering determined by the Boolean algebra
〈Bi,∧,′ 〉. Then J = out1(J). Furthermore, if B1 is a complete Boolean
algebra and some general conditions are satisfied, then J = out2(J).

Acknowledgments

We want to thank the two referees for painstaking work och valuable com-
ments. Financial support was given by the Swenson Foundation of the
Faculty of Law, University of Lund, The Swedish Research Council, and
the University of Gävle.31
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