9

The Theory of Joining-Systems

Lars Lindahl and Jan Odelstad

Abstract

The theory of joining-systems (TJS), as developed in this chapter, consists of three main parts, developed after the informal introduction and overview in Sections 1 and 2. One part (Section 3) is the abstract theory of joining-systems, providing the framework for the subsequent analysis. Two other parts introduce those concepts and results of the theory that are in focus for the representation of normative systems. The first of these parts (Section 4) presents the model of condition implication structures (cis's) as applied to wellknown issues in legal theory. In the second part (Section 5), the cis model of TJS is applied to a comprehensive new field, namely the theory of "intervenients". In a developed normative system, intervenient concepts serve as vehicles of inference for going from ultimate descriptive grounds to ultimate deontic consequences. Among the issues dealt with are: Boolean compounds of intervenients, intervenients as organic wholes, narrowing or widening of intervenients, the typology of various kinds of intervenient minimality.

1 The field of research and its origins 546
1.1 Cases and solutions in the theory of Alchourrón and Bulygin546
1.2 Input-output logic 548
1.3 The theory of joining-systems TJS 549
1.4 TJS for simple normative systems 549
1.5 Normative positions in TJS 550
1.6 Subtraction and addition of norms in TJS 551
1.7 Intermediaries and intervenients 552
1.8 Advice to readers 562
2 First introduction to TJS 562
2.1 General TJS irrespective of intervenients 562
2.2 Intervenients in TJS 564
3 Formal development of TJS 566
3.1 Basic concepts 566
3.2 Joining-systems 568
3.3 Weakest grounds, strongest consequences and mini- mal joinings 575
3.4 Connectivity 577
3.5 Lowerness 582
3.6 The structure on minimal joinings 586
3.7 Networks of joining-systems 590
3.8 Intervenients 591
4 TJS for Boolean joining-systems 593
4.1 Boolean quasi-orderings and Boolean joining-systems 593
4.2 The condition implication model (cis) 596
4.3 Subtraction and addition of norms: an example 598
4.4 The cis version of normative positions 604
5 Intervenients for Boolean joining-systems 612
5.1 Introductory remarks on intervenients in Bjs' 612
5.2 cis' with intervenients 615
6 Related work 625
6.1 Previous work of ours 625
6.2 Recent work of others 627

1 The field of research and its origins

In the analysis of normative systems, one of the approaches is to represent a normative system as a deductive mechanism, giving a normative output for an input of facts. In modern literature, the foremost origin of this approach is the work Normative Systems by the Argentinians Carlos E. Alchourrón and Eugenio Bulygin. To this tradition belongs as well the recent "inputoutput logic" by David Makinson and Leon van der Torre and the Theory of Joining-Systems (TJS) proposed by the present authors.

A theory of representation for normative systems will be incomplete unless attention is paid to the role of intermediate concepts within the system (for example, the role of legal concepts such as ownership). If a normative system is represented as a deductive mechanism, there will be an emphasis on the role of intermediate concepts as "vehicles of inference" within the system. In this respect, the origin of later developments comes from Scandinavian legal philosophy in the 1950's, in particular the work of Anders Wedberg and Alf Ross.

1.1 Cases and solutions in the theory of Alchourrón and Bulygin

Alchourrón and Bulygin introduce the idea of deductive mechanism by contrasting the Aristotelian conception of science with the idea of deductive system in modern theory [Alchourrón and Bulygin, 1971, pp. 43ff.]. The
notion of deductive system is based on Tarski's notion of deductive consequence, satisfying the following four requirements [Alchourrón and Bulygin, 1971, pp. 48ff.]:

1. The set of the consequences of a set of sentences consists solely of sentences.
2. Every sentence belonging to a given set is to be regarded as a consequence of this set.
3. The consequences of the consequences are, in turn, consequences.
4. If a sentence of a conditional form $(y \supset z)$ is a consequence of the set of sentences X, then z is a consequence of the set of sentences resulting from adding to X the sentence y.

Adopting the Tarskian conception of deductive system, Alchourrón and Bulygin conceive of a normative system as a set of sentences deductively correlating pairs of sentences. A set α of sentences deductively correlates a pair $\langle p, q\rangle$ of sentences if q is a deductive consequence of $\{p\} \cup \alpha$, or, using the relation $C n$ of consequence, if $q \in C n(\{p\} \cup \alpha)$. Moreover, the statement $q \in C n(\{p\} \cup \alpha)$ is equivalent to $(p \supset q) \in C n(\alpha)$ where \supset is the symbol for truth-functional implication [Alchourrón and Bulygin, 1971, pp. 54ff.]

For a set α to be a normative system the additional requirement is made that there be at least one pair $\langle p, q\rangle$ where $q \in C n(\{p\} \cup \alpha)$ such that p is a "case" and q is a "solution". A solution is a normative sentence expressed in terms of a descriptive sentence (deontic content) preceded by a deontic operator for command, prohibition or permission. So, the character of the system as normative depends on the deontic character of the solutions inferred in the system. In the words of [Alchourrón and Bulygin, 1971, p.169]: "Justifying the deontic qualification of an action by means of a normative system consists in showing that the obligation, the prohibition or the permission of this action can be inferred from (i.e., is a consequence of) this system."

If propositional logic is used as a basis, it is usually presupposed that p, q are closed sentences with no free variables, i.e., for example, p is the sentence "Smith has promised to pay Jones $\$ 100$ " and q is "Smith has an obligation to pay $\$ 100$ to Jones". In these sentences, individuals are referred to by individual constants (names). While it is true that a normative system may correlate sentences of this kind, a set of sentences containing individual names is not, however, an appropriate representation of a normative system. A normative system expresses general rules where no individual
names occur. If the task is to represent a normative system this feature of generality has to be taken into account.

When Alchourrón and Bulygin speak of normative "solutions" being correlated to "cases", however, they have in mind correlation of "generic" cases to "generic" solutions. They emphasize the distinction between individual and generic cases, and an analogous distinction holds for solutions. An individual case is a situation or a state of affairs. As such, appropriately, it should be described by a closed sentence. On the other hand, a generic case is a property or a set of individual cases, defined by a property. ${ }^{1}$ Therefore, a "case" in the generic sense relevant to Alchourrón and Bulygin is an object described by an open sentence. It can be argued that, when the expression $q \in C n(\{p\} \cup \alpha)$ is said to express that α correlates q to p, q and p must be thought of as "open" sentences (like " x has promised to pay $\$ y$ to z ", "It shall be that x pays $\$ y$ to $z "$), not prefixed by any universal quantifier. ${ }^{2}$

1.2 Input-output logic

In a series of papers, Makinson and van der Torre have developed a logic called "input-output logic", see for example [Makinson and van der Torre, 2000; Makinson and van der Torre, 2003]. If G is a generating set, then $x \in \operatorname{out}(G, A)$, i.e., x belongs to the output of A under G, if and only if $(A, x) \in \operatorname{out}(G)$. The principal out-operation in input-output logic does not require reflexivity or contraposition.

Input-output logic can, but need not, apply specifically to normative systems, where norms are represented as ordered pairs. ${ }^{3}$ The construction of norms in input-output logic, however, is different from the construction in [Alchourrón and Bulygin, 1971]. In Alchourrón and Bulygin, if a is a case and x is a solution, it is assumed that x is a normative sentence (a solution, see above). In contrast, in input-output logic, a generating set G of ordered pairs $\langle a, x\rangle$ can be understood as a set of conditional obligations in spite of the fact that x, the consequence, is descriptive rather than normative. The normative character, in this case, depends on the specific character of the set G as a set of conditional obligations. (Similarly if $\langle a, x\rangle$ is a conditional permission.)

For further details, the reader is referred to the Chapter "Input/output logic" of the present Handbook. A remark on the interrelation between

[^0]input-output logic and TJS is given below, Section 6.2.2.

1.3 The theory of joining-systems TJS

In TJS, implications are seen as relations between two objects. Thus a statement " a implies b " expresses that an implicative relation holds from a to b. The specific character of the objects a and b is a matter of which model is chosen for the abstract theory.

A first view of TJS is as follows. A simple normative system contains three basic kinds of implicative relations:

- a relation R_{1} over a set A_{1} of grounds,
- a relation R_{2} over a set A_{2} of consequences,
- a relation J from the grounds in A_{1} to the consequences in A_{2} (expressing the norms of the system).

We note that, though each of R_{1}, R_{2} and J is a binary implicative relation, the relation J is different in kind from R_{1}, and R_{2}. Thus while the point of the latter two relations is to order elements of A_{1} and A_{2}, respectively, relation J is a "correspondence", with the purpose of assigning consequences in A_{2} to grounds in A_{1} and vice versa. (This is particularly perspicuous in the case where A_{1} and A_{2} are disjunct.)

A picture of a joining relation is shown in Figure 1.
The resulting structures or systems are: The structure $\mathcal{A}_{1}=\left\langle A_{1}, R_{1}\right\rangle$ of grounds, the structure $\mathcal{A}_{2}=\left\langle A_{2}, R_{2}\right\rangle$ of consequences, and the system $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J\right\rangle$, called a joining-system, where the elements of J are joinings from \mathcal{A}_{1} to \mathcal{A}_{2}. (The elements of the joining relation J constitute a subset of $A_{1} \times A_{2}$, representing the norms of the normative system.) For a joiningsystem $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J\right\rangle$, if $\left\langle a_{1}, a_{2}\right\rangle \in J$ (where $a_{1} \in A_{1}$ and $a_{2} \in A_{2}$), we say that a_{1} is a ground for a_{2} and a_{2} is a consequence of a_{1}.

To the three relations R_{1}, R_{2}, J will be added a fourth implicative ordering relation \unlhd, called "narrowness", over the set of elements in J. These elements (i.e., the norms from $A_{1} \times A_{2}$) can be more or less "narrow", and this is expressed by the relation \unlhd. From another aspect, \unlhd expresses implication between the norms in J. Thus, the expression $\left\langle a_{1}, a_{2}\right\rangle \unlhd\left\langle b_{1}, b_{2}\right\rangle$ means that $\left\langle a_{1}, a_{2}\right\rangle$ is at least as narrow as $\left\langle b_{1}, b_{2}\right\rangle$, and also that $\left\langle a_{1}, a_{2}\right\rangle$ implies $\left\langle b_{1}, b_{2}\right\rangle$.

1.4 TJS for simple normative systems

TJS has a wider range of application than the representation of normative systems. As will appear in Sections 2 and 3, the general theory of joiningsystems can be applied to quasi-orderings of any kind. Within this range, a

Figure 1
field of special interest is that of what may be called "Many-sorted implicative conceptual systems" (cf. [Odelstad, 2008]). From the perspective to be adopted here, a special area of this kind is the representation of normative systems with conditional norms. In TJS, this problem is dealt with in terms of joinings of normative consequences in A_{2} to grounds in A_{1}.

If the sentence " a implies b " expresses a (conditional) norm, it is assumed that b, the consequence, is normative. In this respect, the representation of norms in TJS is akin to the theory of correlation of normative solutions to cases in the work of Alchourrón and Bulygin, but different from the representation of norms in input-output logic. The specific character of various normative consequences in TJS is dealt with in terms of so-called normative positions, made up by a combination of deontic concepts (constructed by "Shall", "May" for obligation and permission) and action concepts (constructed from " x sees to it that ...").

1.5 Normative positions in TJS

An important refinement of classical deontic logic is the theory of normative positions as the combination of a standard deontic operator Shall, expressing command (or May, expressing permission) with an action operator Do (" $\operatorname{Do}(x, F)$ " for " x sees to it that F "), and exploiting the possibilities of external and internal negation of sentences where these operators are com-
bined. See Chapter "The theory of normative positions" in the present Handbook.

As an illustration, imagine a normative system $\mathcal{N}=\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J\right\rangle$ such that $\left\langle a_{1}, a_{2},\right\rangle \in J$. Suppose F is the condition that the police is informed of which political party x sympathizes with. Let a_{1}, a_{2} be as follows:
$a_{1}: x$ is not suspected of any crime, and y is a police authority.
a_{2} the conjunction of (1)-(6) below:
(1) May $\operatorname{Do}(x, F)$
(2) May $\operatorname{Do}(x, \neg F)$,
(3) May $(\neg \operatorname{Do}(x, F) \& \neg \operatorname{Do}(x, \neg F))$
(4) $\neg \operatorname{May} \operatorname{Do}(y, F) \quad(=$ Shall $\neg \operatorname{Do}(y, F))$
(5) May $\operatorname{Do}(y, \neg F)$,
(6) May $(\neg \operatorname{Do}(y, F) \& \neg \operatorname{Do}(y, \neg F))$

Among these, (1)-(3), (5-6) express permissions, while (4) expresses a prohibition. (1) expresses that x may see to it that the police is informed of which political party x sympathizes with, (2) that x may see to it that the police is not so informed, (3) that x may be passive in this respect. (4) expresses that it shall be the case that y (a police authority) does not see to it that the police is informed, and so on. As will appear later, the conjunction of (1)-(3) exemplifies one-agent type T_{1} of normative positions while the conjunction of (4)-(6) exemplifies one-agent type T_{4}.

As will be developed in Section 4.4 below, the TJS version of normative positions combines the TJS approach to joining-systems with an explicitly algebraic model of the theory of normative positions. In the system of grounds and consequences of a normative system, the algebraic version of normative positions is an algebra of normative consequences intended to handle the stratum \mathcal{A}_{2} of a normative joining-system $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J\right\rangle$. In Section 4.4.1, we introduce an example of conditional norms concerning the normative positions of the owners of two adjacent estates.

1.6 Subtraction and addition of norms in TJS

An important issue within the representation of normative systems is the handling of changes, in the sense of subtracting and/or adding norms to the system. Section 4.3 below provides an example showing how TJS deals with these issues in terms of the lattice-like structure of so-called minimal joinings. The example concerns the legal effects of an illegal transfer of goods belonging to someone else. We illustrate the transition from an original normative system \mathcal{S}_{I}, satisfying specific requirements for minimal joinings, via an unsatisfactory system $\mathcal{S}_{I I}$, to systems $\mathcal{S}_{I I I}$ and $\mathcal{S}_{I V}$, once more satisfying the requirements for joining-systems.

1.7 Intermediaries and intervenients

1.7.1 Facts, normative positions and intermediaries

Legal rules attach obligations, rights, normative positions to facts, i.e., the occurrence of actions and events, or the presence of circumstances. Normative positions are, so we might say, legal consequences of these facts. Facts and normative positions are objects of two different sorts; we might call them Is-objects and Ought-objects. In a legal system, when Ought-objects are said to be "attached to" or to be "consequences of" Is-objects, there is sense of direction. In a legal system, inferences and arguments go from Is-objects to Ought-objects, not vice versa.

In the Is-Ought partition, something very essential is missing, namely the great bulk of more specific legal concepts. A few examples are: property, tort, contract, trust, possession, guardianship, matrimony, citizenship, crime, responsibility, punishment. These concepts are links between grounds on the left hand side and normative consequences on the right hand side of the scheme below:

Facts	Links	Normative positions
Events	Ownership	Obligations
Actions	Valid contract	Claims
Circumstances	Citizenship (etc.)	Powers (etc.)

Using this three-column scheme, we might say that ownership, valid contract, citizenship etc. are attached to certain facts, and that normative positions, in turn, are attached to these legal positions.

As an example, Amendment XIV, Section 1, of the Constitution of the United States reads as follows:
"All persons born or naturalized in the United States, and subject to the jurisdiction thereof, are citizens of the United States and of the State wherein they reside. No State shall make or enforce any law which shall abridge the privileges or immunities of citizens of the United States; nor shall any State deprive any person of life, liberty, or property, without due process of law; nor deny to any person within its jurisdiction the equal protection of the laws."

Two central terms in this constitutional rule are "citizen" and "person". The rule enumerates grounds for being a citizen of the United States and pronounces a number of legal consequences, expressed in terms of "shall", of this condition. It does not assert any grounds for being a "person", but it pronounces a number of legal consequences attached to personhood. Within the U.S. constitutional system, the article just referred to is supplemented
by other rules established by the Constitution and by constitutional court decisions. These rules together, by specifying grounds and consequences, indicate the role of the term "citizen" or "person" within the system.

1.7.2 Wedberg and Ross on vehicles of inference

In the 1950's, each of the two Scandinavians Wedberg and Ross proposed the idea that a legal term such as "ownership", or " x is the owner of y at time t " is a syntactical tool serving the purpose of economy of expression of a set of legal rules. ${ }^{4}$

As an example, the function of the term "ownership" is illustrated as follows by [Ross, 1951], cf. [Ross, 1956 and 1957]:

Figure 2

In the picture, the letters are to be interpreted as follows:

- $F_{1}-F_{p}$ for: x has lawfully purchased y, x has inherited y, x has acquired y by prescription, and so on.
- $C_{1}-C_{n}$ for: judgment for recovery shall be given in favor of x against other persons retaining y in their possession, judgment for damages shall be given in favor of x against other persons who culpably damage y, if x has raised a loan from z that it is not repaid at the proper time, z shall be given judgment for satisfaction out of y, and so on.

The letter " O " is a link between the left hand side and the right hand side. It can be read " x is the owner of y ".

In Ross's scheme, the number of implications to ownership from the grounds for ownership is p (since the grounds are F_{1}, \ldots, F_{p}); similarly the

[^1]number of implications from ownership to consequences of ownership is n (since there are n consequences). Therefore, the total number of implications in the scheme is $p+n$. On the other hand, if the rules were formulated by attaching each C_{j} among the consequences to each F_{i} among the grounds, the number of rules would be $p \cdot n$. Consequently, by the formulation in the scheme, the number of rules is reduced from $p \cdot n$ to $p+n$, a number that can be much smaller [Wedberg, 1951, pp. 273f.]. In this way, economy of expression is obtained. ${ }^{5}$ (Cf., however, below, Section 1.7.4, on reductionism.)

1.7.3 Intermediaries and meaning

Both Wedberg and Ross emphasize that intermediaries like "ownership" fulfil their deductive purpose even if they are not defined. Ross claims that "ownership" is a meaningless word in legal language:
"... the 'ownership' inserted between the conditioning facts and the conditioned consequences is in reality a meaningless word, a word without any semantic reference whatever, serving solely as a means of presentation." [Ross, 1956 and 1957, p. 820]

Already in 1944 (in a lecture in Uppsala), Anders Wedberg proposed the idea that the concept of a "right", as it appears in a normative system, is a syntactical tool for inferences, not a concept with "independent meaning".
"In the normative rules, the concepts of rights function as syntactical tools, not as concepts with independent meaning." (See [Lindahl, 2004, p. 189, n. 16] for the reference.)

In his essay in 1951, [Wedberg, 1951], Wedberg, more cautiously, proposes this as a "third alternative", beside the alternatives of defining ownership in terms of grounds or in terms of consequences, respectively (alternatives one and two).

A plausible interpretation of Wedberg's idea of "not independent meaning" is that the rules stating the grounds and consequences of ownership (cf. Ross's figure above) are meaningful and that the sentence " O is the property of P at t " has a purposeful role as a component of these rules but that it has no meaning in abstraction from the rules where it functions as a vehicle of inference.

[^2]"It may be shocking to unsophisticated common sense to admit such 'meaningless' expressions in the serious discourse of legal scientists. But, as a matter of fact, there is no reason why all expressions employed in a discourse, which as a whole is highly 'meaningful', should themselves have a 'meaning'." [Wedberg, 1951, p. 273]
[Sartor, 2009] contrasts the idea of vehicles of inference with the idea of legal concepts as "categories" in a domain ontology. ${ }^{6}$ In the latter perspective, meaning inheres in words or terms, and the meaning of sentences results from the meaning of their lexical components. (See [Sartor, 2009, pp. 236f.]. In jurisprudential writing, systematization is sometimes achieved by the ordering of legal concepts in conceptual trees or pyramids. ${ }^{7}$ (As a well-known analogue from natural science, we may think of the Linnaean system of plants, which influenced eighteenth century conceptual jurisprudence in Germany.) If such an ordering is to be congruent with an existing normative system, however, it should accord with the role the concepts have as vehicles of inference within the system. If A and B are subcategories of category C, then category C indicates some properties which members of A and B have in common. ${ }^{8}$ As regards concepts in a normative system, these common properties may regard either grounds or consequences or both, according to the rules of the system in view.

Since there are many legal systems, there are (to take an example) many concepts of ownership, more or less similar. Thus one concept of ownership is ownership as a vehicle of inference in Swedish private law on January 1st 2010. This concept of ownership is determined by the particular normative system referred to; consequently, the concept is replaced by another whenever the grounds or consequences of ownership in the system are changed. We note that, when several different concepts (for example, ownership in actual Swedish law and ownership in Anglo-Saxon common law) are called "concepts of ownership", it is suggested that these varieties have properties in common, justifying that they are called "concepts of ownership". In particular, the concepts in view can have a common historical origin, and the "institution" that they are used for expressing (the institution of ownership) can have the same social purpose or function in the different systems.

[^3]Considerations of this kind are relevant for a critical assessment of the ownership rules of particular normative systems, and may cause assessment of what is the "essential content" of ownership. ${ }^{9}$

1.7.4 Reductionism

In the Ross-Wedberg example on ownership, the set of legal rules illustrated by the picture can be reformulated in two rules:
(1) $\left(F_{1} \vee \ldots \vee F_{m}\right) \rightarrow O$.
(2) $O \rightarrow\left(S_{1} \wedge \ldots \wedge S_{n}\right)$.

If the middle term M is eliminated, we get the single rule:
(3) $\left(F_{1} \vee \ldots \vee F_{m}\right) \rightarrow\left(S_{1} \wedge \ldots \wedge S_{n}\right)$.

The most economical way to express the rules of the two arrays above would seem to be by a single sentence like (3). By reductionism regarding intermediaries is meant the idea that legal reasoning might in general proceed directly from facts to normative consequences so as to dispense with intermediate concepts.

Concerning the accomplishment of reduction, two complications have to be born in mind. Firstly, the bulk of so-called "legal" concepts are intermediaries, and these intermediaries constitute complex networks. (Cf. [Lindahl and Odelstad, 2011]) Secondly, many legal intermediaries are vague or "open textured", so that power to decide on grounds and consequences for the intermediaries is conferred on judges and other persons who apply the law (see below, Section 5.2.2).

The question whether, in principle, it is possible to do away with the intermediaries is complex and will not be answered here. A formal theory for handling intermediaries, however, is needed both for any attempt to eliminate them and for representing the system as it is without reduction.

1.7.5 Open legal concepts

As mentioned, there are numerous cases where legal concepts are vague or "open textured", and power to interpret the concepts is conferred on judges and other persons who apply the law. Obvious examples are such concepts as "negligent" or "reasonable" but considerable openness also is a feature of such concepts as "public interest", "contract" and "ownership".

[^4]An example might be the legal rule stipulating the ground for what, in Swedish law, is called "having a relationship similar to being married". If two persons are not married, nevertheless they can have a relationship similar to being married. From such a condition particular legal consequences follow by the law. First, if the relationship is dissolved, property acquired by one of the parties for use in common shall be partitioned between the parties according to rules similar to those applied when a marriage is dissolved. Secondly, if the relationship of the parties is dissolved, their dwelling can be allotted to that party who needs it most.

The law does not specify exactly which facts give rise to a "relationship similar to being married". ${ }^{10}$ However, there are a number of criteria. Let us consider the following eleven criteria, calling them $F_{1}, F_{2}, \ldots, F_{11}$:
F_{1} : cohabiting, F_{2} : housekeeping in common, F_{3} : having children in common, F_{4} : having sexual intercourse, F_{5} : having confirmed the relation by a contract, F_{6} : living in emotional fellowship, F_{7} : being faithful, F_{8} : giving mutual support, F_{9} : sharing economic assets and debts, F_{10} : having no legal impediments to marriage, F_{11} : having no similar relationship to another person.

If all of the criteria are satisfied by persons i and j, their relationship is "similar to being married". Conversely, if none of them is satisfied, their relationship is not "similar to being married". These two rules belong to established law.

However, the law does not say what is the result if some of the conditions are satisfied while others are not. This means that, in a sense, the set of grounds for having a relationship similar to being married is "open", and the grounds are not specified completely.

A great amount of legal concepts are "ground-open" like "relationship similar to being married". When such a concept occurs in a legal argument, there is room and need for decisions to be made by courts and other authorities applying the law. This task is an obstacle to reductionist efforts to do away with legal intermediaries in favor of rules attaching deontic consequences directly to factual events, actions, circumstances. In legal argument from facts to deontic consequences, the argument is a sequence of steps, passing through a number of stations involving legal concepts. Insofar as the concepts are open, decisions have to be made step by step.

[^5]"Relationship similar to being married" is a concept that is groundopen, in the sense we have indicated. Similarly, a legal concept can be consequence-open. Taking a concept like "ownership", "citizenship" or "matrimony", for some deontic consequences it is established that they do follow, for others it is established that they do not follow. However, there are as well consequences for which it is not established whether they follow or not. Then the concept is consequence-open.
"Being the owner of" can serve as an example of a concept that is to some extent consequence-open. Thus it need not, for example, be entirely settled to what extent and by what means the owner of an estate may exclude others from entering on his/her ground.

The phenomenon of open concepts in a normative system is connected with the limits on what can be achieved by a legislator. If a legislator attempts to avoid openness, the probability increases that the norms enacted become oversimplified. As clearly understood already by Aristotle, it is not possible to create a complete legal code of "established law" without incurring into error by oversimplification:
".. all law is universal but about some things it is not possible to make a universal statement which shall be correct. In those cases, then, in which it is necessary to speak universally, but not possible to do so correctly, the law takes the usual case, though it is not ignorant of the possibility of error. And it is none the less correct; for the error is [not] in the law nor in the legislator but in the nature of the thing, since the matter of practical affairs is of this kind from the start. When the law speaks universally, then, and a case arises on it which is not covered by the universal statement, then it is right, where the legislator fails us and has erred by oversimplicity, to correct the omission - to say what the legislator himself would have said had he been present, and would have put into his law if he had known. Hence the equitable is just, and better than one kind of justice - not better than absolute justice but better than the error that arises from the absoluteness of the statement. And this is the nature of the equitable, a correction of law where it is defective owing to its universality. In fact this is the reason why all things are not determined by law, that about some things it is impossible to lay down a law, so that a decree is needed. For when the thing is indefinite the rule also is indefinite, like the leaden rule used in making the Lesbian moulding; the rule adapts itself to the shape of the stone and is not rigid, and so too the decree is adapted to the facts." [Aristotle, Nicomachean

Ethics, EN 1137b]
The issue of open legal concepts will be dealt with in Section 5.2 .2 below.

1.7.6 Intermediaries outside the realm of legal systems

The idea of intermediaries is applicable outside the realm of legal systems. An example is Dummett's theory of language. Dummett distinguishes between the conditions for applying a term and the consequences of its application. According to Dummett both are parts of the meaning. Dummett exemplifies by the use of the term "Boche" as a pejorative term Cf. [Kremer, 1988; Lindahl and Odelstad, 2006a; Lindahl and Odelstad, 2008a; Sartor, 2007; Sartor, 2009]. (Since the example is interesting from a philosophical point of view, we use it even though it has the disagreeable feature of being offensive to German nationals.)
"The condition for applying the term to someone is that he is of German nationality; the consequences of its application are that he is barbarous and more prone to cruelty than other Europeans. We should envisage the minimal joinings in both directions as sufficiently tight as to be involved in the very meaning of the word: neither could be severed without altering its meaning. Someone who rejects the word does so because he does not want to permit a transition from the grounds for applying the term to the consequences of doing so. The addition of the term 'Boche' to a language which did not previously contain it would produce a non-conservative extension, i.e., one in which certain statements which did not contain the term were inferable from other statements not containing it which were not previously inferable." [Dummett, 1973, p. 454]

Dummett's example illustrates how the use of a word is determined by two rules (1) and (2):
(1) Rule linking a concept a to an intermediary $m:$ If $a(x, y)$ then $m(x, y)$,
(2) Rule linking intermediary m to a concept b : If $m(x, y)$ then $b(x, y)$.

The rules (1) and (2) can be compared to the rules of introduction and rules of elimination, respectively, in Gentzen's theory of natural deduction in [Gentzen, 1934]. If this comparison is made, (1) is regarded as an introduction rule and (2) as an elimination rule for m. (See [Lindahl and Odelstad, 2008a, sect. 1.2.3].)

In natural science, the idea of "intermediate" has been applied to the term "force" within physical theory. As is observed by [Wedberg, 1982, pp. 11ff.]
during the eighteenth century several thinkers thought of the forces spoken of in mechanics as a kind of mathematical fictions, useful for describing the movements of bodies in a convenient way. What exists in physical reality, according to this view, are configurations of mass, speeds, and accelerations. Forces are fictions, but they enable us to describe the interrelations of the former entities in a compact way. As Wedberg mentions, Berkeley is among the thinkers who held this opinion.

The position, held by Berkeley and others, that "force" is merely a device for compact expression, closely resembles the idea of intermediaries. This resemblance becomes even more obvious if the position in view is described in Wedberg's own words:
"If a body k with mass m is in a particular (spatial and temporal) relation to certain other bodies, we say that a force of magnitude f affects k. If a force of magnitude f affects k, then k receives an acceleration a satisfying the equation:
(i) $f=a \cdot m$

Thus the force occurs as a middle term in the pair of hypothetical statements:
(ii) Given a certain configuration of mass, a certain force exists.
(iii) Given a certain force, a certain acceleration results.

If the middle term is eliminated, we arrive at the conclusion:
(iv) Given a certain configuration of mass, a certain acceleration results." [Wedberg, 1982, p. 11]

An objection to Berkeley's idea that forces are "fictions", however, is raised by Wedberg in pointing out that the term "force" can be defined in terms of such entities that Berkeley considers as real. Such a definition, in Wedberg's words, might be formulated as a definition of the entire statement (see [Wedberg, 1982, p. 12]):

The body k exerts a force f upon the body k^{\prime}.
A definition of this statement, then, can read as follows:
f is the product of the acceleration a, which k^{\prime} receives from k and the mass of k^{\prime}.

In connection with the possibility of defining "force" in terms of "real" entities, we recall the possibility of defining ownership, either in terms of
grounds or in terms of consequences (Wedberg's "first" and "second" alternatives).

Another interesting example from physics is found in the work of Henri Poincaré. Poincaré proposed that "gravitation" can be regarded as an intermediary (un intermédiaire). According to Poincaré, the proposition "the stars obey Newton's laws" can be broken up into two others, namely (1) "gravitation obeys Newton's laws" and (2) "gravitation is the only force acting on the stars". Among these, proposition (1) is a definition and not subject to the test of experiment, while (2) is subject to such a test. "Gravitation", according to Poincaré, is an intermediary. Poincaré maintains that in science, when there is a relation between two facts A and B, an intermediary C is often introduced by the formulation of one relationship between A and C , and another between C and B . The relation between A and C , then, is often elevated to a principle, not subject to revision, while the relation between C and B is a law, subject to such revision. See [Poincaré, 1907, pp. 124f.], in the chapter "Is science artificial?" On the analogous question of definition and norm in a normative system, cf. [Lindahl, 1997, p. 298].

Still another example concerns probability (see [Lindahl and Odelstad, 1999a]). Consider statements of the kind "the probability of the event A equals m " (where m is a real number). Using the notion of conditions, introduced below in Section 4.2, page 596, one may speak of conditions on events, for example the condition of having probability m. Such a condition can be regarded as an intermediary between two conceptual structures, one concerning frequencies and symmetries, and the other concerning how one ought to choose between different games. It is a plausible idea that the so-called objective, or frequency, interpretation of probability deals with the structure of grounds for probability conditions, whereas the so-called subjective interpretation deals with the structure of consequences. This suggestion seems to assign a proper role to each of the two interpretations.

For a treatment of intermediate concepts in connection with weighing of interests in urban planning, see [Odelstad, 2002; Odelstad, 2009].

1.7.7 Counts-as-theory

When a rule r of a legal system \mathcal{N} attaches an intermediary m, e.g., " x and y have made a contract to the effect that $z^{\prime \prime}$, to a conjunction a of facts, the rule r can be expressed in different ways, e.g. "if a then m ", or, sometimes, "a counts as m ". A logical analysis of sentences of the kind " x counts-as y in s ", where s is an institution (s can be a normative system), was proposed in [Jones and Sergot, 1996; Jones and Sergot, 1997]. ${ }^{11}$ The work of Jones and

[^6]Sergot on "Counts-as" has been continued by a number of other authors, in particular in the book-length study by Davide Grossi [Grossi, 2007]. For further details on Counts-as, the reader is referred to Chapter "Constitutive norms and counts as conditionals" of the present Handbook. A remark on the interrelationship between Counts-as and TJS, see below, Section 6.2.1.

1.7.8 "Intervenient" as a technical notion in TJS

An essential part of the theory of joining-systems is the theory of intervenients. Though this theory aims at providing tools for analyzing intermediaries as they appear in law, language, morals, and so on, "intervenient" is a technical notion defined (see Definition 5.2, below, Section 5.1) at the abstract algebraic level, used as a tool for analyzing different kinds of what, informally, is called intermediaries. The notion of intervenient is tied to the TJS approach, focusing on a normative system as a deductive mechanism and on intermediaries as vehicles of inference. Therefore, in the development of the theory of intervenients, the idea of economy of expression has a central role. This relates both to the effective representation of a normative system by intervenients and to changes in such a system accomplished by changing grounds and/or consequences of intervenients.

Special themes regarding intervenients dealt with in this Chapter are what we call "organic wholes" (Section 5.2.1), open concepts and "narrowing of intervenients" (Section 5.2.2), and the typology of intervenients (Section 5.2.4).

1.8 Advice to readers

Though a substantial part of the chapter is abstract and formal, there are as well several parts that are semi-formal. This holds for next Section 2 , which is a first introduction to TJS, as well as for the subsections on cis applications in Sections 4 and 5. More exactly, these subsections are: Section 4.3 on subtraction and addition of norms, Section 4.4.1 on ownership to an estate, Section 5.2 .1 on organic wholes of intervenients, Section 5.2.2 on open concepts and the "narrowing" of intervenients, and Section 5.2.3 on the legal example of grounds and consequences of ownership and trust.

2 First introduction to TJS

2.1 General TJS irrespective of intervenients

2.1.1 Strata and joining systems

The structure of grounds as well as the structure of consequences will be called a stratum. The word "stratum" is understood here in the sense of
the result of arrangement of the parts or elements of something. ${ }^{12}$ More precisely, in TJS, the general structure of a stratum is a set A of objects, ordered by an implicative relation R, which is binary, reflexive and transitive. It is not assumed that R is antisymmetric, nor that it is not. In other words, a stratum is conceived of as a quasi-ordering $\langle A, R\rangle$ of objects from a set A. (Another term for quasi-ordering is preordering.) The relation R is a relation ordering the objects within a stratum, and, therefore, is called an intrastratum relation.

In TJS, the relation J is an interstrata implicative relation from elements of a stratum of grounds to elements of a stratum of consequences. As will be made more explicit subsequently, the relation J (which, normally, is not a function) provides a "correspondence" between these two strata, depicting the set of grounds on the set of consequences and vice versa. In this respect, relation J differs from relation R which is an intrastratum ordering relation.

As mentioned (see Section 1.3), a joining-system $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J\right\rangle$ consists of two strata $\mathcal{A}_{1}, \mathcal{A}_{2}$ and a relation J. TJS leaves room for different kinds of structures over each of $\mathcal{A}_{1}, \mathcal{A}_{2}$. For $1 \leq i \leq 2$, a stratum can be a quasiordering $\left\langle A_{i}, R_{i}\right\rangle$, where A_{i} is (simply) a set, or it can be a "lattice-based quasi-ordering" $\left\langle L_{i}, \wedge, \vee, R_{i}\right\rangle$, where $\left\langle L_{i}, \wedge, \vee\right\rangle$ is a lattice, or it can be a "Boolean quasi-ordering", $\left\langle B_{i}, \wedge,{ }^{\prime}, R_{i}\right\rangle$, where $\left\langle B_{i}, \wedge,{ }^{\prime}\right\rangle$ is a Boolean algebra. A special case is where, for a lattice-based quasi-ordering $\left\langle L_{i}, \wedge, \vee, R_{i}\right\rangle$ or a Boolean quasi-ordering $\left\langle B_{i}, \wedge,{ }^{\prime}, R_{i}\right\rangle, R_{i}$ is the relation \leq of $\left\langle L_{i}, \wedge, \vee\right\rangle$ or of $\left\langle B_{i}, \wedge^{\prime}{ }^{\prime}\right\rangle$, respectively.

As will appear, the definition of "joining-system" is the same, independently of which is the type of the strata connected in the joining-system, only provided that each stratum fulfills the minimum requirement of being a quasi-ordering. Thus while there is flexibility as regards the types of strata, the definition of joining-system gives stability to the theory: As we will see, a joining-system exhibits a number of important properties, relevant for the representation of a normative system.

While both the intrastratum R and the interstrata J express implication, an essential difference between R and J is that between "one-sort" objects and "two-sorts" objects. In TJS, the intrastratum R is a relation between objects conceived of as being of the same sort; in contrast, the interstrata relation J is a relation between objects thought of as being of two sorts. As regards normative systems, the idea of two sorts applies in particular to the difference between empirical/descriptive and normative. (In another area, consider the difference between physical and mental.)

[^7]Norms are represented by ordered pairs $\left\langle a_{1}, a_{2}\right\rangle$ where a_{1}, a_{2} are of different sorts. The most general version of TJS is where the strata $\mathcal{A}_{1}, \mathcal{A}_{2}$ of a joining-system $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J\right\rangle$ are simply quasi-orderings. A substantial part of TJS will be developed within this general framework. As will appear, in this version, TJS yields a number of results for the formal representation of normative systems. In particular, by the relation \unlhd of narrowness (see above, end of Section 1.3), there is an implicative structure over the norms of the system, and the system can be expressed in an economic way by its set of "minimal joinings".

2.1.2 Minimal joinings

Suppose that a norm $\left\langle a_{1}, a_{2}\right\rangle$ is a joining from a stratum \mathcal{A}_{1} of grounds to a stratum \mathcal{A}_{2} of consequences. Then, if (in a sense to be defined) a_{1} is a "weakest ground" for a_{2}, and a_{2} is a "strongest consequence" of a_{1}, the pair $\left\langle a_{1}, a_{2}\right\rangle$ represents what in TJS is called a minimal joining. If a normative system fulfills a requirement called "connectivity", any norm in the system is always implied by a minimal joining.

In TJS, a normative system can be represented in a convenient way by its set of minimal joinings, and therefore, minimality is decisive for how economy of expression is accomplished and for how changes of a system can be effectively achieved. Furthermore, in a well-structured normative system, the set of minimal joinings has a number of perspicuous structural properties. Thus, firstly, the set of minimal joinings can be ordered in an interesting way as a lattice-like structure. Secondly, if $\left\langle a_{1}, a_{2}\right\rangle$ belongs to the set J of joinings, let us call the ground a_{1} the "bottom" of the joining $\left\langle a_{1}, a_{2}\right\rangle$ and the consequence a_{2} the "top" of this joining. Then, as we will see, there is a similarity between the set $\min J$ of minimal joinings and the set of bottoms of $\min J$ as well as to the set of tops of $\min J$.

2.2 Intervenients in TJS

Suppose that we have in view three joining-systems $\mathcal{S}_{1}=\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J_{1,2}\right\rangle$, $\mathcal{S}_{2}=\left\langle\mathcal{A}_{2}, \mathcal{A}_{3}, J_{2,3}\right\rangle, \mathcal{S}_{3}=\left\langle\mathcal{A}_{1}, \mathcal{A}_{3}, J_{1,3}\right\rangle$ such that these systems constitute a chain in the sense that by $J_{1,2}$ you can go from \mathcal{A}_{1} to \mathcal{A}_{2}, by $J_{2,3}$ you can go from \mathcal{A}_{2} to \mathcal{A}_{3}, and by $J_{1,3}$ (using relative product) you can go directly from \mathcal{A}_{1} to \mathcal{A}_{3}. In a sense, the stratum \mathcal{A}_{2} is intermediate between \mathcal{A}_{1} and \mathcal{A}_{3}. Certain elements in A_{2} can be intervenients between elements in A_{1} and elements in $A_{3} .{ }^{13}$ (See Figure 3 on page 565.) If $a_{1} \in A_{1}$, and $a_{2} \in A_{2}$ and $a_{3} \in A_{3}, a_{2}$ corresponds to the pair $\left\langle a_{1}, a_{3}\right\rangle$ if, in a sense to be defined, later, a_{1} is the weakest ground in \mathcal{A}_{1} for a_{2} and a_{3} is the strongest

[^8]consequence in \mathcal{A}_{3} of a_{2}. The investigation of intervenients following in this

Grounds

Figure 3
chapter has in view the structure and properties of the intervenients. To this subject-matter belongs a number of special issues. A few examples are as follows. If economy of expression is related to the notion of minimal joinings, what can be said about intervenients and minimality? Is there a typology of intervenients and minimality? Under what conditions can a normative system be represented by a base of intervenients? Furthermore, there is the issue of Boolean operations (conjunction, disjunction, negation) on intervenients. If a_{2}, b_{2} are intervenients from \mathcal{A}_{1} to \mathcal{A}_{3}, then what can be said about $a_{2} \wedge b_{2}, a_{2} \vee b_{2}$ and (the negations) a_{2}^{\prime}, b_{2}^{\prime} ? How do Boolean compounds of intervenients relate to corresponding compounds of grounds and of consequences? All of these questions are essential to the formal structure of intervenients and have a direct bearing on the formal representation of intermediaries in a normative system.

2.2.1 Subject-matter of sections 3-5

The following three main Sections 3-5 are organized as follows. (We recall what was said in Section 2.1.1 about joining as a relation between elements of two strata.) In Section 3, the basic theory of joining-systems is developed, while Section 4 is devoted to the theory of different kinds of strata. In Section 3, dealing with joining-systems in general, very little is presupposed about the structure of strata. In Section 4, on the other hand, the character of strata is the subject-matter of more differentiation. Here, what is in view is joining-systems where strata are Boolean-like structures or lattice-like
structures. Since the development in Section 4 is intended for the representation of normative systems, the focus there will mainly be on so-called Boolean joining-systems. Section 5 is devoted to the theory of intervenients in Boolean joining-systems.

It should be observed that the general results regarding lattice-like structures in Section 3 are essential for the analysis of joining-systems, including the analysis of Boolean joining-systems (later pursued in Section 4) and the analysis of intervenients (in Section 5).

3 Formal development of TJS

3.1 Basic concepts

Much of the study of ordering relations in mathematics seems to have partial orderings as its basic structure. Lattices and Boolean algebras, for example, are partially ordered sets. In the study of norms and conceptual systems, it is more convenient to take quasi-orderings as the formal framework. The reason for choosing quasi-orderings instead of partial orderings is that in a quasi-ordering $\langle A, R\rangle$ two objects a and b can be similar with respect to R (for example, by having the same extension) without being identical. This feature is useful when dealing with concepts.

In the next subsection (Section 3.1.1), the notion of quasi-ordering is defined. After that, in the subsequent subsubsections, we generalize some well-known mathematical notions, so as to apply to quasi-orderings.

3.1.1 Quasi-orderings

First a note on terminology. Suppose that R is ν-ary relation on a set A and that X is a subset of A. Then $R \cap X^{\nu}$ is denoted R / X and is called the restriction of R to X.

Definition 3.1 The binary relation R is a quasi-ordering on A if R is transitive and reflexive in A.
(As mentioned, another name for quasi-ordering is preordering.)
Writing Q for the equality part of R we say that $x Q y$ holds iff $x R y$ and $y R x$. Also, writing P for the strict part of R we put $x P y$ iff $x R y$ and not $y R x$.

A quasi-ordering is closely related to a partial ordering. If $\langle A, R\rangle$ is a quasi-ordering and Q is the equivalence part of R, then R generates a partial ordering on the set of Q-equivalence classes generated from A.

Definition 3.2 Suppose that R is a quasi-ordering on A and that $X \subseteq A$ and $x \in X$. Then,
(1) x is a minimal element in X with respect to R iff there is no $y \in X$
such that $y P x$,
(2) x is a maximal element in X with respect to R iff there is no $y \in X$ such that $x P y$.
(3) The set of minimal elements in X with respect to R is denoted $\min _{R} X$ and the set of maximal elements of X with respect to R is denoted $\max _{R} X$.
(4) x is a least element in X with respect to R iff for all $y \in X, x R y$,
(5) x is a greatest element in X with respect to R iff for all $y \in X, y R x$.

Note that in a quasi-ordering $\langle A, R\rangle$, a greatest and a least element in a set $X \subseteq A$ need not be unique. But if x and y are greatest elements (or least elements) in X with respect to R, then $x Q y$.

3.1.2 Quasi-lattices and complete quasi-lattices

As will appear in Section 3.2.2, the notions of least upper bound and greatest lower bound are important in the definition of a joining-system. These notions are usually defined for partial orderings and not for quasi-orderings. Since quasi-ordering is a basic structure in TJS, we generalize the notions of least upper bound and greatest lower bound to quasi-orderings. We use ub and lb as abbreviations for upper bound and lower bound respectively, and lub and glb for least upper bound and greatest lower bound respectively. We note that (in contrast to what holds for partial orderings) a least upper bound or a greatest lower bound relative to a quasi-ordering $\langle A, R\rangle$ need not be unique.

Definition 3.3 Let R be a quasi-ordering on a set A with $X \subseteq A$. Then $\operatorname{ub}_{R} X=\{a \in A \mid \forall x \in X: x R a\}$
$\operatorname{lb}_{R} X=\{a \in A \mid \forall x \in X: a R x\}$
$\operatorname{lub}_{R} X=\left\{a \in A \mid a \in \mathrm{ub}_{R} X \quad \& \forall b \in \mathrm{ub}_{R} X: a R b\right\}$
$\operatorname{glb}_{R} X=\left\{a \in A \mid a \in \operatorname{lb}_{R} X \quad \mathcal{G} \forall b \in \operatorname{lb}_{R} X: b R a\right\}$.
According to standard algebraic terminology, a partially ordered set $\langle L, \leq\rangle$ is a lattice if for all $a, b \in L, \sup _{\leq}\{a, b\}$ and $\inf _{\leq}\{a, b\}$ exist in L. (In connection with partial orderings, we prefer to use sup and inf instead of lub and glb respectively.) $\langle L, \leq\rangle$ is complete $\operatorname{if} \inf _{\leq} X$ and $\sup _{\leq} X$ exist for all $X \subseteq L$. We generalize these notions to quasi-orderings. ${ }^{14}$

Definition 3.4 If $\langle A, R\rangle$ is a quasi-ordering such that

$$
\operatorname{lub}_{R}\{a, b\} \neq \varnothing \text { and } \operatorname{glb}_{R}\{a, b\} \neq \varnothing \text { for all } a, b \in A
$$

[^9]then $\langle A, R\rangle$ will be called a quasi-lattice. If $\operatorname{lub}_{R} X \neq \varnothing$ and $\operatorname{glb}_{R} X \neq \varnothing$ for all $X \subseteq A$, then $\langle A, R\rangle$ is a complete quasi-lattice.

If $\langle A, \leq\rangle$ is a partial order then $a \in \sup _{\leq} \varnothing$ iff a is the smallest element in A with respect to \leq and $a \in \inf _{\leq \varnothing \text { iff }} a$ is the greatest element in A with respect to \leq. (See for example [Grätzer, 2011, p.5].) Analogously, if $\langle A, R\rangle$ is a quasi-order then
(i) $a \in \operatorname{lub}_{R} \varnothing$ iff a is a smallest element in A with respect to R
(ii) $a \in \operatorname{glb}_{R} \varnothing$ iff a is a greatest element in A with respect to R.

We note that if a quasi-lattice is finite, then it is complete.
Theorem 3.5 Suppose that $\langle A, R\rangle$ is a quasi-lattice, that Q is the indifferencepart of R, and that A_{Q} is the set of Q-equivalence classes generated by elements of A. Then $\left\langle A_{Q}, R^{*}\right\rangle$, where $[a]_{Q} R^{*}[b]_{Q}$ iff $a R b$, is a lattice. If $\langle A, R\rangle$ is a complete quasi-lattice then $\left\langle A_{Q}, R^{*}\right\rangle$ is a complete lattice.

In analogy with what holds of complete lattices, see [Grätzer, 2011, p. 50], the following holds of a complete quasi-lattice.

Theorem 3.6 Let $\langle A, R\rangle$ be a quasi-ordering in which $\operatorname{glb}_{R} X \neq \varnothing$ for all $X \subseteq A$. Then $\langle A, R\rangle$ is a complete quasi-lattice.

By duality, the theorem holds if instead $\operatorname{lub}_{R} X \neq \varnothing$ for all $X \subseteq A$.
In lattice theory the notion of a sublattice is introduced. Suppose $\langle L, \leq\rangle$ is a lattice and $\varnothing \neq M \subseteq L$. Let, furthermore, $\leq^{*}=\leq / M$. Then $\left\langle M, \leq^{*}\right\rangle$ is a sublattice of $\langle L, \leq\rangle$ if $a, b \in M$ implies that $\sup _{\leq^{*}}\{a, b\}=\sup _{\leq}\{a, b\}$ and $\inf _{\leq *}\{a, b\}=\inf _{\leq}\{a, b\}$. We now generalize the notion of a sublattice to quasi-lattices and define the notion of a subquasi-lattice.

Definition 3.7 Suppose that $\langle A, R\rangle$ is a quasi-lattice, $X \subseteq A$ and $S=$ R / X. Then $\langle X, S\rangle$ is a subquasi-lattice of $\langle A, R\rangle$ if $x, y \in X$ implies that $\operatorname{lub}_{R}\{x, y\} \supseteq \operatorname{lub}_{S}\{x, y\} \neq \varnothing$ and $\operatorname{glb}_{R}\{x, y\} \supseteq \operatorname{glb}_{S}\{x, y\} \neq \varnothing$.

Theorem 3.8 If $\langle A, R\rangle$ is a quasi-lattice and $\langle X, S\rangle$ a subquasi-lattice of $\langle A, R\rangle$, then $\left\langle X_{Q}, S^{*}\right\rangle$ is a sublattice of $\left\langle A_{Q}, R^{*}\right\rangle$.
(See the notation introduced in Theorem 3.5.)

3.2 Joining-systems

3.2.1 Narrowness

In TJS, the relation of "narrowness" is highly important. It is used in the definition of a joining-system, since it determines the relation of implication
between norms and the set of minimal joinings (cf. above Section 2.1.2). The minimal joinings are essential in a normative system, since they serve as the tool for a succinct representation of the system.

Definition 3.9 (1) The narrowness relation determined by the quasi-orderings $\left\langle A_{1}, R_{1}\right\rangle$ and $\left\langle A_{2}, R_{2}\right\rangle$ is the binary relation \unlhd on $A_{1} \times A_{2}$ such that $\left\langle a_{1}, a_{2}\right\rangle \unlhd\left\langle b_{1}, b_{2}\right\rangle$ iff $b_{1} R_{1} a_{1}$ and $a_{2} R_{2} b_{2}$.
(2) $\left\langle x_{1}, x_{2}\right\rangle$ is a minimal element in $X \subseteq A_{1} \times A_{2}$ with respect to $\left\langle A_{1}, R_{1}\right\rangle$ and $\left\langle A_{2}, R_{2}\right\rangle$ if $\left\langle x_{1}, x_{2}\right\rangle$ is a minimal element in X with respect to \unlhd. The set of minimal elements in X with respect to \unlhd is denoted $\min _{R_{1}}^{R_{2}} X$. (When there is no risk of ambiguity we write just $\min X$.)

Note that \unlhd is a quasi-ordering, i.e. transitive and reflexive. Let \simeq denote the equality part of \unlhd and \triangleleft the strict part of \unlhd. Then the following holds:

$$
\begin{aligned}
& \left\langle a_{1}, a_{2}\right\rangle \simeq\left\langle b_{1}, b_{2}\right\rangle \text { iff } b_{1} Q_{1} a_{1} \& a_{2} Q_{2} b_{2} \\
& \left\langle a_{1}, a_{2}\right\rangle \triangleleft\left\langle b_{1}, b_{2}\right\rangle \text { iff }\left(b_{1} P_{1} a_{1} \& a_{2} R_{2} b_{2}\right) \text { or }\left(b_{1} R_{1} a_{1} \& a_{2} P_{2} b_{2}\right)
\end{aligned}
$$

where Q_{i} is the equality-part of R_{i} and P_{i} is the strict part of R_{i}.
The notion of narrowness is illustrated in Figure 4. Note that $\left\langle x_{1}, x_{2}\right\rangle$ is

Figure 4
a minimal element in $X \subseteq A_{1} \times A_{2}$ with respect to $\left\langle A_{1}, R_{1}\right\rangle$ and $\left\langle A_{2}, R_{2}\right\rangle$ if there is no $\left\langle y_{1}, y_{2}\right\rangle \in X$ such that $\left\langle y_{1}, y_{2}\right\rangle \triangleleft\left\langle x_{1}, x_{2}\right\rangle$, i.e. if there is no element $\left\langle y_{1}, y_{2}\right\rangle \in X$ such that $x_{1} R_{1} y_{1} \& y_{2} P_{2} x_{2}$, or $x_{1} P_{1} y_{1} \& x_{2} R_{2} y_{2}$.

In TJS, up-sets with respect to the narrowness-relation will be of special interest. We give an explicit definition of up-set with respect to the narrowness-relation here. ${ }^{15}$

Definition 3.10 Suppose that $\mathcal{A}_{1}=\left\langle A_{1}, R_{1}\right\rangle$ and $\mathcal{A}_{2}=\left\langle A_{2}, R_{2}\right\rangle$ are quasiorderings and $K \subseteq A_{1} \times A_{2}$. Then we say that K is an up-set with respect to \unlhd if the following holds: For all $a_{1}, b_{1} \in A_{1}$ and $a_{2}, b_{2} \in A_{2}$, if $\left\langle a_{1}, a_{2}\right\rangle \in K$ and $\left\langle a_{1}, a_{2}\right\rangle \unlhd\left\langle b_{1}, b_{2}\right\rangle$, then $\left\langle b_{1}, b_{2}\right\rangle \in K$.

3.2.2 The definition of a joining-system

As mentioned in Section 2.1.1, while TJS is flexible as regards the character of strata \mathcal{A}_{1} and \mathcal{A}_{2}, in TJS the definition of "joining-system" is the same, independently of which is the type of the strata connected in the joiningsystem, only provided that each stratum fulfills the minimum requirement of being a quasi-ordering.

The definition of joining-system is as follows.

Definition 3.11 A joining-system $(J s)$, is an ordered triple $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J\right\rangle$ such that $\mathcal{A}_{1}=\left\langle A_{1}, R_{1}\right\rangle$ and $\mathcal{A}_{2}=\left\langle A_{2}, R_{2}\right\rangle$ are quasi-orderings, and $J \subseteq$ $A_{1} \times A_{2}$, and the following conditions are satisfied where \unlhd is the narrowness relation determined by \mathcal{A}_{1} and \mathcal{A}_{2} :
(1) for all $a_{1}, b_{1} \in A_{1}$ and $a_{2}, b_{2} \in A_{2}$, if $\left\langle a_{1}, a_{2}\right\rangle \in J$ and $\left\langle a_{1}, a_{2}\right\rangle \unlhd\left\langle b_{1}, b_{2}\right\rangle$, then $\left\langle b_{1}, b_{2}\right\rangle \in J$,
(2) for any $X_{1} \subseteq A_{1}$ and $a_{2} \in A_{2}$, if $\left\langle a_{1}, a_{2}\right\rangle \in J$ for all $a_{1} \in X_{1}$, then $\left\langle b_{1}, a_{2}\right\rangle \in J$ for all $b_{1} \in \operatorname{lub}_{R_{1}} X_{1}$,
(3) for any $X_{2} \subseteq A_{2}$ and $a_{1} \in A_{1}$, if $\left\langle a_{1}, a_{2}\right\rangle \in J$ for all $a_{2} \in X_{2}$, then $\left\langle a_{1}, b_{2}\right\rangle \in J$ for all $b_{2} \in \operatorname{glb}_{R_{2}} X_{2}$.
(In what follows, when we use the expression $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J\right\rangle$, we presuppose that $\mathcal{A}_{1}=\left\langle A_{1}, R_{1}\right\rangle$ and $\mathcal{A}_{2}=\left\langle A_{2}, R_{2}\right\rangle$.)

If $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J\right\rangle$ is a joining-system, then the elements in J are called joinings from \mathcal{A}_{1} to \mathcal{A}_{2}, and we call J the joining-space in $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J\right\rangle$. We call \mathcal{A}_{1} the bottom-structure and \mathcal{A}_{2} the top-structure in the $J s\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J\right\rangle$.

Requirement (1) in the definition of a joining-system means that the joining-space J is an up-set with respect to the narrowness-relation. Note that from requirement (1) it follows, for example, that if $\mathcal{A}_{1}, \mathcal{A}_{2}$ are lattices such that $a_{1}, b_{1} \in A_{1}, a_{2}, b_{2} \in A_{2}$ and $\left\langle a_{1}, a_{2}\right\rangle \in J$ then, $\left\langle a_{1} \wedge b_{1}, a_{2}\right\rangle \in J$ and $\left\langle a_{1}, a_{2} \vee b_{2}\right\rangle \in J$.

As an analogy, in propositional logic, for the implicative connective \rightarrow it holds that from the conjunction of $p_{1} \rightarrow q_{1}$ and $p_{2} \rightarrow q_{2}$ it follows that

[^10]if $q_{1} \rightarrow p_{2}$ then $p_{1} \rightarrow q_{2}$. Requirement (1) stipulates a similar result for a combination of the three implicative relations R_{1}, R_{2} and J in a joiningsystem.

For a joining-system $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J\right\rangle$ conceived of as representing a normative system, let us interpret a formula $\left\langle x_{1}, x_{2}\right\rangle \in J$ so as to mean that $\left\langle x_{1}, x_{2}\right\rangle$ is a norm in $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J\right\rangle$. Then the import of requirement (1) is that if it holds that $\left\langle a_{1}, a_{2}\right\rangle$ is a norm in $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J\right\rangle$ and $b_{1} R a_{1}$ and $a_{2} R b_{2}$ then $\left\langle b_{1}, b_{2}\right\rangle$ as well is a norm in $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J\right\rangle$. This requirement is a corner-stone in the TJS approach to normative systems as deductive mechanisms. In a sense, a normative system $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J\right\rangle$ is represented by the quasi-ordering $\langle J, \unlhd\rangle$. As we shall see, however, there are other representations that are more economical in expression.

The import of requirements (2) and (3) is easier to see if we suppose that $\left\langle A_{1}, R_{1}\right\rangle$ and $\left\langle A_{2}, R_{2}\right\rangle$ are lattices so that \wedge and \vee are defined for the elements in A_{1} and A_{2}, respectively. In this case, from requirements (2) and (3) it follows: If $\left\langle a_{1}, a_{2}\right\rangle \in J$ and $\left\langle b_{1}, a_{2}\right\rangle \in J$ then $\left\langle a_{1} \vee b_{1}, a_{2}\right\rangle \in J$ (requirement (2)). And if $\left\langle a_{1}, a_{2}\right\rangle \in J$ and $\left\langle a_{1}, b_{2}\right\rangle \in J$ then $\left\langle a_{1}, a_{2} \wedge b_{2}\right\rangle \in J$ (requirement (3)).

We note that a joining-system as here defined gives rise to a closure system (see Section 3.2 .5 below). Also, we note that in requirement (2) we do not presuppose that $\operatorname{lub}_{R_{1}} X_{1} \neq \varnothing$ and in requirement (3) we do not presuppose that $\mathrm{glb}_{R_{2}} X_{2} \neq \varnothing$. Furthermore note that $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, \varnothing\right\rangle$ and $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, A_{1} \times A_{2}\right\rangle$ are joining-systems, the empty joining-system and the trivial joining-system respectively. A joining-system that is not empty or trivial is called a proper joining-system.

In the definition of a joining-system, we do not presuppose that the domains in the quasi-orderings are disjunct sets. This is indeed the case in many intended applications, but in a large number of typical applications there is some overlap between the domains. The following remark will elucidate this situation.

Suppose that $\mathcal{B}_{1}=\left\langle B_{1}, \wedge_{1}, \prime_{1}\right\rangle$ and $\mathcal{B}_{2}=\left\langle B_{2}, \wedge_{2}, \prime_{2}\right\rangle$ are Boolean algebras and that \leq_{1} and \leq_{2} are the partial orderings determined by the Boolean algebras \mathcal{B}_{1} and \mathcal{B}_{2} respectively. Suppose further that $\left\langle\left\langle B_{1}, \leq_{1}\right\rangle,\left\langle B_{2}, \leq_{2}\right\rangle, J\right\rangle$ is a joining-system. From a formal point of view, it is possible that \mathcal{B}_{1} and \mathcal{B}_{2} are independent of each other, so that, for example the zero and unit elements in \mathcal{B}_{1} are different from the zero and unit elements in \mathcal{B}_{2}.

In many applications, however, \mathcal{B}_{1} and \mathcal{B}_{2} are subalgebras of a common Boolean algebra $\mathcal{B}=\left\langle B, \wedge,^{\prime}\right\rangle$, and if \perp is the zero element in \mathcal{B} and T is the unit element in \mathcal{B}, then this holds in \mathcal{B}_{1} and \mathcal{B}_{2} as well, and, hence, \perp and \top are elements in the intersection of B_{1} and B_{2}. In this case it is also natural to denote \wedge_{1} and Λ_{2} with \wedge and, furthermore, \prime_{1} and \prime_{2} with ${ }^{\prime}$. In
this chapter, when there is no risk of misunderstanding, we often use \wedge and I (without subscript) in various Boolean algebras even when the domains and operations are different.

3.2.3 Joinings as correspondences

For a joining-system $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J\right\rangle$ (where $\mathcal{A}_{1}=\left\langle A_{1}, R_{1}\right\rangle$ and $\mathcal{A}_{2}=\left\langle A_{2}, R_{2}\right\rangle$), the difference in kind between relations R_{1}, R_{2} on one hand, and J on the other, becomes more perspicuous when we introduce the distinction between ordering relations and correspondences. Obviously, both relations R_{1}, R_{2} and the relation J are sets of ordered pairs, i.e., relations in the sense of set theory. However, while the point of each of R_{1} and R_{2} is to order objects in a set, the point of J is to assign objects in one set A_{2} to objects in another set A_{1}, or vice versa. ${ }^{16}$ This idea of J as a correspondence between sets will prove to be useful in what follows. In particular, under some general conditions, by transition through equivalence classes, an "ordering preserving" correspondence will result in an isomorphism.

The triple $\langle X, Y, \gamma\rangle$ is a correspondence with X as domain and Y as codomain if X and Y are sets, γ is a binary relation, and $\gamma \subseteq X \times Y .{ }^{17}$ Suppose that $\langle X, Y, \gamma\rangle$ is a correspondence. If $Z \subseteq X$ we define:

$$
\gamma[Z]=\{y \in Y \mid \exists x \in Z: x \gamma y\}
$$

If $W \subseteq Y$ then

$$
\gamma^{-1}[W]=\left\{x \in X \mid \exists y \in W: y \gamma^{-1} x\right\}=\{x \in X \mid \exists y \in W: x \gamma y\}
$$

The correspondence $\langle X, Y, \gamma\rangle$ is on X if $\gamma^{-1}[Y]=X$, onto Y if $\gamma[X]=Y$. If there is no risk of ambiguity, we denote $\gamma[\{a\}]$ with $\gamma[a]$ and $\gamma^{-1}[\{b\}]$ with $\gamma^{-1}[b]$.

If $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J\right\rangle$ is a $J s$ then $\left\langle A_{1}, A_{2}, J\right\rangle$ is a correspondence with A_{1} as domain and A_{2} as codomain, and we can also say that J is a correspondence from A_{1} to A_{2}.

Definition 3.12 Suppose that $\left\langle A_{1}, A_{2}, \gamma\right\rangle$ is a correspondence from A_{1} to A_{2}. If $\mathcal{A}_{1}=\left\langle A_{1}, R_{1}\right\rangle$ and $\mathcal{A}_{2}=\left\langle A_{2}, R_{2}\right\rangle$ are quasi-orderings, we say that $\Gamma=\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, \gamma\right\rangle$ is a quasi-ordering correspondence, abbreviated qo-corr.

[^11]If $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J\right\rangle$ is a $J s$, then $\left\langle A_{1}, A_{2}, J\right\rangle$ is a qo-corr and $J\left[A_{1}\right] \subseteq A_{2}$, where $J\left[A_{1}\right]$ contains the second components (belonging to A_{2}) of the ordered pairs that are joinings from \mathcal{A}_{1} to \mathcal{A}_{2}. Conversely, $J^{-1}\left[A_{2}\right] \subseteq A_{1}$, where $J^{-1}\left[A_{2}\right]$ contains the first components (belonging to A_{1}) of the joinings from \mathcal{A}_{1} to $\mathcal{A}_{2 .}$. Then $J^{-1}\left[A_{2}\right]$ is the set of grounds and $J\left[A_{1}\right]$ the set of consequences of the joinings in $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J\right\rangle$.

The relative product of two correspondences γ and δ is denoted $\gamma \mid \delta$. If $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J\right\rangle$ is a joining-system, then $R_{1}|J| R_{2}=J$ and, therefore, J can be said to "absorb" R_{1} and R_{2}. Note that $x_{1}\left(R_{1}|J| R_{2}\right) x_{2}$ iff $\exists y_{1}, y_{2}$: $x_{1} R_{1} y_{1} \& y_{1} J y_{2} \& y_{2} R_{2} x_{2}$.

3.2.4 Order-preservation and order-similarity

The notion of qo-corr is a basis for the notions of "order-preservation" and "order-similarity". Suppose $\mathcal{A}_{1}=\left\langle A_{1}, R_{1}\right\rangle$ and $\mathcal{A}_{2}=\left\langle A_{2}, R_{2}\right\rangle$ are two strata, and that J is a qo-corr from \mathcal{A}_{1} to \mathcal{A}_{2}. If $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J\right\rangle$ is orderpreserving, Q_{1}-similar grounds in A_{1} have the same consequences in A_{2}, Q_{2}-similar consequences in A_{2} have the same grounds in A_{1}, and if $\left\langle a_{1}, a_{2}\right\rangle$, $\left\langle b_{1}, b_{2}\right\rangle$ are joinings from \mathcal{A}_{1} to \mathcal{A}_{2}, then the R_{1}-structure on $\left\{a_{1}, b_{1}\right\}$ is similar to the R_{2}-structure on $\left\{a_{2}, b_{2}\right\}$ insofar as $a_{1} R_{1} b_{1}$ iff $a_{2} R_{2} b_{2}$. The general definition is as follows.

Definition 3.13 Suppose that $\Gamma=\left\langle\left\langle A_{1}, R_{1}\right\rangle,\left\langle A_{2}, R_{2}\right\rangle, \gamma\right\rangle$ is a qo-corr. We say that Γ is order-preserving if the following holds for $a_{1}, b_{1} \in A_{1}$ and $a_{2}, b_{2} \in A_{2}$:
(1) If $a_{1} Q_{1} b_{1}$ then $\left(a_{1} \gamma a_{2}\right.$ iff $\left.b_{1} \gamma a_{2}\right)$.
(2) If $a_{2} Q_{2} b_{2}$ then $\left(a_{1} \gamma a_{2}\right.$ iff $\left.a_{1} \gamma b_{2}\right)$.
(3) If $a_{1} \gamma a_{2}$ and $b_{1} \gamma b_{2}$ then $a_{1} R_{1} b_{1}$ iff $a_{2} R_{2} b_{2}$.

Definition 3.14 Two quasi-orderings $\left\langle A_{1}, R_{1}\right\rangle$ and $\left\langle A_{2}, R_{2}\right\rangle$ are said to be order-similar if there is $\gamma \subseteq A_{1} \times A_{2}$ such that $\left\langle\left\langle A_{1}, R_{1}\right\rangle,\left\langle A_{2}, R_{2}\right\rangle, \gamma\right\rangle$ is an order-preserving qo-corr on A_{1} onto A_{2}.

The notion of "order-preserving qo-corr" is elucidated by the fact that by transition from quasi-orderings to equivalence classes you get an isomorphism between the resulting structures; also, if there is an isomorphism between the equivalence classes, there is order-preservation between the quasi-orderings.

Theorem 3.15 Suppose that $\left\langle\left\langle A_{1}, R_{1}\right\rangle,\left\langle A_{2}, R_{2}\right\rangle, \gamma\right\rangle$ is a qo-corr on A_{1} onto A_{2}. Let $[a]_{i}[b]_{i}$ be the equivalence-classes with respect to Q_{i} generated by a and b, respectively $(i=1,2)$. Let further $A_{1}^{*}=\left\{[a]_{1} \mid a \in \gamma^{-1}\left[A_{2}\right]\right\}$
and $A_{2}^{*}=\left\{[a]_{2} \mid a \in \gamma\left[A_{1}\right]\right\}$ and let R_{i}^{*} be defined as follows: $[a]_{i} R_{i}^{*}[b]_{i}$ iff $a R_{i} b$.
(1) Suppose that $\left\langle\left\langle A_{1}, R_{1}\right\rangle,\left\langle A_{2}, R_{2}\right\rangle, \gamma\right\rangle$ is an order-preserving qo-corr and let γ^{*} be defined by $\left[a_{1}\right]_{1} \gamma^{*}\left[a_{2}\right]_{2}$ iff $a_{1} \gamma a_{2}$. Then γ^{*} is an isomorphism on $\left\langle A_{1}^{*}, R_{1}^{*}\right\rangle$ onto $\left\langle A_{2}^{*}, R_{2}^{*}\right\rangle$. If $\left\langle A_{1}, R_{1}\right\rangle$ and $\left\langle A_{2}, R_{2}\right\rangle$ are quasi-lattices (see Definition 3.4), then γ^{*} is an isomorphism on the lattice $\left\langle A_{1}^{*}, R_{1}^{*}\right\rangle$ onto the lattice $\left\langle A_{2}^{*}, R_{2}^{*}\right\rangle$.
(2) If φ is an isomorphism on $\left\langle A_{1}^{*}, R_{1}^{*}\right\rangle$ onto $\left\langle A_{2}^{*}, R_{2}^{*}\right\rangle$, then

$$
\left\langle\left\langle A_{1}, R_{1}\right\rangle,\left\langle A_{2}, R_{2}\right\rangle, \gamma\right\rangle
$$

is an order-preserving qo-corr on A_{1} onto A_{2}, where γ is defined by $a_{1} \gamma a_{2}$ iff $\varphi\left(\left[a_{1}\right]_{1}\right)=\left[a_{2}\right]_{2}$.

3.2.5 Joining-closure and the generating of joining-spaces

An important aspect of TJS is that it gives a method (the forming of a "joining-closure") for representing an "elaborated" version of a set of "crude" conditional norms. Suppose that \mathcal{A}_{1} is a quasi-ordering of grounds and \mathcal{A}_{2} is a quasi-ordering of consequences. Let us suppose that K is a set of conditional norms with the antecedents taken from A_{1} and the consequences taken from A_{2}. Hence, $K \subseteq A_{1} \times A_{2}$ and K is a correspondence from A_{1} to A_{2}. The set K can be thought of as a crude representation of a normative system \mathcal{N}. Then we can generate a set K^{*} by forming the "joining closure" of K such that $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, K^{*}\right\rangle$ is a joining-system, which will be explained below.

The next theorem shows that if \mathcal{A}_{1} and \mathcal{A}_{2} are quasi-orderings and

$$
\mathcal{J}=\left\{J \subseteq A_{1} \times A_{2} \mid\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J\right\rangle \text { is a } J s\right\}
$$

then \mathcal{J} is a closure system. ${ }^{18}$ Note that \mathcal{J} is the family of all joining-spaces from \mathcal{A}_{1} to \mathcal{A}_{2}.

Theorem 3.16 If $\mathcal{J}=\left\{J \subseteq A_{1} \times A_{2} \mid\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J\right\rangle\right.$ is a $\left.J s\right\}$ and $\mathcal{K} \subseteq \mathcal{J}$, then $\cap \mathcal{K} \in \mathcal{J}$.

Proof. If $\cap \mathcal{K}=\varnothing$, then $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, \cap \mathcal{K}\right\rangle$ is the empty joining-system and hence $\cap \mathcal{K} \in \mathcal{J}$. Now suppose that $\cap \mathcal{K} \neq \varnothing$.
(I) Firstly, we prove that condition (1) in the definition of a joining-system is satisfied. Suppose therefore that $b_{i}, c_{i} \in A_{i}$ for $i=1,2$ and $\left\langle b_{1}, b_{2}\right\rangle \in \cap \mathcal{K}$ and $\left\langle b_{1}, b_{2}\right\rangle \unlhd\left\langle c_{1}, c_{2}\right\rangle$. Let $K \in \mathcal{K}$. Then $\cap \mathcal{K} \subseteq K$ and thus $\left\langle b_{1}, b_{2}\right\rangle \in K$.

[^12]Since $K \in \mathcal{J}$ and $\left\langle b_{1}, b_{2}\right\rangle \unlhd\left\langle c_{1}, c_{2}\right\rangle$ it follows that $\left\langle c_{1}, c_{2}\right\rangle \in K$. Hence, for all $K \in \mathcal{K},\left\langle c_{1}, c_{2}\right\rangle \in K$ which implies $\left\langle c_{1}, c_{2}\right\rangle \in \cap \mathcal{K}$.
(II) Secondly, we prove that condition (2) in the definition of a joiningsystem is satisfied. Suppose that $C_{1} \subseteq A_{1}, b_{2} \in A_{2}$, and $\left\langle c_{1}, b_{2}\right\rangle \in \cap \mathcal{K}$ for all $c_{1} \in C_{1}$. Then $\left\langle c_{1}, b_{2}\right\rangle \in K$ for all $c_{1} \in C_{1}$ and $K \in \mathcal{K}$. Since $K \in \mathcal{J}$ it follows that $\left\langle a_{1}, b_{2}\right\rangle \in K$ for all $a_{1} \in \operatorname{lub}_{R_{1}} C_{1}$. Hence, for all $K \in \mathcal{K},\left\langle a_{1}, b_{2}\right\rangle \in K$ for all $a_{1} \in \operatorname{lub}_{R_{1}} C_{1}$, which implies $\left\langle a_{1}, b_{2}\right\rangle \in \cap \mathcal{K}$ for all $a_{1} \in \operatorname{lub}_{R_{1}} C_{1}$.
(III) Thirdly, we prove that condition (3) in the definition of a joiningsystem is satisfied. Suppose that $C_{2} \subseteq A_{2}, b_{1} \in A_{1}$, and $\left\langle b_{1}, c_{2}\right\rangle \in \cap \mathcal{K}$ for all $c_{2} \in C_{2}$. Then $\left\langle b_{1}, c_{2}\right\rangle \in K$ for all $c_{2} \in C_{2}$ and $K \in \mathcal{K}$. Since $K \in \mathcal{J}$ it follows that $\left\langle b_{1}, a_{2}\right\rangle \in K$ for all $a_{2} \in \operatorname{glb}_{R_{2}} C_{2}$. Hence, for all $K \in \mathcal{K},\left\langle b_{1}, a_{2}\right\rangle \in K$ for all $a_{2} \in \operatorname{glb}_{R_{2}} C_{2}$, which implies $\left\langle b_{1}, a_{2}\right\rangle \in \cap \mathcal{K}$ for all $a_{2} \in \mathrm{glb}_{R_{2}} C_{2}$.

From the theorem follows that if $K \subseteq A_{1} \times A_{2}$ and

$$
[K]_{\mathcal{J}}=\cap\{J \mid J \in \mathcal{J}, J \supseteq K\}
$$

then $[K]_{\mathcal{J}}$ is the joining-space, here called the joining-closure, over \mathcal{A}_{1} and \mathcal{A}_{2} generated by K. (Note that since $A_{1} \times A_{2}$ is a joining space, $\{J \mid J \in \mathcal{J}, J \supseteq K\} \neq \varnothing$.)

If J is the joining-closure from \mathcal{A}_{1} to \mathcal{A}_{2} generated by K but J is not generated by any proper subset of K, then we say that J is the joiningclosure non-redundantly generated by K.

3.3 Weakest grounds, strongest consequences and minimal joinings

3.3.1 Weakest grounds and strongest consequences

Definition 3.17 Suppose that $\mathcal{S}=\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J\right\rangle$ is a joining-system, and that $C_{1} \subseteq A_{1}$ and $C_{2} \subseteq A_{2}$. Then,

1. $a_{1} \in C_{1} \subseteq A_{1}$ is one of the weakest grounds of $a_{2} \in A_{2}$ in C_{1} with respect to \mathcal{S}, which is denoted $\mathrm{WG}_{\mathcal{S}}\left(a_{1}, a_{2}, C_{1}\right)$, if

$$
\begin{aligned}
& \left\langle a_{1}, a_{2}\right\rangle \in J \text { and, for any } b_{1} \in C_{1}, \\
& \text { it holds that }\left\langle b_{1}, a_{2}\right\rangle \in J \text { implies } b_{1} R_{1} a_{1} .
\end{aligned}
$$

2. $a_{2} \in C_{2} \subseteq A_{2}$ is one of the strongest consequences of $a_{1} \in A_{1}$ in C_{2} with respect to \mathcal{S}, which is denoted $\mathrm{SC}_{\mathcal{S}}\left(a_{2}, a_{1}, C_{2}\right)$, if

$$
\begin{aligned}
& \left\langle a_{1}, a_{2}\right\rangle \in J, \text { and, for any } b_{2} \in C_{2}, \\
& \text { it holds that }\left\langle a_{1}, b_{2}\right\rangle \in J \text { implies } a_{2} R_{2} b_{2} .
\end{aligned}
$$

In Section 3.3.2, the interrelationship between minimal joinings and weakest grounds, strongest consequences will be further developed. Below, however, are some basic results. (Cf. [Lindahl and Odelstad, 2011, sect. 3.2].)

Theorem 3.18 Let $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J\right\rangle$ be a joining-system.
(1) Suppose that WG $\left(a_{1}, a_{2}, A_{1}\right)$ and $\mathrm{WG}\left(b_{1}, b_{2}, A_{1}\right)$. If $a_{2} R_{2} b_{2}$, then $a_{1} R_{1} b_{1}$.
(2) Suppose that $\mathrm{SC}\left(a_{2}, a_{1}, A_{2}\right)$ and $\mathrm{SC}\left(b_{2}, b_{1}, A_{2}\right)$ If $a_{1} R_{1} b_{1}$, then $a_{2} R_{2} b_{2}$.
(3) Suppose that WG $\left(a_{1}, a_{2}, A_{1}\right)$ and $\mathrm{WG}\left(b_{1}, b_{2}, A_{1}\right)$. For all $c_{1} \in A_{1}$ and $c_{2} \in A_{2}$, if $c_{1} \in \operatorname{glb}_{R_{1}}\left\{a_{1}, b_{1}\right\}$ and $c_{2} \in \operatorname{glb}_{R_{2}}\left\{a_{2}, b_{2}\right\}$, then WG $\left(c_{1}, c_{2}, A_{1}\right)$.
(4) Suppose that $\mathrm{SC}\left(a_{2}, a_{1}, A_{2}\right)$ and $\mathrm{SC}\left(b_{2}, b_{1}, A_{2}\right)$. For all $c_{1} \in A_{1}$ and $c_{2} \in A_{2}$, if $c_{1} \in \operatorname{lub}_{R_{1}}\left\{a_{1}, b_{1}\right\}$ and $c_{2} \in \operatorname{lub}_{R_{2}}\left\{a_{2}, b_{2}\right\}$, then $\operatorname{SC}\left(c_{2}, c_{1}, A_{2}\right)$.

Proof. We prove (3). Note that $a_{1} J a_{2}$ and $b_{1} J b_{2}$. Suppose that $c_{1} \in$ $\operatorname{glb}_{R_{1}}\left\{a_{1}, b_{1}\right\}$ and $c_{2} \in \operatorname{glb}_{R_{2}}\left\{a_{2}, b_{2}\right\}$. Hence, $c_{1} J a_{2}$ and $c_{1} J b_{2}$ and according to condition (3) in the definition of a joining-system, $c_{1} J c_{2}$. Suppose that $d_{1} J c_{2}$. Then $d_{1} J a_{2}$ and $d_{1} J b_{2}$, and since WG $\left(a_{1}, a_{2}, A_{1}\right)$ and WG $\left(b_{1}, b_{2}, A_{1}\right)$ it follows that $d_{1} R_{1} a_{1}$ and $d_{1} R_{1} b_{1}$ which implies that $d_{1} R_{1} c_{1}$. Thus WG $\left(c_{1}, c_{2}, A_{1}\right)$.

Item (1) in Theorem 3.18 is illustrated by Figure 5, and item (2) by Figure 6.

Figure 6

Theorem 3.19 Let $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J\right\rangle$ be a joining-system.
(1) Suppose that \mathcal{A}_{1} is a complete quasi-lattice (see Definition 3.4). Then WG $\left(a_{1}, a_{2}, A_{1}\right)$ iff $a_{1} \in \operatorname{lub}_{R_{1}} J^{-1}\left[a_{2}\right]$.
(2) Suppose that \mathcal{A}_{2} is a complete quasi-lattice. Then $\operatorname{SC}\left(a_{2}, a_{1}, A_{2}\right)$ iff $a_{2} \in \operatorname{glb}_{R_{2}} J\left[a_{1}\right]$.

Proof. We prove (1) above. (i) Suppose that WG $\left(a_{1}, a_{2}, A_{1}\right)$. Hence, $a_{1} \in J^{-1}\left[a_{2}\right]$. Since \mathcal{A}_{1} is a complete quasi-lattice it follows that there is $b_{1} \in \operatorname{lub}_{R_{1}} J^{-1}\left[a_{2}\right]$ and $a_{1} R_{1} b_{1}$. From condition (2) of a joining-system it follows that $\left\langle b_{1}, a_{2}\right\rangle \in J$. Since $\mathrm{WG}\left(a_{1}, a_{2}, A_{1}\right)$, it follows that $b_{1} R_{1} a_{1}$. Together with $a_{1} R_{1} b_{1}$, this implies $a_{1} Q_{1} b_{1}$. Thus $a_{1} \in \operatorname{lub}_{R_{1}} J^{-1}\left[a_{2}\right]$. (ii) Suppose that $a_{1} \in \operatorname{lub}_{R_{1}} J^{-1}\left[a_{2}\right]$. If $\left\langle b_{1}, a_{2}\right\rangle \in J$ then $b_{1} \in J^{-1}\left[a_{2}\right]$ and hence $b_{1} R_{1} a_{1}$. From this follows that WG $\left(a_{1}, a_{2}, A_{1}\right)$. (Note that this part of the proof does not require that \mathcal{A}_{2} is a complete quasi-lattice.) The proof of (2) is analogous.

3.3.2 Minimal joinings

Minimal joinings in a $J s$ will be a central theme in the subsequent presentation. The formal definition is as follows (we recall the definition of "minimal element" with respect to narrowness in Definition 3.9).

Definition 3.20 Suppose that $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, K\right\rangle$ is a qo-corr. A minimal element in $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, K\right\rangle$ is a minimal element $\left\langle a_{1}, a_{2}\right\rangle$ in K with respect to \mathcal{A}_{1} and \mathcal{A}_{2}. The set of minimal elements in $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, K\right\rangle$ is denoted $\min \left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, K\right\rangle$ or just min K.

If $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J\right\rangle$ is a joining-system, then the elements in min J are often called minimal joinings. The connection between the notion of minimal joining on one hand and the notions of weakest ground and strongest consequence on the other side is made clear in the following theorem.

Theorem 3.21 Suppose that $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J\right\rangle$ is a joining-system. Then $\left\langle a_{1}, a_{2}\right\rangle \in$ $\min J$ iff $\mathrm{WG}\left(a_{1}, a_{2}, A_{1}\right)$ and $\mathrm{SC}\left(a_{2}, a_{1}, A_{2}\right)$. See Figure 7.

A proof of the theorem under the assumption that $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J\right\rangle$ is a Boolean joining-system is given in [Lindahl and Odelstad, 2011, theorem 36, p. 126], but it is easy to see that the theorem holds even if $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J\right\rangle$ is a mere joining-system.

3.4 Connectivity

As stated in the introductory Section 2.1.2, if a normative system fulfils a requirement called "connectivity", any norm in the system will always be implied by a minimal joining. Therefore, the idea of connectivity will be essential in the theory of minimal joinings to be developed in the next subsections. The definition of connectivity is given next.

Definition 3.22 A qo-corr $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, K\right\rangle$ such that K is an up-set with respect to \unlhd satisfies connectivity if whenever $\left\langle c_{1}, c_{2}\right\rangle \in K$ there is $\left\langle b_{1}, b_{2}\right\rangle \in$ K such that $\left\langle b_{1}, b_{2}\right\rangle$ is a minimal element in K with respect to \unlhd and $\left\langle b_{1}, b_{2}\right\rangle \unlhd\left\langle c_{1}, c_{2}\right\rangle$.

Thick character is conclusion

Figure 7

Definition 3.23 Suppose that $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, K\right\rangle$ is a qo-corr. Then the set

$$
\left\{\left\langle a_{1}, a_{2}\right\rangle \in A_{1} \times A_{2} \mid \exists\left\langle b_{1}, b_{2}\right\rangle \in K:\left\langle b_{1}, b_{2}\right\rangle \unlhd\left\langle a_{1}, a_{2}\right\rangle\right\}
$$

is called the enclosure of K and is denoted $\uparrow K$.
Note that $\uparrow K$ is an up-set (with respect to \unlhd) and the smallest up-set containing K. (For the notion of up-set see Definition 3.10 in Section 3.2.1.) To use an expression from lattice theory, $\uparrow K$ is read 'up K ' (with respect to $\unlhd)$. (See [Davey and Priestley, 2002, p. 20].) Note also that K is an up-set if and only if $K=\uparrow K$.

Theorem 3.24 Suppose that $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, K\right\rangle$ is a qo-corr such that K is an up-set with respect to \unlhd. Then $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, K\right\rangle$ satisfies connectivity iff $K=$ $\uparrow \min K$.

Proof. (I) Suppose $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, K\right\rangle$ satisfies connectivity. (i) Suppose $\left\langle a_{1}, a_{2}\right\rangle \in$ K. Then there is $\left\langle b_{1}, b_{2}\right\rangle \in \min K$ such that $\left\langle b_{1}, b_{2}\right\rangle \unlhd\left\langle a_{1}, a_{2}\right\rangle$ and hence $\left\langle a_{1}, a_{2}\right\rangle \in \uparrow \min K$. This shows that $K \subseteq \uparrow \min K$. (ii) Suppose $\left\langle a_{1}, a_{2}\right\rangle \in \uparrow$ $\min K$. Then there is $\left\langle b_{1}, b_{2}\right\rangle \in \min K$ such that $\left\langle b_{1}, b_{2}\right\rangle \unlhd\left\langle a_{1}, a_{2}\right\rangle$. Since $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, K\right\rangle$ is a qo-corr such that K is an up-set with respect to $\unlhd,\left\langle a_{1}, a_{2}\right\rangle \in$ K. Hence, $\uparrow \min K \subseteq K$.
(II) Suppose that $K=\uparrow \min K$ and that $\left\langle a_{1}, a_{2}\right\rangle \in K$. Then $\left\langle a_{1}, a_{2}\right\rangle \in \uparrow$ $\min K$ and there is $\left\langle b_{1}, b_{2}\right\rangle \in \min K$ such that $\left\langle b_{1}, b_{2}\right\rangle \unlhd\left\langle a_{1}, a_{2}\right\rangle$. This shows that $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, K\right\rangle$ satisfies connectivity.

If a joining-system satisfies connectivity, then the set of minimal joinings determines the system in an interesting way, which will be explained below.

Corollary 3.25 If the joining-system $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J\right\rangle$ satisfies connectivity, then $J=\uparrow \min J$, that is,

$$
J=\left\{\left\langle a_{1}, a_{2}\right\rangle \in A_{1} \times A_{2} \mid \exists\left\langle b_{1}, b_{2}\right\rangle \in \min J:\left\langle b_{1}, b_{2}\right\rangle \unlhd\left\langle a_{1}, a_{2}\right\rangle\right\} .
$$

The corollary shows that there is an interesting way of representing a normative system in terms of \unlhd-minimal elements. This way of representing is different from the method of "joining-closure" presented above in Section 3.2 .5 and we will here develop it a little further.

Note that we have not so far said anything about how to get a joiningsystem using the enclosure of a qo-corr (Definition 3.23). We will return to this problem in Section 3.6.

Theorem 3.26 If $\mathcal{A}_{1}=\left\langle A_{1}, R_{1}\right\rangle$ and $\mathcal{A}_{2}=\left\langle A_{2}, R_{2}\right\rangle$ are complete quasilattices (see Definition 3.4, Section 3.1.2), and $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J\right\rangle$ is a joiningsystem, then $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J\right\rangle$ satisfies connectivity.

Proof. Suppose $\left\langle c_{1}, c_{2}\right\rangle \in J$. Let $X_{1}=\left\{x_{1} \in A_{1} \mid\left\langle x_{1}, c_{2}\right\rangle \in J\right\}$. Since \mathcal{A}_{1} is a complete quasi-lattice it holds that lub $X_{1} \neq \varnothing$. Let $b_{1} \in \operatorname{lub} X_{1}$. From (2) in the definition of a joining-system follows that $\left\langle b_{1}, c_{2}\right\rangle \in J$ and hence $b_{1} \in X_{1}$. Let $X_{2}=\left\{x_{2} \in A_{2} \mid\left\langle b_{1}, x_{2}\right\rangle \in J\right\}$. Since $\left\langle b_{1}, c_{2}\right\rangle \in J, X_{2} \neq \varnothing$. \mathcal{A}_{2} is a complete quasi-lattice and therefore it holds that glb $X_{2} \neq \varnothing$. Let $b_{2} \in$ glb X_{2}. From (3) in the definition of a joining-system follows that $\left\langle b_{1}, b_{2}\right\rangle \in J$ and hence $b_{2} \in X_{2}$. Since $c_{1} \in X_{1}$ and $b_{1} \in \operatorname{lub} X_{1}$ then $c_{1} R_{1} b_{1}$. And since $c_{2} \in X_{2}$ and $b_{2} \in \operatorname{glb} X_{2}$ then $b_{2} R_{2} c_{2}$. Hence, $\left\langle b_{1}, b_{2}\right\rangle \unlhd\left\langle c_{1}, c_{2}\right\rangle$.

Suppose now that $\left\langle a_{1}, a_{2}\right\rangle \in J$ and $\left\langle a_{1}, a_{2}\right\rangle \unlhd\left\langle b_{1}, b_{2}\right\rangle$. Thus $c_{1} R_{1} b_{1} R_{1} a_{1}$ and $a_{2} R_{2} b_{2} R_{2} c_{2}$, which implies that $\left\langle a_{1}, a_{2}\right\rangle \unlhd\left\langle a_{1}, c_{2}\right\rangle$ and $\left\langle a_{1}, a_{2}\right\rangle \unlhd$ $\left\langle b_{1}, a_{2}\right\rangle$. According to condition (1) in the definition of a joining-system, it follows that $\left\langle a_{1}, c_{2}\right\rangle,\left\langle b_{1}, a_{2}\right\rangle \in J$ and thus $a_{1} \in X_{1}$ and $a_{2} \in X_{2}$. Since $b_{1} \in \mathrm{ub}_{R_{1}} X_{1}$ it follows that $a_{1} R_{1} b_{1}$, and since $b_{2} \in \mathrm{lb}_{R_{2}} X_{2}$ it follows that $b_{2} R_{2} a_{2}$. Hence, $a_{1} Q_{1} b_{1}$ and $a_{2} Q_{2} b_{2}$, and we conclude that $\left\langle b_{1}, b_{2}\right\rangle$ is a minimal element in $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J\right\rangle$.

The next theorem states that if connectivity holds, then a weakest ground of an element is the bottom of a minimal joining and a strongest consequence of an element is the top of a minimal joining.

Theorem 3.27 Suppose that $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J\right\rangle$ is a joining-system which satisfies connectivity (see Definition 3.22). Then:

1. If $\mathrm{WG}\left(a_{1}, a_{2}, A_{1}\right)$ then there is $b_{2} \in A_{2}$ such that $\left\langle a_{1}, b_{2}\right\rangle \in \min J$ and $b_{2} R_{2} a_{2}$.
2. If $\operatorname{SC}\left(a_{2}, a_{1}, A_{2}\right)$ then there is $b_{1} \in A_{1}$ such that $\left\langle b_{1}, a_{2}\right\rangle \in \min J$ and $a_{1} R_{1} b_{1}$.
(For a proof, see [Odelstad, 2008, pp. 50f.].)
Considering a joining-system $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J\right\rangle$, a useful device is the introduction of projections $\pi_{1}[J] \subseteq A_{1}$ and $\pi_{2}[J] \subseteq A_{2}$, which implies that each $a_{1} \in \pi_{1}[J]$ is a "ground" for some element a_{2} of A_{2} and, conversely, each $a_{2} \in \pi_{2}[J]$ is a "consequence" of some element a_{1} of A_{1}. The general definition is as follows.

Definition 3.28 For sets A_{1} and A_{2}, if $X \subseteq A_{1} \times A_{2}$ then for $i=1,2$, $\pi_{i}: X \rightarrow A_{i}$ is such that $\pi_{i}\left(x_{1}, x_{2}\right)=x_{i}$ is the projection of X on the i th coordinate.

Note that if $X \subseteq A_{1} \times A_{2}$ then $\pi_{1}[X]=\left\{x_{1} \in A_{1} \mid \exists x_{2} \in A_{2}:\left\langle x_{1}, x_{2}\right\rangle \in X\right\}$

$$
\pi_{2}[X]=\left\{x_{2} \in A_{2} \mid \exists x_{1} \in A_{1}:\left\langle x_{1}, x_{2}\right\rangle \in X\right\}
$$

The subsequent Theorem 3.30 might be easier to grasp if we first consider the special case of a joining-system $\left\langle\mathcal{L}_{1}, \mathcal{L}_{2}, J\right\rangle$ where $\mathcal{L}_{1}=\left\langle L_{1}, \wedge, \vee\right\rangle, \mathcal{L}_{2}=$ $\left\langle L_{2}, \wedge, \vee\right\rangle$ are lattices and \leq_{1}, \leq_{2} are the partial orderings determined by these lattices. Then, according to Theorem 3.30, if $\left\langle a_{1}, a_{2}\right\rangle,\left\langle b_{1}, b_{2}\right\rangle \in \min J$, there is $c_{2} \in L_{2}, d_{1} \in L_{1}$ such that
(1) $\left\langle a_{1} \wedge b_{1}, c_{2}\right\rangle \in \min J$,
(2) $\left\langle d_{1}, a_{2} \vee b_{2}\right\rangle \in \min J$,
(3) $c_{2} \leq_{2} a_{2} \wedge b_{2}$,
(4) $a_{1} \vee b_{1} \leq_{1} d_{1}$.

The following theorem is used in the proof of Theorem 3.30.
Theorem 3.29 Suppose that $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J\right\rangle$ is a joining-system that satisfies connectivity. Then the following holds:
(i) If $\left\langle a_{1}, a_{2}\right\rangle \in \min J$, then $\left\langle a_{1}, b_{2}\right\rangle \in J$ implies $a_{2} R_{2} b_{2}$ and $\left\langle b_{1}, a_{2}\right\rangle \in J$ implies $b_{1} R_{1} a_{1}$. (See Figure 8 on page 581.)
(ii) If $\left\langle a_{1}, a_{2}\right\rangle,\left\langle b_{1}, b_{2}\right\rangle \in \min J$ then $a_{1} R_{1} b_{1}$ iff $a_{2} R_{2} b_{2}$.
(iii) If $\left\langle a_{1}, a_{2}\right\rangle \in \min J$ then $\left\langle a_{1}, b_{2}\right\rangle \in \min J$ implies $a_{2} Q_{2} b_{2}$ and $\left\langle b_{1}, a_{2}\right\rangle \in$ $\min J$ implies $a_{1} Q_{1} b_{1}$. (See Figure 9 on page 582.)

Thick line is conclusion

Figure 8
(For a proof, see [Odelstad, 2008, p. 51].)
Theorem 3.30 Suppose that $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J\right\rangle$ is a joining-system and that $\mathcal{A}_{1}=$ $\left\langle A_{1}, R_{1}\right\rangle$ and $\mathcal{A}_{2}=\left\langle A_{2}, R_{2}\right\rangle$ are complete quasi-lattices. If $X \subseteq \min J$ and $X \neq \varnothing$ then the following holds:
(1) There is $c_{2} \in A_{2}$ such that for all $a_{1} \in \operatorname{glb}_{R_{1}} \pi_{1}[X],\left\langle a_{1}, c_{2}\right\rangle \in \min J$, and, furthermore, it holds that $c_{2} R_{2} a_{2}$ for all $a_{2} \in \operatorname{glb}_{R_{2}} \pi_{2}[X]$.
(2) There is $d_{1} \in A_{1}$ such that for all $b_{2} \in \operatorname{lub}_{R_{2}} \pi_{2}[X],\left\langle d_{1}, b_{2}\right\rangle \in \min J$, and, furthermore, it holds that $b_{1} R_{1} d_{1}$ for all $b_{1} \in \operatorname{lub}_{R_{1}} \pi_{1}[X]$.

Proof. Since \mathcal{A}_{1} and \mathcal{A}_{2} are complete quasi-lattices it follows from Theorem 3.26 that $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J\right\rangle$ satisfies connectivity.
(I) We prove (1). Since \mathcal{A}_{1} is a complete quasi-lattice, it follows that there is $a_{1} \in \operatorname{glb}_{R_{1}} \pi_{1}[X]$. Suppose that $x_{2} \in \pi_{2}[X]$. Then there is $x_{1} \in \pi_{1}[X]$ such that $\left\langle x_{1}, x_{2}\right\rangle \in X$ and $\left\langle x_{1}, x_{2}\right\rangle \unlhd\left\langle a_{1}, x_{2}\right\rangle$. Since $X \subseteq J$ it follows that $\left\langle a_{1}, x_{2}\right\rangle \in J$ and this holds for all $x_{2} \in \pi_{2}[X]$. Since \mathcal{A}_{2} is a complete quasi-lattice, it follows that $\operatorname{glb}_{R_{2}} \pi_{2}[X] \neq \varnothing$. Let $a_{2} \in \operatorname{glb}_{R_{2}} \pi_{2}[X]$. From condition (3) in the definition of a $J s$ it follows that $\left\langle a_{1}, a_{2}\right\rangle \in J$. Since J satisfies connectivity it follows that there is $\left\langle c_{1}, c_{2}\right\rangle \in \min J$ such that $\left\langle c_{1}, c_{2}\right\rangle \unlhd\left\langle a_{1}, a_{2}\right\rangle$. Let $\left\langle z_{1}, z_{2}\right\rangle \in X$, which implies that $\left\langle z_{1}, z_{2}\right\rangle \in \min J$ and since $z_{2} \in \pi_{2}[X]$ and $a_{2} \in \operatorname{glb}_{R_{2}} \pi_{2}[X]$ it follows that $a_{2} R_{2} z_{2}$. Furthermore, $c_{2} R_{2} a_{2}$ and thus $c_{2} R_{2} z_{2}$, which implies according to (ii) in theorem 3.29, that $c_{1} R_{1} z_{1}$. Hence, $c_{1} \in \operatorname{lb}_{R_{1}} \pi_{1}[X]$. Since $a_{1} \in \operatorname{glb}_{R_{1}} \pi_{1}[X]$ it follows that $c_{1} R_{1} a_{1}$, and since $a_{1} R_{1} c_{1}$ this implies $a_{1} Q_{1} c_{1}$. This shows that $\left\langle a_{1}, c_{2}\right\rangle \in$ $\min J$. Note that $c_{2} R_{2} a_{2}$.
(II) The proof of (2) is analogous.

Figure 9

An illustration in a lattice framework of (1) and (2) in Theorem 3.30 is provided in Figures 10 on page 583 and Figure 11 on page 584, respectively.

3.5 Lowerness

In the literature on partial orderings, the notion "coordinatewise ordering" of a Cartesian product of partial ordered sets is introduced (see for example [Davey and Priestley, 2002, p. 18].) It is straight forward to generalize this notion to quasi-ordered sets. This is done in the definition below. With the interpretation of TJS in this chapter as a theory of normative systems, we call the relation "coordinatewise ordering" the lowerness-relation.

Definition 3.31 The lowerness relation determined by the quasi-orderings $\left\langle A_{1}, R_{1}\right\rangle$ and $\left\langle A_{2}, R_{2}\right\rangle$ is the binary relation \precsim on $A_{1} \times A_{2}$ such that for all $\left\langle a_{1}, a_{2}\right\rangle,\left\langle b_{1}, b_{2}\right\rangle \in A_{1} \times A_{2}$

$$
\left\langle a_{1}, a_{2}\right\rangle \precsim\left\langle b_{1}, b_{2}\right\rangle \quad \text { iff } a_{1} R_{1} b_{1} \text { and } a_{2} R_{2} b_{2} .
$$

For elements in $A_{1} \times A_{2}$ we read \precsim as "at least as low as". If j_{1} and j_{2} are elements in $A_{1} \times A_{2}$, then j_{1} is at least as low as j_{2}, i.e. $j_{1} \precsim j_{2}$, if the "bottom" of j_{1} is at least as low as, i.e. stands in the relation R_{1} to, the "bottom" of j_{2}, and the "top" of j_{1} is at least as low as, i.e. stands in the relation R_{2} to, the "top" of j_{2}. See Figure 12 on page 585. (As a contrast, see Figure 4 on page 569.) Note that \precsim is a quasi-ordering, i.e. transitive

Figure 10
and reflexive. Let \sim denote the equality part of \precsim and \prec the strict part of \precsim. Then the following holds:

$$
\begin{aligned}
& \left\langle a_{1}, a_{2}\right\rangle \sim\left\langle b_{1}, b_{2}\right\rangle \text { iff } b_{1} Q_{1} a_{1} \& a_{2} Q_{2} b_{2} \\
& \left\langle a_{1}, a_{2}\right\rangle \prec\left\langle b_{1}, b_{2}\right\rangle \text { iff }\left(a_{1} P_{1} b_{1} \& a_{2} R_{2} b_{2}\right) \text { or }\left(a_{1} R_{1} b_{1} \& a_{2} P_{2} b_{2}\right)
\end{aligned}
$$

where Q_{i} is the equality-part of R_{i} and P_{i} is the strict part of R_{i}.
The structure of the minimal joinings in a joining-system is similar to the structure of their "bottoms" and "tops". We recall the definition of projections π_{i} (Definition 3.28 in Section 3.4).

Theorem 3.32 Suppose that $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J\right\rangle$ is a joining-system that satisfies connectivity (See Definition 3.22). Then for $i=1,2, \pi_{i}: \min J \longrightarrow$ $\pi_{i}[\min J]$ is surjective, and the following holds:

$$
\text { for all } \alpha, \beta \in \min J, \alpha \precsim \beta \text { iff } \pi_{i}(\alpha) R_{i} \pi_{i}(\beta)
$$

Proof. Follows from Theorem 3.29, (ii).

Corollary 3.33 If $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J\right\rangle$ is a joining-system satisfying connectivity, then

$$
\left\langle\left\langle\pi_{1}[\min J], R_{1}\right\rangle,\left\langle\pi_{2}[\min J], R_{2}\right\rangle, \min J\right\rangle
$$

is an order-preserving quasi-order correspondence (cf. Definitions 3.13 and 3.12).

Figure 11

The corollary says that in a joining-system $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J\right\rangle$, the R_{1}-structure of set of "bottoms" of $\min J$ is order similar to the R_{2}-structure of the set of "tops" of $\min J$. (See Theorem 3.15 for how this result can be expressed in terms of the notion of isomorphism.)

3.5.1 A remark on the interrelation between narrowness and lowerness

Given the quasi-orderings $\left\langle A_{1}, R_{1}\right\rangle$ and $\left\langle A_{2}, R_{2}\right\rangle$, we have introduced two quasi-orderings on $A_{1} \times A_{2}$, viz. the narrowness relation \unlhd and the lowerness relation \precsim. The interrelation between these two orderings is of great interest in the study of joining-systems.

How narrowness and lowerness are connected becomes more transparent if we if we restrict ourselves to consider lattices instead of quasi-orderings. Suppose that $\left\langle L_{1}, \leq_{1}\right\rangle$ and $\left\langle L_{2}, \leq_{2}\right\rangle$ are lattices. Let \precsim be the lowernessrelation with respect to \leq_{1} and \leq_{2}, i.e. for all $\left\langle a_{1}, a_{2}\right\rangle,\left\langle b_{1}, b_{2}\right\rangle \in L_{1} \times L_{2}$

$$
\left\langle a_{1}, a_{2}\right\rangle \precsim\left\langle b_{1}, b_{2}\right\rangle \text { iff } a_{1} \leq_{1} b_{1} \text { and } a_{2} \leq_{2} b_{2} .
$$

Then $\left\langle L_{1} \times L_{2}, \precsim\right\rangle$ is a lattice and is the product of $\left\langle L_{1}, \leq_{1}\right\rangle$ and $\left\langle L_{2}, \leq_{2}\right\rangle$. Let $\left\langle L_{1}, \wedge_{1}, \vee_{1}\right\rangle$ and $\left\langle L_{2}, \wedge_{2}, \vee_{2}\right\rangle$ be the algebraic formulation of $\left\langle L_{1}, \leq_{1}\right\rangle$ and $\left\langle L_{2}, \leq_{2}\right\rangle$ respectively. Define

$$
\binom{\wedge_{2}}{\wedge_{1}}: L_{1} \times L_{2} \longrightarrow L_{1} \times L_{2}
$$

Figure 12
such that

$$
\left\langle a_{1}, a_{2}\right\rangle\binom{\wedge_{2}}{\wedge_{1}}\left\langle b_{1}, b_{2}\right\rangle=\left\langle a_{1} \wedge_{1} b_{1}, a_{2} \wedge_{2} b_{2}\right\rangle .
$$

And define

$$
\binom{\vee_{2}}{\vee_{1}}: L_{1} \times L_{2} \longrightarrow L_{1} \times L_{2}
$$

such that

$$
\left\langle a_{1}, a_{2}\right\rangle\binom{\vee_{2}}{\vee_{1}}\left\langle b_{1}, b_{2}\right\rangle=\left\langle a_{1} \vee_{1} b_{1}, a_{2} \vee_{2} b_{2}\right\rangle
$$

Then

$$
\left\langle L_{1} \times L_{2},\binom{\wedge_{2}}{\wedge_{1}},\binom{\vee_{2}}{\vee_{1}}\right\rangle
$$

is the coordinatewise product lattice of $\left\langle L_{1}, \wedge_{1}, \vee_{1}\right\rangle$ and $\left\langle L_{2}, \wedge_{2}, \vee_{2}\right\rangle$ and is the algebraic version of $\left\langle L_{1} \times L_{2}, \precsim\right\rangle$, see [Davey and Priestley, 2002, p. 42].

Suppose as above that $\left\langle L_{1}, \leq_{1}\right\rangle$ and $\left\langle L_{2}, \leq_{2}\right\rangle$ are lattices. Let \unlhd be the narrowness-relation with respect to \leq_{1} and \leq_{2}, i.e. for all $\left\langle a_{1}, a_{2}\right\rangle,\left\langle b_{1}, b_{2}\right\rangle \in$ $L_{1} \times L_{2}$

$$
\left\langle a_{1}, a_{2}\right\rangle \unlhd\left\langle b_{1}, b_{2}\right\rangle \quad \text { iff } b_{1} \leq_{1} a_{1} \text { and } a_{2} \leq_{2} b_{2} .
$$

It can be shown that $\left\langle L_{1} \times L_{2}, \unlhd\right\rangle$ is a lattice. Let

$$
\left\langle L_{1}, \wedge_{1}, \vee_{1}\right\rangle \text { and }\left\langle L_{2}, \wedge_{2}, \vee_{2}\right\rangle
$$

be the algebraic formulation of $\left\langle L_{1}, \leq_{1}\right\rangle$ and $\left\langle L_{2}, \leq_{2}\right\rangle$ respectively. Define

$$
\binom{\wedge_{2}}{\vee_{1}}: L_{1} \times L_{2} \longrightarrow L_{1} \times L_{2}
$$

such that

$$
\left\langle a_{1}, a_{2}\right\rangle\binom{\wedge_{2}}{\vee_{1}}\left\langle b_{1}, b_{2}\right\rangle=\left\langle a_{1} \vee_{1} b_{1}, a_{2} \wedge_{2} b_{2}\right\rangle
$$

And define

$$
\binom{\vee_{2}}{\wedge_{1}}: L_{1} \times L_{2} \longrightarrow L_{1} \times L_{2}
$$

such that

$$
\left\langle a_{1}, a_{2}\right\rangle\binom{\vee_{2}}{\wedge_{1}}\left\langle b_{1}, b_{2}\right\rangle=\left\langle a_{1} \wedge_{1} b_{1}, a_{2} \vee_{2} b_{2}\right\rangle
$$

Then

$$
\left\langle L_{1} \times L_{2},\binom{\wedge_{2}}{\vee_{1}},\binom{\vee_{2}}{\wedge_{1}}\right\rangle
$$

is a lattice and is the algebraic version of $\left\langle L_{1} \times L_{2}, \unlhd\right\rangle$.

3.6 The structure on minimal joinings

The next theorem gives a characterization of the structure, with respect to the lowerness-relation, of the elements in a joining-space that are maximally narrow, i.e., those called minimal joinings. Note that with $\min J$ is meant $\min _{\unlhd} J$.

We recall the definition 3.4 on page 567 of a complete quasi-lattice.
Theorem 3.34 Suppose that $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J\right\rangle$ is a Js and that \mathcal{A}_{1} and \mathcal{A}_{2} are complete quasi-lattices and denote the relation $\precsim / \min J$ as $\precsim *$. Let $X \subseteq$ $\min J$. Then
(i) $\operatorname{lub}_{\precsim *} X \neq \varnothing$ and glb $_{\precsim *} X \neq \varnothing$
(ii) if $X \neq \varnothing$ then $\pi_{2}\left[\operatorname{lub}_{\precsim *} X\right] \subseteq \operatorname{lub}_{R_{2}} \pi_{2}[X]$
(iii) if $X \neq \varnothing$ then $\pi_{1}\left[\operatorname{glb}_{\precsim *} X\right] \subseteq \operatorname{glb}_{R_{1}} \pi_{1}[X]$.

Proof. Suppose that $X \subseteq \min J$. Note that since $\mathcal{A}_{1}=\left\langle A_{1}, R_{1}\right\rangle$ and $\mathcal{A}_{2}=\left\langle A_{2}, R_{2}\right\rangle$ are complete quasi-lattices, then $\operatorname{glb}_{R_{1}} \pi_{1}[X] \neq \varnothing$ and $\operatorname{lub}_{R_{2}} \pi_{2}[X] \neq \varnothing$.
(I) We prove (iii). Suppose that $X \neq \varnothing$. From (1) in Theorem 3.30 it follows that there is $c_{2} \in A_{2}$ such that if $a_{1} \in \operatorname{glb}_{R_{1}} \pi_{1}[X],\left\langle a_{1}, c_{2}\right\rangle \in \min J$,
and, furthermore, it holds that $c_{2} R_{2} a_{2}$ for all $a_{2} \in \operatorname{glb}_{R_{2}} \pi_{2}[X]$. We shall now show that

$$
\left\langle a_{1}, c_{2}\right\rangle \in \mathrm{glb}_{\precsim *} X .
$$

Suppose that $\left\langle x_{1}, x_{2}\right\rangle \in X$. Hence, $x_{1} \in \pi_{1}[X]$ and $x_{2} \in \pi_{2}[X]$. Since $a_{1} \in \operatorname{glb}_{R_{1}} \pi_{1}[X]$, it follows that $a_{1} R_{1} x_{1}$. Suppose that $a_{2} \in \operatorname{glb}_{R_{2}} \pi_{2}[X]$. Then $a_{2} R_{2} x_{2}$ and since $c_{2} R_{2} a_{2}$ it follows that $c_{2} R_{2} x_{2}$. From $a_{1} R_{1} x_{1}$ and $c_{2} R_{2} x_{2}$ follows that $\left\langle a_{1}, c_{2}\right\rangle \precsim\left\langle x_{1}, x_{2}\right\rangle$ and since $\left\langle a_{1}, c_{2}\right\rangle,\left\langle x_{1}, x_{2}\right\rangle \in \min J$ it follows that

$$
\left\langle a_{1}, c_{2}\right\rangle \precsim^{*}\left\langle x_{1}, x_{2}\right\rangle .
$$

Since $\left\langle x_{1}, x_{2}\right\rangle$ is an arbitrary element in X, it follows that

$$
\left\langle a_{1}, c_{2}\right\rangle \in \mathrm{lb}_{\precsim *} X .
$$

Suppose now that $\left\langle y_{1}, y_{2}\right\rangle \in \min J$ and $\left\langle y_{1}, y_{2}\right\rangle \in \mathrm{lb}_{\precsim_{*}} X$. We shall prove that

$$
\left\langle y_{1}, y_{2}\right\rangle \precsim^{*}\left\langle a_{1}, c_{2}\right\rangle .
$$

Suppose $z_{1} \in \pi_{1}[X]$. Then there is $z_{2} \in \pi_{2}[X]$ such that $\left\langle z_{1}, z_{2}\right\rangle \in X$ and hence $\left\langle y_{1}, y_{2}\right\rangle \precsim^{*}\left\langle z_{1}, z_{2}\right\rangle$, which implies that $y_{1} R_{1} z_{1}$. Thus $y_{1} \in \operatorname{lb}_{R_{1}} \pi_{1}[X]$ and since $a_{1} \in \operatorname{glb}_{R_{1}} \pi_{1}[X]$, it follows that $y_{1} R_{1} a_{1}$. Since

$$
\left\langle a_{1}, c_{2}\right\rangle,\left\langle y_{1}, y_{2}\right\rangle \in \min J \text { and } y_{1} R_{1} a_{1}
$$

it follows from (ii) in Theorem 3.29 that $y_{2} R_{2} c_{2}$, which implies that

$$
\left\langle y_{1}, y_{2}\right\rangle \precsim^{*}\left\langle a_{1}, c_{2}\right\rangle
$$

This shows that $\left\langle a_{1}, c_{2}\right\rangle \in \operatorname{glb}_{\precsim_{*}} X$ and hence $\mathrm{glb}_{\precsim_{*}} X \neq \varnothing$. Note that $a_{1} \in \pi_{1}\left[\operatorname{glb}_{\precsim^{*}} X\right]$ and $a_{1} \in \operatorname{glb}_{R_{1}} \pi_{1}[X]$. Suppose that $x_{1} \in \pi_{1}\left[\operatorname{glb} \precsim_{\precsim} X\right]$. Then there is x_{2} such that $\left\langle x_{1}, x_{2}\right\rangle \in \operatorname{glb} \precsim_{*} X$. Since $\left\langle a_{1}, c_{2}\right\rangle \in \operatorname{glb}_{\precsim *} X$ it follows that

$$
\left\langle x_{1}, x_{2}\right\rangle \sim^{*}\left\langle a_{1}, c_{2}\right\rangle
$$

which implies $x_{1} Q_{1} a_{1}$. Since $a_{1} \in \operatorname{glb}_{R_{1}} \pi_{1}[X]$ it follows that $x_{1} \in \operatorname{glb}_{R_{1}} \pi_{1}[X]$. This shows that

$$
\pi_{1}\left[\operatorname{glb}_{\precsim *} X\right] \subseteq \operatorname{glb}_{R_{1}} \pi_{1}[X]
$$

(II) The proof of (ii) is analogous with the proof of (iii).
(III) That (i) holds when $X \neq \varnothing$ follows from the proof of (ii) and (iii). The proof that lub $\precsim_{\precsim} \varnothing \neq \varnothing$ and $\mathrm{glb}_{\precsim *} \varnothing \neq \varnothing$ follows from the lemma below. (To see this, cf. as well the remark above Theorem 3.5.)

Lemma 3.35 Suppose that $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J\right\rangle$ is a non-empty joining-system and that $\mathcal{A}_{1}=\left\langle A_{1}, R_{1}\right\rangle$ and $\mathcal{A}_{2}=\left\langle A_{2}, R_{2}\right\rangle$ are complete quasi-lattices. Then
(i) there are $a_{1} \in \operatorname{lub}_{R_{1}} \pi_{1}[J]$ and $a_{2} \in \operatorname{glb}_{R_{2}} J\left[a_{1}\right]$ and the following holds: $\left\langle a_{1}, a_{2}\right\rangle \in \min J$ and $\left\langle a_{1}, a_{2}\right\rangle$ is a greatest element in $\min J$ with respect to \precsim.
(ii) there are $b_{2} \in \operatorname{glb}_{R_{2}} \pi_{2}[J]$ and $b_{1} \in \operatorname{lub}_{R_{1}} J^{-1}\left[b_{2}\right]$ and the following holds: $\left\langle b_{1}, b_{2}\right\rangle \in \min J$ and $\left\langle b_{1}, b_{2}\right\rangle$ is a least element in $\min J$ with respect to \precsim.

Proof. (I) We prove (i). Since $\mathcal{A}_{i}(i=1,2)$ is a complete quasi-lattice, there is $g_{i} \in A_{i}$ such that g_{i} is a greatest element in \mathcal{A}_{i} with respect to R_{i} and $l_{i} \in A_{i}$ such that l_{i} is a least element in \mathcal{A}_{i}. According to the assumption, $J \neq \varnothing$. Suppose that $\left\langle x_{1}, x_{2}\right\rangle \in J$. Note that $x_{2} R_{2} g_{2}$ and from condition (1) in the definition of a joining-system follows $\left\langle x_{1}, g_{2}\right\rangle \in J$. Since \mathcal{A}_{1} is a complete quasi-lattice it follows that $\operatorname{lub}_{R_{1}} \pi_{1}[J] \neq \varnothing$. Suppose that $a_{1} \in \operatorname{lub}_{R_{1}} \pi_{1}[J]$. From condition (2) of a joining-system follows that $\left\langle a_{1}, g_{2}\right\rangle \in J$. Since \mathcal{A}_{2} is a complete quasi-lattice $\operatorname{glb}_{R_{2}} J\left[a_{1}\right] \neq \varnothing$. Suppose that $a_{2} \in \operatorname{glb}_{R_{2}} J\left[a_{1}\right]$. Then $\left\langle a_{1}, a_{2}\right\rangle \in J$ according to condition (3) of a joining-system. Suppose that $\left\langle y_{1}, y_{2}\right\rangle \in J$ and $\left\langle y_{1}, y_{2}\right\rangle \triangleleft\left\langle a_{1}, a_{2}\right\rangle$. Then

$$
(*) a_{1} R_{1} y_{1} \& y_{2} P_{2} a_{2}
$$

or

$$
(* *) a_{1} P_{1} y_{1} \& y_{2} R_{2} a_{2}
$$

Since $y_{1} \in \pi_{1}[J]$ and $a_{1} \in \operatorname{lub}_{R_{1}} \pi_{1}[J]$ it follows that $y_{1} R_{1} a_{1}$ and therefore $(* *)$ above does not hold. $a_{1} R_{1} y_{1}$ implies $y_{1} Q_{1} a_{1}$ and hence $y_{2} \in J\left[a_{1}\right]$. Since $a_{2} \in \operatorname{glb}_{R_{2}} J\left[a_{1}\right]$ it follows that $a_{2} R_{2} y_{2}$. This shows that $(*)$ above does not hold. Thus $\left\langle a_{1}, a_{2}\right\rangle \in \min J$. Suppose that $\left\langle z_{1}, z_{2}\right\rangle \in \min J$. Then $z_{1} \in \pi_{1}[J]$ and since $a_{1} \in \operatorname{lub}_{R_{1}} \pi_{1}[J]$ it follows that $z_{1} R_{1} a_{1}$ and thus $\left\langle z_{1}, z_{2}\right\rangle \precsim\left\langle a_{1}, a_{2}\right\rangle$.
(II) The proof of (ii) is analogous with the proof of (i).

Corollary 3.36 Given the assumption in Theorem 3.34, $\left\langle\min J, \precsim^{*}\right\rangle$ is a complete quasi-lattice.

The theorem 3.37 below is a kind of converse of the theorem 3.34 above. We recall that $\uparrow K$ is the enclosure of K (see definition 3.23 above on page 578).

Theorem 3.37 Suppose that $\mathcal{A}_{1}=\left\langle A_{1}, R_{1}\right\rangle$ and $\mathcal{A}_{2}=\left\langle A_{2}, R_{2}\right\rangle$ are quasiorderings and $K \subseteq A_{1} \times A_{2}$ is such that for all $\left\langle a_{1}, a_{2}\right\rangle \in K,\left\langle a_{1}, a_{2}\right\rangle$ is a minimal element in K with respect to \unlhd. Suppose further that \precsim_{K} is the relation \precsim on $A_{1} \times A_{2}$ restricted to K and that $\langle K, \precsim K\rangle$ is a complete quasi-lattice and the following two conditions hold:
(i) For all $X \subseteq K, \pi_{2}\left[\operatorname{lub}_{\precsim_{K}} X\right] \subseteq \operatorname{lub}_{R_{2}} \pi_{2}[X]$.
(ii) For all $X \subseteq K, \pi_{1}\left[\operatorname{glb}_{\precsim_{K}} X\right] \subseteq \operatorname{glb}_{R_{1}} \pi_{1}[X]$.

Then $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, \uparrow K\right\rangle$ is a joining-system and $\min \uparrow K=K$.
Proof. (I) Proof of condition (1) in the definition of a joining-system. Suppose that $\left\langle a_{1}, a_{2}\right\rangle \in \uparrow K$ and $\left\langle a_{1}, a_{2}\right\rangle \unlhd\left\langle b_{1}, b_{2}\right\rangle$. Then there is $\left\langle c_{1}, c_{2}\right\rangle \in$ K such that $\left\langle c_{1}, c_{2}\right\rangle \unlhd\left\langle a_{1}, a_{2}\right\rangle$, and it follows that $\left\langle c_{1}, c_{2}\right\rangle \unlhd\left\langle b_{1}, b_{2}\right\rangle$, which implies that $\left\langle b_{1}, b_{2}\right\rangle \in \uparrow K$.
(II) Proof of condition (2) in the definition of a joining-system. Suppose that $C_{1} \subseteq A_{1}, b_{2} \in A_{2}$ and that $a_{1} \in \operatorname{lub}_{R_{1}} C_{1}$. Suppose further that for all $c_{1} \in C_{1},\left\langle c_{1}, b_{2}\right\rangle \in \uparrow K$. We show that $\left\langle a_{1}, b_{2}\right\rangle \in \uparrow K$. For all $c_{1} \in C_{1}$, there is an element $\left\langle c_{1}^{*}, b_{2}^{c_{1}}\right\rangle \in K$ such that $\left\langle c_{1}^{*}, b_{2}^{c_{1}}\right\rangle \unlhd\left\langle c_{1}, b_{2}\right\rangle$. Since $\langle K, \precsim K\rangle$ is a complete quasi-lattice it follows that there is $\left\langle x_{1}, x_{2}\right\rangle \in K$ such that

$$
(* * *)\left\langle x_{1}, x_{2}\right\rangle \in \operatorname{lub}_{\precsim_{K}}\left\{\left\langle c_{1}^{*}, b_{2}^{c_{1}}\right\rangle \mid c_{1} \in C_{1}\right\} .
$$

Hence,

$$
x_{2} \in \pi_{2}\left[\operatorname{lub}_{\precsim_{K}}\left\{\left\langle c_{1}^{*}, b_{2}^{c_{1}}\right\rangle \mid c_{1} \in C_{1}\right\}\right] .
$$

From the assumption (i) follows that

$$
x_{2} \in \operatorname{lub}_{R_{2}} \pi_{2}\left[\left\{\left\langle c_{1}^{*}, b_{2}^{c_{1}}\right\rangle \mid c_{1} \in C_{1}\right\}\right]
$$

and hence

$$
x_{2} \in \operatorname{lub}_{R_{2}}\left\{b_{2}^{c_{1}} \mid c_{1} \in C_{1}\right\} .
$$

Note that

$$
b_{2} \in \operatorname{ub}_{R_{2}}\left\{b_{2}^{c_{1}} \mid c_{1} \in C_{1}\right\}
$$

which implies that $x_{2} R_{2} b_{2}$.
From $(* * *)$ above it follows that for all $c_{1} \in C_{1}$

$$
\left\langle c_{1}^{*}, b_{2}^{c_{1}}\right\rangle \precsim_{K}\left\langle x_{1}, x_{2}\right\rangle
$$

and hence $c_{1}^{*} R_{1} x_{1}$. For all $c_{1} \in C_{1}$

$$
\left\langle c_{1}^{*}, b_{2}^{c_{1}}\right\rangle \unlhd\left\langle c_{1}, b_{2}\right\rangle
$$

which implies $c_{1} R_{1} c_{1}^{*}$ and hence $c_{1} R_{1} x_{1}$. Thus $x_{1} \in \mathrm{ub}_{R_{1}} C_{1}$ and since $a_{1} \in \operatorname{lub}_{R_{1}} C_{1}$ it follows that $a_{1} R_{1} x_{1}$. This together with $\left\langle x_{1}, x_{2}\right\rangle \in K$ and $x_{2} R_{2} b_{2}$ implies (see part (I) in this proof) $\left\langle a_{1}, b_{2}\right\rangle \in \uparrow K$.
(III) Proof of condition (3) in the definition of a joining-system is analogous to the proof of condition (2) in (II).
(IV) Proof of $\min \uparrow K=K$. Suppose that $\left\langle a_{1}, a_{2}\right\rangle \in K$ and show that $\left\langle a_{1}, a_{2}\right\rangle \in \min \uparrow K$. Suppose that $\left\langle b_{1}, b_{2}\right\rangle \in \uparrow K$ such that $\left\langle b_{1}, b_{2}\right\rangle \unlhd\left\langle a_{1}, a_{2}\right\rangle$. Since $\left\langle b_{1}, b_{2}\right\rangle \in \uparrow K$ there is $\left\langle c_{1}, c_{2}\right\rangle \in K$ such that $\left\langle c_{1}, c_{2}\right\rangle \unlhd\left\langle b_{1}, b_{2}\right\rangle$. Hence, $\left\langle c_{1}, c_{2}\right\rangle \unlhd\left\langle a_{1}, a_{2}\right\rangle$ and since $\left\langle a_{1}, a_{2}\right\rangle,\left\langle c_{1}, c_{2}\right\rangle \in K$ and all elements in K are minimal elements in K with respect to \unlhd, it follows that $\left\langle a_{1}, a_{2}\right\rangle \simeq\left\langle c_{1}, c_{2}\right\rangle$, which implies that $\left\langle a_{1}, a_{2}\right\rangle \simeq\left\langle b_{1}, b_{2}\right\rangle$ and $\left\langle a_{1}, a_{2}\right\rangle \in \min \uparrow K$.

Suppose that $\left\langle a_{1}, a_{2}\right\rangle \in \min \uparrow K$. Then $\left\langle a_{1}, a_{2}\right\rangle \in \uparrow K$ and there is $\left\langle b_{1}, b_{2}\right\rangle \in K$ such that $\left\langle b_{1}, b_{2}\right\rangle \unlhd\left\langle a_{1}, a_{2}\right\rangle$. According to what have just been proven, from $\left\langle b_{1}, b_{2}\right\rangle \in K$ follows that $\left\langle b_{1}, b_{2}\right\rangle \in \min \uparrow K$. This implies that $\left\langle b_{1}, b_{2}\right\rangle \simeq\left\langle a_{1}, a_{2}\right\rangle$, and thus $\left\langle a_{1}, a_{2}\right\rangle \in K$.

3.7 Networks of joining-systems

A normative system is not always represented by just one joining-system. More complex normative systems are usually represented by a network of joining-systems. (A rudimentary network is shown in Section 5.2.3.) In such representations, the relative product of joining spaces is an important operation for the construction of new joining-systems. The theorem below describes the situation.

Note that, when more than two joining-systems are involved, the sign J for a set of joinings will be annexed with two indices. Thus, the set of joinings from a quasi-ordering \mathcal{A}_{i} to a quasi-ordering \mathcal{A}_{j} will be denoted $J_{i, j}$. Accordingly, the joining-system from \mathcal{A}_{i} to \mathcal{A}_{j} is denoted $\left\langle\mathcal{A}_{i}, \mathcal{A}_{j}, J_{i, j}\right\rangle$.

Theorem 3.38 Suppose that $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J_{1,2}\right\rangle$ and $\left\langle\mathcal{A}_{2}, \mathcal{A}_{3}, J_{2,3}\right\rangle$ are joiningsystems and that \mathcal{A}_{2} is a complete quasi-lattice. Then $\left\langle\mathcal{A}_{1}, \mathcal{A}_{3}, J_{1,2} \mid J_{2,3}\right\rangle$ is a joining-system and is called the relative product of $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J_{1,2}\right\rangle$ and $\left\langle\mathcal{A}_{2}, \mathcal{A}_{3}, J_{2,3}\right\rangle$.

Proof. We begin by proving condition (1) in the definition of a $J s$ (Definition 3.11 in Section 3.2.2). Suppose that $\left\langle a_{1}, a_{3}\right\rangle \in J_{1,2} \mid J_{2,3}$ and $\left\langle a_{1}, a_{3}\right\rangle \unlhd$ $\left\langle b_{1}, b_{3}\right\rangle$. From $\left\langle a_{1}, a_{3}\right\rangle \in J_{1,2} \mid J_{2,3}$ follows that there is $a_{2} \in A_{2}$ such that $\left\langle a_{1}, a_{2}\right\rangle \in J_{1,2}$ and $\left\langle a_{2}, a_{3}\right\rangle \in J_{2,3}$. From $\left\langle a_{1}, a_{3}\right\rangle \unlhd\left\langle b_{1}, b_{3}\right\rangle$ follows that $b_{1} R_{1} a_{1}$ and $a_{3} R_{3} b_{3}$. Since $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J_{1,2}\right\rangle$ is a joining-system, $b_{1} R_{1} a_{1}$ and $\left\langle a_{1}, a_{2}\right\rangle \in J_{1,2}$ implies that $\left\langle b_{1}, a_{2}\right\rangle \in J_{1,2}$. And $a_{3} R_{3} b_{3}$ and $\left\langle a_{2}, a_{3}\right\rangle \in J_{2,3}$ implies that $\left\langle a_{2}, b_{3}\right\rangle \in J_{2,3}$, since $\left\langle\mathcal{A}_{2}, \mathcal{A}_{3}, J_{2,3}\right\rangle$ is a joining-system. From $\left\langle b_{1}, a_{2}\right\rangle \in J_{1,2}$ and $\left\langle a_{2}, b_{3}\right\rangle \in J_{2,3}$ follows that $\left\langle b_{1}, b_{3}\right\rangle \in J_{1,2} \mid J_{2,3}$.

We now prove condition (2) in the definition of a $J s$. Suppose that $C_{1} \subseteq$ A_{1} and $C_{1} \neq \varnothing$ such that for all $c_{1} \in C_{1},\left\langle c_{1}, b_{3}\right\rangle \in J_{1,2} \mid J_{2,3}$ and suppose $a_{1} \in \operatorname{lub}_{R_{1}} C_{1}$. Let

$$
C_{1}^{(2)}=\left\{c_{2} \in A_{2} \mid \exists c_{1} \in C_{1}:\left\langle c_{1}, c_{2}\right\rangle \in J_{1,2} \&\left\langle c_{2}, b_{3}\right\rangle \in J_{2,3}\right\}
$$

Hence, for all $c_{2} \in C_{1}^{(2)},\left\langle c_{2}, b_{3}\right\rangle \in J_{2,3}$. Since \mathcal{A}_{2} is a complete quasilattice (Definition 3.4), it follows that $\operatorname{lub}_{R_{2}} C_{1}^{(2)} \neq \varnothing$. Suppose that $a_{2} \in$ $\operatorname{lub}_{R_{2}} C_{1}^{(2)}$. Since $\left\langle\mathcal{A}_{2}, \mathcal{A}_{3}, J_{2,3}\right\rangle$ is a $J s$ it follows that $\left\langle a_{2}, b_{3}\right\rangle \in J_{2,3}$. For all $c_{1} \in C_{1}$, there is $c_{1}^{(2)} \in C_{1}^{(2)}$ such that $\left\langle c_{1}, c_{1}^{(2)}\right\rangle \in J_{1,2}$. Since $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J_{1,2}\right\rangle$ is a $J s$, this implies that $\left\langle c_{1}, a_{2}\right\rangle \in J_{1,2}$ for all $c_{1} \in C_{1}$, and, consequently, $\left\langle a_{1}, a_{2}\right\rangle \in J_{1,2}$. Since $\left\langle a_{2}, b_{3}\right\rangle \in J_{2,3}$ it follows that $\left\langle a_{1}, b_{3}\right\rangle \in J_{1,2} \mid J_{2,3}$.

The proof of condition (3) is analogous and is omitted.

Note that from the assumption $J_{1,2} \mid J_{2,3}=J_{1,3}$ and the requirement of connectivity it follows that $\min J_{1,2} \mid \min J_{2,3} \subseteq \min J_{1,3}$. Also, however, note that \subseteq cannot generally be strengthened to $=$ (Cf. [Lindahl and Odelstad, 2011, sect. 3.3.2]).

3.8 Intervenients

The notion of "intervenient" (cf. above, Section 2.2) will be treated in detail in Section 5, in connection with Boolean quasi-orderings and Boolean joining-systems. As a general notion, it is, however, introduced here.

Let us consider three joining-systems

$$
\mathcal{S}_{1}=\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J_{1,2}\right\rangle, \mathcal{S}_{2}=\left\langle\mathcal{A}_{2}, \mathcal{A}_{3}, J_{2,3}\right\rangle, \mathcal{S}_{3}=\left\langle\mathcal{A}_{1}, \mathcal{A}_{3}, J_{1,3}\right\rangle
$$

where $\mathcal{A}_{i}=\left\langle A_{i}, R_{i}\right\rangle$. There can be $a_{1} \in A_{1}, a_{2} \in A_{2}$, and $a_{3} \in A_{3}$ such that $\left\langle a_{1}, a_{2}\right\rangle \in J_{1,2},\left\langle a_{2}, a_{3}\right\rangle \in J_{2,3}$, and $\left\langle a_{1}, a_{3}\right\rangle \in J_{1,3}$. A case of special interest then, is when $\mathrm{WG}_{\mathcal{S}_{1}}\left(a_{1}, a_{2}, A_{1}\right)$ and $\mathrm{SC}_{\mathcal{S}_{2}}\left(a_{3}, a_{2}, A_{3}\right)$, i.e., when, in \mathcal{S}_{1}, a_{1} is among the weakest grounds in A_{1} for a_{2}, and a_{3} is among the strongest consequences in A_{3} of a_{2}. (Cf. above, Section 3.3). In this case, a_{2}, in a sense, is "intermediate" between a_{1} and a_{3} and "mediates" the joining $\left\langle a_{1}, a_{3}\right\rangle$. Therefore, in this case we call a_{2} an intervenient.

In order to give a more detailed formal exposition of what is said above, we first give the following definition of a simple Js-triple.

Definition 3.39 Suppose that $\mathcal{S}_{1}=\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J_{1,2}\right\rangle$, $\mathcal{S}_{2}=\left\langle\mathcal{A}_{2}, \mathcal{A}_{3}, J_{2,3}\right\rangle$ and $\mathcal{S}_{3}=\left\langle\mathcal{A}_{1}, \mathcal{A}_{3}, J_{1,3}\right\rangle$ are joining-systems where $\mathcal{A}_{i}=\left\langle A_{i}, R_{i}\right\rangle .\left\langle\mathcal{S}_{1}, \mathcal{S}_{2}, \mathcal{S}_{3}\right\rangle$
is a simple Js-triple if A_{1}, A_{2} and A_{3} are pair-wise disjunct, and, for the relative product $J_{1,2} \mid J_{2,3}$ it holds that $J_{1,3}=J_{1,2} \mid J_{2,3} \cdot{ }^{19}$
(For Bjs-triples of Boolean joining-systems, cf. Section 5.1.)
Then the notion of intervenient in a simple $J s$-triple is defined as follows.

Definition 3.40 In a simple Js-triple $\left\langle\mathcal{S}_{1}, \mathcal{S}_{2}, \mathcal{S}_{3}\right\rangle$, the element $a_{2} \in A_{2}$, is an intervenient from \mathcal{A}_{1} to \mathcal{A}_{3} corresponding to the joining $\left\langle a_{1}, a_{3}\right\rangle \in J_{1,3}$, denoted $a_{2} \curvearrowright\left\langle a_{1}, a_{3}\right\rangle$, if a_{1} is a weakest ground of a_{2} in \mathcal{S}_{1} and a_{3} is a strongest consequence of a_{2} in \mathcal{S}_{3}.

Since weakest grounds and strongest consequences are related to minimal joinings, the same holds for intervenients. If a_{2} is an intervenient corresponding to $\left\langle a_{1}, a_{3}\right\rangle$, there is $b_{2} \in A_{2}$ such that $\left\langle a_{1}, b_{2}\right\rangle$ is a minimal joining and $b_{2} R_{2} a_{2}$. And, further, there is $c_{2} \in A_{2}$ such that $\left\langle c_{2}, a_{3}\right\rangle$ is a minimal joining and $a_{2} R_{2} c_{2}$. If $\left\langle a_{1}, a_{2}\right\rangle$ is a minimal element, then, since a_{2} is minimal with respect to the ground a_{1}, a_{2} is called ground-minimal. If $\left\langle a_{2}, a_{3}\right\rangle$ is a minimal element, then, since a_{2} is minimal with respect to the consequence a_{3}, a_{2} is called consequence-minimal. A very convenient way of representing a normative system is if all intervenients are ground- and consequence-minimal and the operation relative product is used. Changes of the normative system are then simplified and the notion of open intermediate concepts is elucidated.

A step towards analyzing more general structures in the law is taking into account chains of four or more quasi-orderings. Let us pay regard to joining-systems involving four quasi-orderings $\mathcal{A}_{1}, \mathcal{A}_{2}, \mathcal{A}_{3}, \mathcal{A}_{4}$ such that $a_{2} \curvearrowright\left\langle a_{1}, a_{3}\right\rangle$ and $a_{3} \curvearrowright\left\langle a_{2}, a_{4}\right\rangle$. (See Figure 13.) From this follows that WG $\left(a_{2}, a_{3}, A_{2}\right) \& \operatorname{SC}\left(a_{3}, a_{2}, A_{3}\right)$. This conjunction is equivalent to $\left\langle a_{2}, a_{3}\right\rangle \in \min J_{2,3}$, see Theorem 3.21. (This is illustrated by the thick line in Figure 13.) Note that a chain of four quasi-orderings can be continued at any length by adding $\mathcal{A}_{5}, \mathcal{A}_{6}$, and so on. The notion of intervenient is of particular interest when the three joining-systems are Boolean joining-systems. This will be the subject-matter of the subsequent Section 5, where conjunctions, disjunctions and negations of intervenients are studied, organic wholes of intervenients discussed and a typology of intervenients presented. Also, section 5 will contain several examples of legal intervenients.

[^13]

Figure 13

4 TJS for Boolean joining-systems

In the representation of a normative system, the connectives "and", "or" and "not" are often essential. This is neatly illustrated in the example of Amendment XIV in the U.S. Constitution, quoted above (Section 1.7.1):
"All persons born or naturalized in the United States, and subject to the jurisdiction thereof, are citizens of the United States and of the State wherein they reside. No State shall make or enforce any law which shall abridge the privileges or immunities of citizens of the United States; nor shall any State deprive any person of life, liberty, or property, without due process of law; nor deny to any person within its jurisdiction the equal protection of the laws."

With a view to the connectives referred to, in the present Section 4 and the subsequent Section 5, we consider strata of Boolean quasi-orderings (Bqo's) and joining-systems that are Boolean joining-systems (Bjs'). As mentioned, the development of TJS for Bqo's and Bjs's in this chapter of the Handbook relies much on earlier papers by the present authors and the reader will often be referred to these papers for further details and for proofs of the results.

4.1 Boolean quasi-orderings and Boolean joining-systems

4.1.1 Boolean quasi-orderings

The notion of Boolean quasi-ordering is defined as follows.

Definition 4.1 The relational structure $\mathcal{B}=\left\langle B, \wedge,^{\prime}, R\right\rangle$ is a Boolean quasiordering (Bqo) if $\left\langle B, \wedge,{ }^{\prime}\right\rangle$ is a Boolean algebra and R is a quasi-ordering, \perp is the zero element and \top is the unit element, such that R satisfies the additional requirements:
(1) $a R b$ and $a R c$ implies $a R(b \wedge c)$,
(2) $a R b$ implies $b^{\prime} R a^{\prime}$,
(3) $(a \wedge b) R a$,
(4) $n o t \top R \perp$.

Note that if \leq is the partial ordering determined by $\left\langle B, \wedge,^{\prime}\right\rangle$, from requirement (3) it follows that $a \leq b$ implies $a R b$. As usual, \leq is defined by $a \leq b$ if and only if $a \wedge b=a$.

Requirements (3) and (4) can be expressed equivalently by saying that R is a non-total super-relation of the Boolean ordering \leq. More exactly, suppose that $\left\langle B, \wedge^{\prime},^{\prime}\right\rangle$ is a Boolean algebra, that \leq is the partial ordering determined by the algebra, and that R is a transitive relation on B. Then the conjunction of (3) and (4) is equivalent to the conjunction of (i) \leq is a subset of R, and (ii) R is a proper subset of $B \times B$.

Some general notions relating to Bqo's are as follows (see [Lindahl and Odelstad, 2004, sect. 2.1]):

If $\left\langle B, \wedge,^{\prime}, R\right\rangle$ is a Bqo then we say that the Boolean algebra $\left\langle B, \wedge^{\prime}\right\rangle$ is the reduct of $\left\langle B, \wedge,^{\prime}, R\right\rangle$. In what follows, the reduct $\left\langle B, \wedge,^{\prime}\right\rangle$ of a $B q o \mathcal{B}$ will be denoted $\mathcal{B}^{\text {red }}$. Suppose that $\mathcal{B}=\left\langle B, \wedge^{\prime}{ }^{\prime}, R\right\rangle$ is a $B q o$ and Q is the indifference part of R. The quotient algebra of \mathcal{B} with respect to Q is a structure $\left\langle B / Q, \cap,-, \leq_{Q}\right\rangle$ such that $\langle B / Q, \cap,-\rangle$ is a Boolean algebra and \leq_{Q} is the partial ordering determined by this algebra. The natural mapping of $\left\langle B, \wedge,^{\prime}\right\rangle$ onto $\langle B / Q, \cap,-\rangle$ is a homomorphism (cf. [Odelstad and Lindahl, 2000]). We call $\langle B / Q, \cap,-\rangle$ the quotient reduction of \mathcal{B}. Thus there are two Boolean algebras which should be kept apart, namely $\mathcal{B}^{\text {red }}$, i.e. the reduct of \mathcal{B}, and the quotient reduction of \mathcal{B}. If the quotient reduction of \mathcal{B} is isomorphic to $\mathcal{B}^{\text {red }}, R=\leq$, and we say that \mathcal{B} is conservatively reducible.

As just mentioned, the transition to the quotient algebra of $\left\langle B, \wedge,{ }^{\prime}, R\right\rangle$ with respect to the equality part Q of R will result in a new Boolean algebra. In what follows we will not make this transition. The point is that, in the models we have in mind, even though, for a and b it holds that $a Q b$ (and therefore a and b belong to the same Q-equivalence class), we may want to distinguish a and b because they can have different meaning. We get possibilities of finer divisions when we can distinguish the three possibilities: 1. $a=b, 2 . a \neq b$ and $a Q b, 3 . a \neq b$ and not $a Q b$. Therefore, there is
a point in remaining within the framework of Boolean quasi-orderings as defined above.

Note that if $\mathcal{B}=\left\langle B, \wedge,^{\prime}, R\right\rangle$ is a $B q o$, then

$$
\begin{aligned}
& (a \vee b) \in \operatorname{lub}_{R}\{a, b\}, \\
& (a \wedge b) \in \operatorname{glb}_{R}\{a, b\} .
\end{aligned}
$$

If $\mathcal{B}=\left\langle B, \wedge,^{\prime}, R\right\rangle$ is a $B q o$, then $\langle B, R\rangle$ is a quasi-ordering and, of course, what is said about quasi-orderings in section 3 is applicable to \mathcal{B}. We say that the $B q o\left\langle B, \wedge,^{\prime}, R\right\rangle$ is complete if the quasi-ordering $\langle B, R\rangle$ is a complete quasi-lattice.

4.1.2 Boolean joining systems

A fundamental construction for the representation of a normative system is that of a Boolean joining-system. If \mathcal{N} is a two-strata system of conditional norms, then \mathcal{N} can be represented by a $B j s\left\langle\mathcal{B}_{1}, \mathcal{B}_{2}, J\right\rangle$ where J is a set of conditional norms, where \mathcal{B}_{1} is a $B q o$ of grounds, and \mathcal{B}_{2} is a $B q o$ of normative consequences.

Definition $4.2\left\langle\mathcal{B}_{1}, \mathcal{B}_{2}, J\right\rangle$ is a Boolean joining system (Bjs) if

$$
\mathcal{B}_{1}=\left\langle B_{1}, \wedge,^{\prime}, R_{1}\right\rangle, \mathcal{B}_{2}=\left\langle B_{2}, \wedge^{\prime}, R_{2}\right\rangle
$$

are Boolean quasi-orderings and $\left\langle\left\langle B_{1}, R_{1}\right\rangle,\left\langle B_{2}, R_{2}\right\rangle, J\right\rangle$ is a joining-system.
With the definition of a Bjs now given it is clear that the results for joining-systems in Section 3 apply to the Bjs version of joining-systems. This holds e.g., for the notions of weakest ground, strongest consequence, minimal joinings and connectivity.

In the study of Bjs's, structures that are not Bqo's play an essential role. This is exemplified by the following theorem, which is proved in [Lindahl and Odelstad, 2011, p. 128].

Theorem 4.3 Suppose that $\left\langle\mathcal{B}_{1}, \mathcal{B}_{2}, J\right\rangle$ is a Bjs that satisfies connectivity. Then $\langle\min J, \precsim\rangle$ is a quasi-lattice.

Cf. Corollary 3.36 above.
If $\left\langle\mathcal{B}_{1}, \mathcal{B}_{2}, J\right\rangle$ is a Boolean joining system, it is often reasonable that falsum in \mathcal{B}_{1} and in \mathcal{B}_{2} are the same element \perp and that the same holds for verum T. From this follows that in J there are joinings, which are degenerated in the sense that they do not seem to fulfill the intuitive idea behind the notion of a joining, for example $\langle\perp, \perp\rangle$ and $\langle\top, \top\rangle$.

Referring to a $B j s\left\langle\mathcal{B}_{1}, \mathcal{B}_{2}, J\right\rangle$, however, we introduce a distinction between "degenerated" and "non-degenerated" for weakest ground, strongest consequences and joining.
(1) If WG $\left(\perp, a_{2}, \mathcal{B}_{1}\right)$, the weakest ground in B_{1} for a_{2} is degenerated; similarly, if $\operatorname{SC}\left(\mathrm{T}, a_{1}, \mathcal{B}_{2}\right\rangle$, the strongest consequence in B_{2} of a_{1} is degenerated.
(2) As joinings from \mathcal{B}_{1} to \mathcal{B}_{2}, the elements in

$$
\left\{\langle\perp, \perp\rangle,\langle T, T\rangle,\left\langle b_{1}, T\right\rangle,\left\langle\perp, b_{2}\right\rangle\right\}
$$

are degenerated joinings.
Note that $\langle\perp, \perp\rangle,\langle T, T\rangle \in J$, and even $\langle\perp, \perp\rangle,\langle T, T\rangle \in \min J$. Note further that if $b_{2} \in B_{2}$ and there is no $b_{1} \in B_{1} \backslash\{\perp\}$ such that $\left\langle b_{1}, b_{2}\right\rangle \in J$, then $\left\langle\perp, b_{2}\right\rangle \in \min J$. Analogously, if $b_{1} \in B_{1}$ and there is no $b_{2} \in B_{2} \backslash\{T\}$ such that $\left\langle b_{1}, b_{2}\right\rangle \in J$, then $\left\langle b_{1}, T\right\rangle \in \min J$.

4.2 The condition implication model (cis)

We recall the statement by [Alchourrón and Bulygin, 1971] (referred to in the introductory Section 1), that a set α of sentences deductively correlates a pair $\langle p, q\rangle$ of sentences if q is a deductive consequence of $\{p\} \cup \alpha$, (or, using the relation $C n$ of consequence, if $q \in C n(\{p\} \cup \alpha)$.) Also, we recall our remark that if propositional logic is used as a basis, it is usually presupposed that p, q are closed sentences with no free variables,(i.e., for example, p is the sentence "Smith has promised to pay Jones $\$ 100$ " and q is "Smith has an obligation to pay $\$ 100$ to Jones"). Thus, in such sentences, individuals are referred to by individual constants (names).

A sentence such as "Smith has an obligation to pay $\$ 100$ to Jones" is often said to express an "individual norm". Owing to its general character, the Bjs theory can be used for representing correlations of conditional individual norms and derivation of individual norms.

As mentioned in Section 1, however, a normative system usually expresses general rules where no individual names occur. If the task is to represent a normative system of this ordinary kind, the feature of generality has to be taken into account. What will here be called the theory of condition implication structures (cis's) is a special variety of the Bjs theory where the elements of B in a $B q o\left\langle B, \wedge,^{\prime}, R\right\rangle$ are conditions.

In general terms, a cis is a structure $\langle C, \rightarrow\rangle$ where C is a set of conditions and \rightarrow is an implicative relation. In what follows we have in view especially the case of a cis-Bqo $\left\langle B, \wedge,^{\prime}, R\right\rangle$, where B is a set of conditions and R is the implicative relation. A cis-Bjs is a $B j s\left\langle\mathcal{B}_{1}, \mathcal{B}_{2}, J\right\rangle$ where the $B q o$'s \mathcal{B}_{1} and \mathcal{B}_{2} are $c i s^{\prime}$. Part of a normative system can often be represented by a cis-Bjs $\left\langle\mathcal{B}_{1}, \mathcal{B}_{2}, J\right\rangle$ where $\mathcal{B}_{1}, \mathcal{B}_{2}$ are cis', and J is a correspondence from the set B_{1} of conditions to the set B_{2} of conditions.

In simple cases, conditions can be denoted by expressions using the sign of the infinitive, such as "to be 21 years old", "to be a citizen of the U.S.", "to
be a child of", "to be entitled to inherit", or by corresponding expressions in the ing-form, like "being 21 years old" etc. Often, however, conditions should appropriately be expressed by open sentences, like " x promises to pay $\$ y$ to $z ", " x$ is a citizen of state $y ", " x$ is entitled to inherit y ".

When a condition is expressed by an open sentence, free variables like x, y, z, \ldots occurring in the sentence merely are place-holders for expressing the condition in a convenient way and keeping track of the order of the places. In simple cases like, "committing murder implies being liable to imprisonment", place-holders are not needed. For details about Boolean operations on conditions, the reader is referred to [Lindahl and Odelstad, 2004, sect. 3].

In a cis-Bqo $\left\langle B, \wedge,{ }^{\prime}, R\right\rangle$, a condition a in B, such as " x promises to pay $\$ y$ to $z "$, is said to be fulfilled or non-fulfilled by a particular triple, like〈Smith, 100 ,Jones〉. The fulfillment of a condition by a particular n-tuple of individuals is expressed by a closed sentence naming the individuals of the n-tuple.

A framework with implication between conditions seems to accord with the presupposed ontology of legal language, where terms such as "citizenship", "inheritance", "ownership", denote conditions that are treated as objects between which there is an implicative relation of "ground-consequence", often expressed in terms of "gives rise to" or "causes", or "implies". Thus inheritance is said to give rise to ownership, and ownership is said to imply a bundle of liberties, claims, and immunities.

Let us recall the remark after Definition 3.12 that if $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J\right\rangle$ is a joining-system, then $R_{1}|J| R_{2}=J$ and, therefore, J can be said to "absorb" R_{1} and R_{2}. From this it follows that if we have in view a cis-Bjs $\left\langle\mathcal{B}_{1}, \mathcal{B}_{2}, J\right\rangle$, where $a_{1}, b_{1}, a_{2}, b_{2}$ are conditions such that $a_{1}, b_{1} \in B_{1}$ and $a_{2}, b_{2} \in B_{2}$, we can use the following schema of derivation:
(1) $a_{1} R_{1} b_{1}$
(2) $\left\langle b_{1}, a_{2}\right\rangle \in J$
(3) $a_{2} R_{2} b_{2}$
(4) $\left\langle a_{1}, b_{2}\right\rangle \in J$

In this schema, the joining (4) of two conditions is derived from the joining (2) together with implications (1) and (3).

4.2.1 A note on cis models with lattice-based quasi-orderings

Some kinds of conditions do not constitute Boolean algebras. One example is equality-relations. The term "equality-relation" here refer to a relation of equality with respect to some aspect α, and it is presupposed in this context that an equality-relation is always an equivalence-relation, i.e. a reflexive,
transitive and symmetric relation. Let A be a non-empty set and let $E(A)$ be the set of equivalence relations on A. Define the binary relation \leq on $E(A)$ in the following way: For all $\varepsilon_{1}, \varepsilon_{2} \in E(A)$

$$
\varepsilon_{1} \leq \varepsilon_{2} \text { iff } x \varepsilon_{1} y \text { implies } x \varepsilon_{2} y
$$

The reader should be reminded of the fact that $\mathcal{E}(A)=\langle E(A), \leq\rangle$ is a complete lattice. Note that the negation ε^{\prime} of an equivalence relation $\varepsilon \in E(A)$ is not an equivalence relation, i.e. $\varepsilon^{\prime} \notin E(A) .\langle E(A), \leq\rangle$, therefore, does not constitute a Boolean algebra. (Cf. [Odelstad, 2008, pp. 38f.].)

As appear from the foregoing, a Boolean quasi-ordering is a Boolean algebra extended with a quasi-ordering satisfying certain conditions. We can define an analogous structure based on a lattice instead of a Boolean algebra.

Definition 4.4 The relational structure $\langle L, \wedge, \vee, R\rangle$ is a lattice-based quasiordering (Lqo) if $\langle L, \wedge, \vee\rangle$ is a lattice and R is a quasi-ordering such that R satisfies the additional requirements:
(1) $a R b$ and $a R c$ implies $a R(b \wedge c)$,
(2) $a R c$ and $b R c$ implies $(a \vee b) R c$,
(3) $(a \wedge b) R a$,
(4) $a R(a \vee b)$.

The transition to the quotient algebra of $\langle L, \wedge, \vee\rangle$ with respect to the equality part of R will result in a lattice. (Cf. [Lindahl and Odelstad, 1999a, p. 171].) Let \leq be the partial ordering determined by the lattice-based quasi-ordering $\langle L, \wedge, \vee, R\rangle .{ }^{20}$ From requirement (3) for lattice-based quasiorderings it follows that $a \leq b$ implies $a R b$. If $\langle A, \wedge, \vee, R\rangle$ is a lattice-based quasi-ordering then $\langle L, R\rangle$ is a quasi-lattice. Note that a $B q o$ determines a Lqo.

4.3 Subtraction and addition of norms: an example

In Section 1.6 above, we mentioned that TJS deals with subtraction and addition of norms in terms of the structure of the set min J of minimal joinings. In the present subsection we illustrate this issue by a cis concerning the legal effects of an illegal transfer of goods belonging to someone else. (Cf. [Lindahl and Odelstad, 2003].)

[^14]Consider the following example. Goods belonging to owner have been sold without owner's consent by transferrer to transferee by a contract. (We can suppose that transferrer has stolen or hired the goods from owner and had it in possession at the time of the contract with transferee.) The normative problem is: Under what conditions is there an obligation (denoted O1) for transferrer to deliver the goods to owner? Under what conditions is there an obligation (denoted O2) for transferee to deliver the goods to owner?

We consider four systems and for all of them we assume that the stratum of grounds coincides with its reduct and similarly for the stratum of consequences, i.e. R_{i} coincides with \leq_{i}.

The example is a cis-application representing four normative systems with general norms where descriptive conditions imply normative conditions. For convenience, the conditions involved will be referred to in an abbreviated way. So, for example, condition P below ("Transferee has the goods in possession") refers to a complex condition $C\left(x_{1}, \ldots, x_{n}\right)$ fulfilled or not fulfilled by an n-tuple of individuals $\left\langle i_{1}, \ldots, i_{n}\right\rangle$ in a situation s. For details on conditions in the cis of the present example, the reader is referred to [Lindahl and Odelstad, 2003, pp. 86ff.].

The conditions dealt with in this example are the following (where / signifies negation):

```
Grounds
    P = Transferee has (= the transferrer has not) the goods in possession.
    F}=\mathrm{ Transferee was in good faith at the time of the transfer.
    R}=\mathrm{ the owner offers to pay ransom to transferee for the goods.
Normative consequences
    O1 = Transferrer has an obligation to deliver the goods to owner.
    O2 = Transferee has an obligation to deliver the goods to owner.
Verum and falsum
    falsum
    T verum
```

To simplify the example, we stipulate that it is assumed that the goods are either in the possession of transferrer or in the possession of transferee (no third possibility).

The example is intended to illustrate that, by means of Theorems 3.34 and 3.37 , we get a test for whether a legal system is a joining-system, useful in situations of subtraction of norms from a system and addition of norms to a system.

We consider four systems, $\mathcal{S}_{I}, \mathcal{S}_{I I}, \mathcal{S}_{I I I}, S_{I V}$, where

- \mathcal{S}_{I} is a joining-system,
- $\mathcal{S}_{I I}$, the result of subtraction from \mathcal{S}_{I}, is not a joining-system,
- $\mathcal{S}_{I I I}$, the result of a more comprehensive subtraction from \mathcal{S}_{I}, is a joining-system, and,
- $S_{I V}$, the result of an addition to $\mathcal{S}_{I I I}$, is a joining-system.

We make the following assumptions concerning the Bqo's involved in the example:

1. The Bqo

$$
\mathcal{B}_{1}=\left\langle B_{1}, \wedge,^{\prime}, R_{1}\right\rangle \text {, where } R_{1}=\leq_{1} \text {, }
$$

of grounds is the same for the systems $\mathcal{S}_{I}, \mathcal{S}_{I I}, \mathcal{S}_{I I I} ; B_{1}$ consists of the Boolean combinations of F and P .
(The Bqo of grounds in $S_{I V}$ will be indicated later).
2. The Bqo

$$
\mathcal{B}_{2}=\left\langle B_{2}, \wedge,^{\prime}, R_{2}\right\rangle \text {, where } R_{2}=\leq_{2},
$$

of consequences is the same for all of $\mathcal{S}_{I}, \mathcal{S}_{I I}, \mathcal{S}_{I I I}, \mathcal{S}_{I V} ; B_{2}$ consists of the Boolean combinations of O1 and O2;

We introduce the following names for some of the norms in $\mathcal{S}_{I}-\mathcal{S}_{I I I}$:

$$
\begin{aligned}
& \mathbf{a}=\langle\mathrm{F} / \wedge \mathrm{P}, \mathrm{O} 2\rangle \\
& \mathbf{b}=\langle\mathrm{P}, \mathrm{O} 1 \prime\rangle \\
& \mathbf{c}=\langle\mathrm{F} \wedge \mathrm{P}, \mathrm{O} 1 / \wedge \mathrm{O} 2 \prime\rangle \\
& \mathbf{d}=\langle\mathrm{F} / \wedge \mathrm{P} \prime, \mathrm{O} 1 \vee \mathrm{O} 2\rangle \\
& \mathbf{e}=\langle\mathrm{F} \vee \mathrm{P} \prime, \mathrm{O} 2 \prime\rangle \\
& \mathbf{f}=\langle\mathrm{P} \prime, \mathrm{O} 1\rangle \\
& \langle\perp, \perp\rangle \\
& \langle\mathrm{T}, \mathrm{~T}\rangle
\end{aligned}
$$

In System \mathcal{S}_{I} (which is a qo-corr but, at this stage, not assumed to be a $J s$) the answer to the normative problem stated above depends on whether transferee has possession of the goods (denoted P) and whether transferee was in good faith at the time of the contract (denoted F). Let

$$
K_{I}=\{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f},\langle\perp, \perp\rangle,\langle\top, \top\rangle\}
$$

be the set of norms in \mathcal{S}_{I} that are minimal with respect to \unlhd. Figure 14 on page 601 shows the six minimal, non-degenerated norms and their interrelation in system $\mathcal{S}_{I}:\left\langle K_{I}, \precsim / K_{I}\right\rangle$ is a lattice, see Figure 15 on page 602 . The

Figure 14
assumptions in Theorem 3.37 are satisfied. From Theorem 3.37 it follows that $\mathcal{S}_{I}=\left\langle\mathcal{B}_{1}, \mathcal{B}_{2}, \uparrow K_{I}\right\rangle$ is a $B j s$ and that $\min \uparrow K_{I}=K$.

We note that, for some $X \subseteq K_{I},\langle\perp, \perp\rangle \in \operatorname{glb}_{\precsim} X$. Thus, for example, $\langle\perp, \perp\rangle \in \operatorname{glb}_{\precsim}\{\mathbf{a}, \mathbf{c}\}$. Similarly, for some $X \subseteq K_{I},\langle\top, T\rangle \in \operatorname{lub}_{\precsim} X$. Thus, $\langle T, T\rangle \in \operatorname{lub}_{\precsim}^{\sim}\{\mathbf{b}, \mathbf{d}, \mathbf{e}\}$.

From the point of view of legal justice, System \mathcal{S}_{I} may be thought to be unreasonable since it does not attach relevance to the possibility that owner can be willing to pay a ransom to transferee for getting the goods back. System $\mathcal{S}_{I I}$ takes this consideration into account by elimination of some norms in the system. Suppose that the legislator in the set K_{I} of minimal joinings subtracts the minimal joining $\mathbf{c}=\langle\mathrm{F} \wedge \mathrm{P}, \mathrm{O} 1 / \wedge \mathrm{O} 2 \prime\rangle$, while $\mathbf{a}, \mathbf{b}, \mathbf{d}, \mathbf{e}, \mathbf{f},\langle\perp, \perp\rangle$ and $\langle\top, \top\rangle$ are left.

System $\mathcal{S}_{I I}$, where the set of minimal norms is

$$
K_{I I}=\{\mathbf{a}, \mathbf{b}, \mathbf{d}, \mathbf{e}, \mathbf{f},\langle\perp, \perp\rangle,\langle\top, \top\rangle\}
$$

is a qo-corr but not a Js. Indeed, $\left\langle K_{I I}, \precsim / K_{I I}\right\rangle$ is a lattice, see Figure 16. Greatest lower bound of \mathbf{b} and \mathbf{e} in this lattice is $\langle\perp, \perp\rangle$, i.e. $\langle\perp, \perp\rangle \in \operatorname{glb}_{\precsim / K_{I I}}\{\mathbf{b}, \mathbf{e}\}$. Note, however, that $\mathbf{c} \in \operatorname{glb}_{\precsim}\{\mathbf{b}, \mathbf{e}\}$. Hence, $\perp \in \pi_{1}\left[\operatorname{glb}_{\precsim / K_{I I}}\{\mathbf{b}, \mathbf{e}\}\right]$ but $(\mathrm{F} \wedge \mathrm{P}) \in \operatorname{glb}_{R_{1}} \pi_{1}[\{\mathbf{b}, \mathbf{e}\}]$. And so, though

Figure 15
$\left\langle K_{I I} \precsim / K_{I I}\right\rangle$ is a lattice (and complete since it is finite), it does not satisfy requirement (iii) in Theorem 3.34. Therefore, $\left\langle\mathcal{B}_{1}, \mathcal{B}_{2}, \uparrow K_{I I}\right\rangle$ is not a $J s$.

If \mathbf{c} is subtracted, in order to obtain a joining-system, the legislator has to subtract either \mathbf{b} or \mathbf{e}, or both, as well. Since elimination of \mathbf{b} would seem unreasonable from a legal point of view, the appropriate choice would be to eliminate e. The resulting system will here be called System $\mathcal{S}_{I I I}$.

System $\mathcal{S}_{\text {III }}$ (which is a qo-corr, but, at this stage, is not assumed to be a joining-system) is such that

$$
K_{I I I}=\{\mathbf{a}, \mathbf{b}, \mathbf{d}, \mathbf{f},\langle\perp, \perp\rangle,\langle\top, \top\rangle\}
$$

See Figure 17.
$\left\langle K_{I I I}, \precsim K_{I I I}\right\rangle$ is a lattice. See Figure 18. Moreover, the assumptions in Theorem 3.37 are satisfied. Hence, it follows that $S_{I I I}=\left\langle\mathcal{B}_{1}, \mathcal{B}_{2}, \uparrow K_{I I I}\right\rangle$ is a Bjs.
$S_{I I I}$, however, is legally unsatisfactory, since it is merely the result of subtraction, without positively stipulating anything about the relevance of owner's offering/not offering to pay ransom for the goods. The next system to be considered, therefore, is System $S_{I V}$, where "Ransom" is introduced. The Bqo of grounds in $S_{I V}$ is

$$
\mathcal{B}_{3}=\left\langle B_{3}, \wedge,^{\prime}, R_{3}\right\rangle \text { with } R_{3}=\leq_{3}
$$

Figure 16
where B_{3} consists of Boolean combinations of F, P and R. In $S_{I V}$ the following norms are added:
$\langle\mathrm{P} \wedge \mathrm{R}, \mathrm{O} 2\rangle$. If transferee has the goods in possession and owner pays ransom for the good, then transferee has the obligation to deliver the good to owner.
$\langle\mathrm{F} \wedge \mathrm{P} \wedge \mathrm{R} /, \mathrm{O} 2 \prime\rangle$. If transferee has the good in possession and fulfills the good faith condition, and owner does not pay ransom, then transferee has no obligation to deliver the good back to owner. These added norms however, are not minimal elements.

In $\mathcal{S}_{I V}$ (which is assumed to be a qo-corr but not a $J s$) the set of minimal norms is

$$
K_{I V}=\{\mathbf{b}, \mathbf{f}, \mathbf{g}, \mathbf{h}, \mathbf{i}, \mathbf{j},\langle\perp, \perp\rangle,\langle\top, \top\rangle\}
$$

where
$\mathbf{g}=\langle\mathrm{P} \wedge(\mathrm{F} \wedge \mathrm{R}), \mathrm{O} 2\rangle$
$\mathbf{h}=\langle\mathrm{F} \wedge \mathrm{P} \wedge \mathrm{R} /, \mathrm{O} 1 / \wedge \mathrm{O} 2 \prime\rangle$
$\mathbf{i}=\langle\mathrm{F} \wedge \mathrm{P} \wedge \vee \mathrm{R}, \mathrm{O} 1 \vee \mathrm{O} 2\rangle$
$\mathbf{j}=\langle\mathrm{P} \prime \vee(\mathrm{F} \wedge \mathrm{R} \prime), \mathrm{O} 2 \prime\rangle$
We note that, of the non-degenerated minimal norms in the original system \mathcal{S}_{I}, only \mathbf{b} and \mathbf{f} remain unchanged in $\mathcal{S}_{I V}$, while, due to the relevance of ransom, $\mathbf{g}, \mathbf{h}, \mathbf{i}, \mathbf{j}$ are new minimal norms in $\mathcal{S}_{I V}$.

The set of non-degenerated norms in $K_{I V}$ and their interrelations is depicted in Figure 19. $\left\langle K_{I V}, \precsim / K_{I V}\right\rangle$ is a lattice, and hence complete, since it is finite. See Figure 20 on page 607. Moreover, the assumptions in Theorem

Figure 17
3.37 are satisfied and hence, it follows that $\left\langle\mathcal{B}_{3}, \mathcal{B}_{2}, \uparrow K_{I V}\right\rangle$ is a joiningsystem. ${ }^{21}$ For further details on the example, cf. [Lindahl and Odelstad, 2003], developed within a slightly different framework (cf. Section 6.1 below).

4.4 The cis version of normative positions

The Kanger-Lindahl theory A natural approach to formulate normative concepts such as obligation and permission is to do so in terms of so-called normative positions, constructed by a combination of deontic logic and action logic. As is further developed in Marek Sergot's chapter "The theory of normative positions" of the present Handbook, the first version of the theory of normative positions, in its modern logical form, was developed by the Swedish logician Stig Kanger ([Kanger, 1957; Kanger, 1963]). Kanger's theory was inspired by the system of "fundamental jural relations" proposed by the American jurist W.N. Hohfeld in 1913. As realized by Kanger, standard deontic logic, with a deontic operator applied to sentences, is not adequate for expressing the Hohfeldian distinctions. The improvement proposed by Kanger was to combine a standard deontic operator Shall with an action operator Do (for "sees to it that") and to exploit the possibilities of external and internal negation of sentences where these operators are combined. Originally, Kanger's theory was conceived as a theory

[^15]

Figure 18
of rights (see [Lindahl, 1994]). As a theory of "legal" or "normative" positions, Kanger's theory was further developed by Lars Lindahl in [Lindahl, 1977]. Additional refinements of the so-called Kanger-Lindahl theory have been made by Andrew J.I. Jones and Marek Sergot ([Jones and Sergot, 1993; Jones and Sergot, 1996; Sergot, 1999; Sergot, 2001]). A special feature of the work of Jones and Sergot is that applications in computer science are in view.

A natural approach to the fine-grained structure of a cis-Bjs $\left\langle\mathcal{B}_{1}, \mathcal{B}_{2}, J\right\rangle$ where the stratum \mathcal{B}_{2} is normative, is to formulate \mathcal{B}_{2} in terms of an algebraic version of the Kanger-Lindahl theory of normative positions. (On this theory, see Sergot's chapter "The theory of normative positions" in the present Handbook.) The system of normative positions dealt with in what follows below is the system of one-agent types of normative position, in the sense of [Lindahl, 1977, ch. 3]. This system, chosen here since it is relatively simple, can easily be generalized to n-agent types, see Sergot's chapter and cf. Talja in [Talja, 1980].

To the Boolean connectives of negation, conjunction etc., are added the modal expressions "Shall" and "Do". If F is a state of affairs and x is an agent, ${ }^{22}$ Shall F is to be read "It shall be the case that F " and Do (x, F) should be read " x sees to it that F ". The expression May F is an abbreviation for \neg Shall $\neg F$.

The basic idea in the Kanger-Lindahl theory is to exploit the possibilities of combining the deontic operator Shall with the action operator Do. One example is Shall $\operatorname{Do}(x, F)$ which means that it shall be that x sees to it that

[^16]

Figure 19
F; another is \neg Shall $\operatorname{Do}(y, \neg F)$ which means that it is not the case that it shall be that y sees to it that not F.

The logical postulates for Shall and Do assumed in the construction of one-agent types are as follows (cf. [Lindahl, 1977, p. 68]):

Rules for Do

RI. If $\vdash(A \longleftrightarrow B)$, then $\vdash(\operatorname{Do}(s, A) \longleftrightarrow \operatorname{Do}(s, B))$.
A1. $\operatorname{Do}(s, A) \rightarrow A$.
Rules for Shall
RII. If $\vdash A$, then \vdash Shall A.
A2. Shall $(A \rightarrow B) \rightarrow($ Shall $A \rightarrow$ Shall $B)$.
A3. Shall $A \rightarrow \neg$ Shall $\neg A$.
The systems of normative positions can serve as a tools for describing the normative positions of different agents $x, y, z \ldots$ with regard to states of affairs F, G, H, \ldots. For example, if x is the Swedish Government and F is the state of affairs that a paper on normative positions by Sergot is published in Sweden, the position, according to Swedish law, of x with regard to F can be described by $\operatorname{Shall}(\neg \operatorname{Do}(x, F) \& \neg \operatorname{Do}(x, \neg F))$, expressing that the Government is not allowed either to bring about or prevent the publication.

Figure 20

If x is an agent and F is a state of affairs, the seven one-agent types of position are as follows (see [Lindahl, 1977, p. 92]), where $\operatorname{Pass}(x, F)$ is an abbreviation for $\neg \mathrm{Do}(x, F) \& \neg \mathrm{Do}(x, \neg F)$:

```
T}(x,F):M\operatorname{MayDo(x,F)& MayPass}(x,F)& MayDo(x,\negF)
T}(x,F):MayDo(x,F)& MayPass(x,F)&\negMayDo(x,\negF)
T3}(x,F):MayDo(x,F)&\neg\operatorname{MayPass}(x,F)& MayDo(x,\negF)
T4}(x,F):\neg\operatorname{MayDo}(x,F)& MayPass(x,F)& MayDo(x,\negF)
T
T6}(x,F):\neg\operatorname{MayDo(x,F)& MayPass}(x,F)&\neg\operatorname{MayDo}(x,\negF)
T
```

The numbering of the T_{i} conforms to the numbering of the corresponding one-agent types of normative position in [Lindahl, 1977]. The numbering suits the representation of the types in a Hasse diagram, exhibiting how the types are partially ordered by the relation "less free than" (see [Lindahl 1977, pp. 105 ff$]$).

The simplest way to combine the TJS approach with an algebraic version of the theory of one-agent normative positions is to transform the one-agent formulas $T_{1}(x, F), \ldots, T_{7}(x, F)$ into seven conditions $T_{1} q, \ldots, T_{7} q$. Thus T_{i}, when occurring in $T_{i} q$, is an operator on conditions, and the result is a normative condition, defined in terms of one-agent type T_{i}. A set $\left\{T_{1} q, \ldots, T_{7} q\right\}$ of seven normative conditions is obtained, and Boolean compounds of these seven conditions are formed by $\wedge,^{\prime}, \vee$.

Next we construct a normative position cis. Let $\mathcal{B}=\left\langle B, \wedge,{ }^{\prime}, R\right\rangle$ be a cis-Bqo with a domain B of descriptive conditions q_{1}, q_{2}, \ldots. Furthermore,
let

$$
T_{\mathcal{B}}=\left\{T_{i} q \mid q \in B-\{\perp, \top\}, 1 \leq i \leq 7\right\}
$$

i.e., $T_{\mathcal{B}}$ is the set of all normative positions with regard to the descriptive conditions in B. Next, let $T_{\mathcal{B}}^{*}$ be the closure of $T_{\mathcal{B}}$ under $\wedge^{\prime}{ }^{\prime}$. Then $\mathcal{T}=$ $\left\langle T_{\mathcal{B}}^{*}, \wedge^{\prime}{ }^{\prime}\right\rangle$ is a Boolean algebra, called a Boolean normative position algebra.

Finally, from \mathcal{T} we construct a cis-Bqo $\left\langle T_{\mathcal{B}}^{*}, \wedge,^{\prime}, R\right\rangle$, called a normative position cis. Such as cis is to fulfil the requirements of deontic logic and action logic described in the theory of one-agent normative positions. These requirements are incorporated in the following definition.

Definition 4.5 A cis $\left\langle T_{\mathcal{B}}^{*}, \wedge,{ }^{\prime}, R\right\rangle$ is a normative position cis with regard to \mathcal{B} if for any $q, r \in \mathcal{B}$ it holds that
(1) if $i \neq j$, then $T_{i} q \wedge T_{j} q R \perp($ for $i, j \in\{1, \ldots, 7\})$,
(2) $\uparrow R\left(T_{1} q \vee \ldots \vee T_{7} q\right)$,
(3) $T_{1} q Q T_{1} q^{\prime}, T_{3} q Q T_{3} q^{\prime}, T_{6} q Q T_{6} q^{\prime}, T_{2} q Q T_{4} q^{\prime}, T_{5} q Q T_{7} q^{\prime}$,
(4) if $q Q r$, then $T_{i} q Q T_{i} r$,
(5) if $i=1,3,4,7$, then $T_{i} \top Q \perp$, and,
(6) if $i=1,2,3,5$, then $T_{i} \perp Q \perp$.

Requirements (1)-(4) in the definition express restrictions on the relation R in a normative position algebra and correspond to three features of one agent types in the Kanger-Lindahl theory. Thus requirement (1) expresses that $T_{1} q, \ldots, T_{7} q$ are mutually incompatible, (2) that they are jointly exhaustive, and (3) that T_{1}, T_{3}, T_{6} are neutral, while T_{4} is the converse of T_{2} and T_{7} the converse of T_{5}. Requirements (4)-(6), finally, follow from the logic of Shall and Do, where (4) corresponds to the "extensionality" feature for combinations of operators Shall and Do in the Kanger-Lindahl theory, and (5) and (6) follow from the theorem $\neg \operatorname{MayDo}(x, \perp)$. (See [Lindahl and Odelstad, 2004, sect. 1.2, 4 and 6] for details.)
Liberty conditions For seeing more clearly what various conditions in a normative position cis amount to in deontic terms, the notion of liberty conditions can be introduced (cf. Lindahl 1977, pp. 106 ff.). This device is available since each normative position condition equals a Boolean compound of liberty conditions.

There are three liberty operators L_{1}, L_{2} and L_{3}. These can be called action permissibility, passivity permissibility and counter-action permissibility, respectively. In terms of May and Do we can read non-negated liberty conditions as follows.

Action permissibility: L_{1}
$L_{1} q\left(x_{1}, \ldots, x_{\nu}, x_{\nu+1}\right)$ iff $\operatorname{May} \operatorname{Do}\left(x_{\nu+1}, q\left(x_{1}, \ldots, x_{\nu}\right)\right)$

Passivity permissibility: L_{2}
$L_{2} q\left(x_{1}, \ldots, x_{\nu}, x_{\nu+1}\right)$ iff May $\operatorname{Pass}\left(x_{\nu+1}, q\left(x_{1}, \ldots, x_{\nu}\right)\right)$

Counter-action permissibility: L_{3}
$L_{3} q\left(x_{1}, \ldots, x_{\nu}, x_{\nu+1}\right)$ iff May $\operatorname{Do}\left(x_{\nu+1}, q\left(x_{1}, \ldots, x_{\nu}\right)^{\prime}\right)$
Liberty conditions L_{1}, L_{2}, L_{3} can be defined in terms of disjunctions of basic $n p$-conditions.

Definition 4.6 L_{1}, L_{2}, L_{3} are operators on conditions such that, if q is a condition:
(1) $L_{1} q$ is defined as: $T_{1} q \vee T_{2} q \vee T_{3} q \vee T_{5} q$.
(2) $L_{2} q$ is defined as: $T_{1} q \vee T_{2} q \vee T_{4} q \vee T_{6} q$.
(3) $L_{3} q$ is defined as: $T_{1} q \vee T_{3} q \vee T_{4} q \vee T_{7} q$.

Accordingly, it holds that (where / signifies negation),
$T_{1} q Q L_{1} q \wedge L_{2} q \wedge L_{3} q$,
$T_{2} q Q L_{1} q \wedge L_{2} q \wedge\left(L_{3} q\right)^{\prime}$, $T_{3} q Q L_{1} q \wedge\left(L_{2} q\right)^{\prime} \wedge L_{3} q$,
$T_{4} q Q\left(L_{1} q\right)^{\prime} \wedge L_{2} q \wedge L_{3} q$,
$T_{5} q Q L_{1} q \wedge\left(L_{2} q\right)^{\prime} \wedge\left(L_{3} q\right)^{\prime}$,
$T_{6} q Q\left(L_{1} q\right)^{\prime} \wedge L_{2} q \wedge\left(L_{3} q\right)^{\prime}$,
$T_{7} q Q\left(L_{1} q\right)^{\prime} \wedge\left(L_{2} q\right)^{\prime} \wedge L_{3} q$.
Accordingly, if $L_{i q}$ is denoted by 1 and $\left(L_{i q}\right)^{\prime}$ by 0 , the basic $n p$-conditions can be represented by the semi-lattice in Figure 21 (cf. [Lindahl, 1977, p. 105] and [Talja, 1980]).

Figure 21

4.4.1 An example: ownership to an estate

Suppose we represent a normative system by a cis model of a joining-system with two strata one of which is a descriptive cis, and the other is a normative position-cis. We illustrate this representation by a simple example concerning the normative position of owners of real property in a legal system \mathcal{S}. We consider a cis model of a Boolean joining-system $\left\langle\mathcal{B}_{1}, \mathcal{B}_{2}, J\right\rangle$ where $\mathcal{B}_{1}=\left\langle B_{1}, \wedge,^{\prime}, R_{1}\right\rangle$ is descriptive, while $\mathcal{B}_{2}=\left\langle B_{2}, \wedge,{ }^{\prime}, R_{2}\right\rangle$ is a normative position-cis.

The two strata considered

The descriptive stratum \mathcal{B}_{1}.
We assume that conditions a_{1} and b_{1}, appearing in the descriptive lower stratum \mathcal{B}_{1} are as follows:
a_{1} : Being the owner of an estate $E .{ }^{23}$
b_{1} : Being the owner of an estate adjacent to estate E.
We furthermore assume that \mathcal{B}_{1} is as depicted in the following diagram (where $\alpha \bowtie \beta$ is an abbreviation for $(\alpha \wedge \beta) \vee\left(\alpha^{\prime} \wedge \beta^{\prime}\right)$ and where lines representing R_{1} (implication) are omitted as being evident):
\mathcal{B}_{1}

$$
a_{1} \vee b_{1} \quad a_{1} \vee b_{1}^{\prime} \quad a_{1}^{\prime} \vee b_{1} \quad a_{1}^{\prime} \vee b_{1}^{\prime}
$$

$$
\begin{array}{llllll}
a_{1} & b_{1} & a_{1} \bowtie b_{1} & a_{1} \bowtie b_{1}^{\prime} & b_{1}^{\prime} & a_{1}^{\prime}
\end{array}
$$

$$
a_{1} \wedge b_{1} \quad a_{1} \wedge b_{1}^{\prime} \quad a_{1}^{\prime} \wedge b_{1} \quad a_{1}^{\prime} \wedge b_{1}^{\prime}
$$

\perp

We note that \mathcal{B}_{1} coincides with its reduct $\left\langle B_{1}, \wedge{ }^{\prime}\right\rangle$ and that, therefore, in \mathcal{B}_{1}, R_{1} coincides with \leq_{1}. As appears from the diagram, it is assumed that conditions $a_{1} \wedge b_{1}, a_{1} \wedge b_{1}^{\prime}, a_{1}^{\prime} \wedge b_{1}, a_{1}^{\prime} \wedge b_{1}^{\prime}$ are atoms in \mathcal{B}_{1}.

[^17]The normative stratum \mathcal{B}_{2}
Let conditions q_{1}, \ldots, q_{4} be as follows:
q_{1} : Main building of estate E being painted white,
q_{2} : Main building on estate adjacent to E being painted white,
q_{3} : Cows of estate E entering land of adjacent estate,
q_{4} : Erecting a fence, going around estate E and adjacent estate.
Let $\mathcal{B}=\left\langle B, \wedge,{ }^{\prime} R\right\rangle$ be a cis such that the descriptive conditions $q_{1}, q_{2}, q_{3}, q_{4}$ are among the elements of its domain. Furthermore, as in Section 4.4, let $T_{\mathcal{B}}=\left\{T_{i} q \mid q \in B-\{\perp, \top\}, 1 \leq i \leq 7\right\}$, let $T_{\mathcal{B}}^{*}$ be the closure of $T_{\mathcal{B}}$ under $\wedge^{\prime},^{\prime}$ and let $\mathcal{T}=\left\langle T_{\mathcal{B}}^{*}, \wedge^{\prime}{ }^{\prime}\right\rangle$ be a Boolean normative position algebra with regard to \mathcal{B}. Finally, let $\mathcal{B}_{2}=\left\langle T_{\mathcal{B}}^{*}, \wedge,{ }^{\prime}, R_{2}\right\rangle$ be a normative position cis with regard to \mathcal{B} (see above definition 4.5). Since \mathcal{T} is the reduct of \mathcal{B}_{2}, the Boolean relation \leq_{T} of \mathcal{T} is a subset of the relation R_{2} of \mathcal{B}_{2}.

Joining assumptions

We assume that in the Boolean joining-system $\left\langle\mathcal{B}_{1}, \mathcal{B}_{2}, J\right\rangle$, when referring to non-degenerated joinings, the following holds:

$$
\begin{array}{ll}
\text { (i) } & \left(a_{1} \wedge b_{1}\right) J\left(T_{1} q_{1} \wedge T_{1} q_{2} \wedge T_{1} q_{3} \wedge T_{1} q_{4}\right) \\
\text { (ii) } & \left(a_{1} \wedge b_{1}^{\prime}\right) J\left(T_{1} q_{1} \wedge T_{6} q_{2} \wedge T_{7} q_{3} \wedge T_{4} q_{4}\right) \\
\text { (iii) } & \left(a_{1}^{\prime} \wedge b_{1}\right) J\left(T_{6} q_{1} \wedge T_{1} q_{2} \wedge T_{4} q_{3} \wedge T_{4} q_{4}\right) \tag{iii}\\
\text { (iv) } & \left(a_{1}^{\prime} \wedge b_{1}^{\prime}\right) J\left(T_{6} q_{1} \wedge T_{6} q_{2} \wedge T_{6} q_{3} \wedge T_{6} q_{4}\right)
\end{array}
$$

Given the intended interpretation of conditions $T_{i} q_{j}$ in terms of Shall, May and Do, the joinings (i)-(iv) are plausible for a legal system. This can be seen by inspection of the different grounds and consequences correlated. For this purpose, the notion of liberty conditions is useful (on liberty conditions, see above Section 4.4). To exemplify, $a_{1} \wedge b_{1}$ means being the owner of both estate E and adjacent estate. This condition is a ground for $T_{1} q_{1} \wedge T_{1} q_{2} \wedge T_{1} q_{3} \wedge T_{1} q_{4}$, which is the normative position-condition denoting full freedom (operator T_{1}) with regard to all of q_{1}, \ldots, q_{4} (painting the two buildings, letting the cows move around, erecting a surrounding fence). In contrast, $a_{1} \wedge b_{1}^{\prime}$ means owning estate E but not adjacent estate. This condition is ground for $T_{1} q_{1} \wedge T_{6} q_{2} \wedge T_{7} q_{3} \wedge T_{4} q_{4}$. This condition denotes full freedom regarding the painting of building on estate E, no freedom to bring about or prevent painting of building on adjacent estate, obligation to see to it that cows from estate E do not enter land of adjacent estate, and,
finally, freedom to prevent erection of the fence surrounding the estates and freedom to be passive about the matter, but no freedom to bring about the fence's being erected.

For further development of the example, see [Lindahl and Odelstad, 2004, sect. 6].

5 Intervenients for Boolean joining-systems

5.1 Introductory remarks on intervenients in $\mathbf{B j s}$,

In the present main section (Section 5) we will investigate the structure of a stratum $\left\langle B_{2}, R_{2}\right\rangle$ with intervenients, between one stratum $\left\langle B_{1}, R_{1}\right\rangle$ of grounds and one stratum $\left\langle B_{3}, R_{3}\right\rangle$ of consequences. In the present first subsection (Section 5.1), we introduce some notation and some basic results, in particular as regards Boolean operations on intervenients. Since these remarks have been dealt with extensively in [Lindahl and Odelstad, 2011], the general remarks are kept brief, and the reader is referred to [Lindahl and Odelstad, 2011] for proofs and further details.

One possible use of intervenients, not dealt with in the present chapter, is for characterizing a Boolean joining-system. Intervenients from B_{1} to B_{3} can be used for defining or characterizing the Boolean joining-system $\left\langle\mathcal{B}_{1}, \mathcal{B}_{3}, J_{1,3}\right\rangle$. Cf. [Lindahl and Odelstad, 2008a, sect. 2.3 .5 and 4], on gicsystems, proto-intervenients and the methodology of intermediate concepts.

After these remarks, attention will be paid in particular to cis applications regarding some important issues. In particular, networks of strata with intervenients, organic wholes of intervenients and narrowing of intervenients will be dealt with.

In Section 3.8, the notion of an intervenient was defined with respect to simple $J s$-triples presupposing that the joinings of the strata are disjunct sets. This presupposition is not appropriate when it comes to intervenients in systems of Bjs's, which can be seen in the following way. Suppose that $\mathcal{S}_{1}=\left\langle\mathcal{B}_{1}, \mathcal{B}_{2}, J_{1,2}\right\rangle, \mathcal{S}_{2}=\left\langle\mathcal{B}_{2}, \mathcal{B}_{3}, J_{2,3}\right\rangle$ and $\mathcal{S}_{3}=\left\langle\mathcal{B}_{1}, \mathcal{B}_{3}, J_{1,3}\right\rangle$, where $\mathcal{B}_{i}=$ $\left\langle B_{i}, \wedge,{ }^{\prime}, R_{i}\right\rangle$, are Bjs's and that $B_{i} \cap B_{j}=\{\perp, \top\}$ if $i \neq j, 1 \leq i, j \leq 3$. Then it can be the case that for some $a_{2} \in B_{2}, \perp$ is the weakest ground of a_{2} or \top is the strongest consequence of a_{2}. In either case, a_{2} is not a proper intervenient since $\left\langle\perp, a_{2}\right\rangle$ and $\left\langle a_{2}, \top\right\rangle$ are degenerated joinings (cf. Section 4.1.2). We say that a_{2} is a non-degenerated intervenient if a_{2} is an intervenient and $a_{2} \curvearrowright\left\langle a_{1}, a_{3}\right\rangle$, where $\left\langle a_{1}, a_{3}\right\rangle$ is a non-degenerated joining.

Definition 5.1 Suppose that $\mathcal{S}_{1}=\left\langle\mathcal{B}_{1}, \mathcal{B}_{2}, J_{1,2}\right\rangle, \mathcal{S}_{2}=\left\langle\mathcal{B}_{2}, \mathcal{B}_{3}, J_{2,3}\right\rangle$ and $\mathcal{S}_{3}=\left\langle\mathcal{B}_{1}, \mathcal{B}_{3}, J_{1,3}\right\rangle$ are joining-systems where $\mathcal{B}_{i}=\left\langle B_{i}, \wedge{ }^{\prime}{ }^{\prime}, R_{i}\right\rangle$ are complete and $B_{i} \cap B_{j}=\{\perp, \top\}$ for $i \neq j, 1 \leq i, j \leq 3$. If $J_{1,3} \supseteq J_{1,2} \mid J_{2,3}$ we say that $\left\langle\mathcal{S}_{1}, \mathcal{S}_{2}, \mathcal{S}_{3}\right\rangle$ is a Bjs-triple.
(Concerning completeness, see Section 4.1.1.)

Definition 5.2 In a Bjs-triple $\left\langle\mathcal{S}_{1}, \mathcal{S}_{2}, \mathcal{S}_{3}\right\rangle$, the element $a_{2} \in B_{2}$, is a non-degenerated intervenient from \mathcal{B}_{1} to \mathcal{B}_{3} corresponding to the joining $\left\langle a_{1}, a_{3}\right\rangle \in J_{1,3}$, denoted $a_{2} \curvearrowright\left\langle a_{1}, a_{3}\right\rangle$, if a_{1} is a non-degenerated weakest ground of a_{2} in \mathcal{S}_{1} and a_{3} is a non-degenerated strongest consequence of a_{3} in \mathcal{S}_{2}.

Suppose that $\Phi=\left\langle\mathcal{S}_{1}, \mathcal{S}_{2}, \mathcal{S}_{3}\right\rangle$ is a $B j s$-triple. Note that if $a_{2} \in B_{2}$ is an intervenient in Φ from \mathcal{B}_{1} to \mathcal{B}_{3} then there is $a_{1} \in B_{1}$ and $a_{3} \in B_{3}$ such that a_{2} is situated between B_{1} and B_{3} in \mathcal{S} in the sense that $\left\langle a_{1}, a_{2}\right\rangle \in J_{1,2}$, $\left\langle a_{2}, a_{3}\right\rangle \in J_{2,3}$ and $\left\langle a_{1}, a_{3}\right\rangle \in J_{1,3}$. Now, let us look at the converse of this statement. Suppose that $\left\langle a_{1}, a_{2}\right\rangle \in J_{1,2},\left\langle a_{2}, a_{3}\right\rangle \in J_{2,3}$ and $\left\langle a_{1}, a_{3}\right\rangle \in J_{1,3}$. Then, if a_{1} is not similar to falsum and a_{3} not similar to verum, then a_{2} is an intervenient from \mathcal{B}_{1} to \mathcal{B}_{3}. However, it is important to notice that, even though a_{2} is an intervenient from \mathcal{B}_{1} to \mathcal{B}_{3} in Φ, it is not guaranteed that $a_{2} \curvearrowright\left\langle a_{1}, a_{3}\right\rangle$, i.e., that a_{2} corresponds to $\left\langle a_{1}, a_{3}\right\rangle$. But if $\left\langle a_{1}, a_{2}\right\rangle \in \min J_{1,2}$, and $\left\langle a_{2}, a_{3}\right\rangle \in \min J_{2,3}$, this holds. Note also that if $\left\langle a_{1}, a_{3}\right\rangle \in \min J_{1,3}$ then there is $b_{2} \in B_{2}$ such that b_{2} is an intervenient in Φ from \mathcal{B}_{1} to \mathcal{B}_{3} and $b_{2} \curvearrowright\left\langle a_{1}, a_{3}\right\rangle$. (See [Lindahl and Odelstad, 2004, sect. 4] for details.)

5.1.1 Conjunction, disjunction and negation of intervenients

If we apply the Boolean operations conjunction, disjunction and negation on intervenients, will the result be intervenients as well? Which is the relationship between the conjunction of the weakest grounds of two intervenients and the weakest ground of their conjunction, and similarly for disjunction and negation? The same question arises with regard to strongest consequences. We will here consider conjunction and disjunction of pairs of intervenients. Of special interest is Boolean operations in connection with minimality.

Conjunction and disjunction of intervenients

In a Bjs-triple $\Phi=\left\langle\mathcal{S}_{1}, \mathcal{S}_{2}, \mathcal{S}_{3}\right\rangle$, we let $\operatorname{Iv}\left(B_{2}, B_{1}, B_{3}\right)$ denote the set of elements in B_{2} which are intervenients from B_{1} to B_{3} in Φ. We state some results presented in [Lindahl and Odelstad, 2011, sect. 4.2].

The following theorem states a necessary and sufficient condition for a conjunction of intervenients being an intervenient, and similarly for a disjunction of intervenients.

Theorem 5.3 Suppose that \mathcal{B}_{1} and \mathcal{B}_{3} are complete and that $a_{2} \curvearrowright\left\langle a_{1}, a_{3}\right\rangle$ and $b_{2} \curvearrowright\left\langle b_{1}, b_{3}\right\rangle$. Then

1. $\perp P_{1}\left(a_{1} \wedge b_{1}\right)$ iff $\left(a_{2} \wedge b_{2}\right) \in \operatorname{Iv}\left(B_{2}, B_{1}, B_{3}\right)$, and
2. $\left(a_{3} \vee b_{3}\right) P_{3} \top$ iff $\left(a_{2} \vee b_{2}\right) \in \operatorname{Iv}\left(B_{2}, B_{1}, B_{3}\right)$.

The following theorem states the relationships between the Boolean operations on intervenients and the corresponding operations on grounds and consequences, respectively. These relationships are important for the discussion of organic wholes of intervenients in the Section 5.2.1.

Theorem 5.4 Suppose that \mathcal{B}_{1} and \mathcal{B}_{3} are complete and that $a_{2} \curvearrowright\left\langle a_{1}, a_{3}\right\rangle$, $b_{2} \curvearrowright\left\langle b_{1}, b_{3}\right\rangle$. Then,

1. If $\left(a_{2} \wedge b_{2}\right) \in \operatorname{Iv}\left(B_{2}, B_{1}, B_{3}\right)$ then there is $c_{3} \in B_{3}$ such that $a_{2} \wedge b_{2} \curvearrowright$ $\left\langle a_{1} \wedge b_{1}, c_{3}\right\rangle$.
2. If $\left(a_{2} \vee b_{2}\right) \in \operatorname{Iv}\left(B_{2}, B_{1}, B_{3}\right)$ then there is $c_{1} \in B_{1}$ such that $a_{2} \vee b_{2} \curvearrowright$ $\left\langle c_{1}, a_{3} \vee b_{3}\right\rangle$.

The following theorems connect Boolean operations of intervenients to minimality.

Theorem 5.5 Suppose that $a_{2} \curvearrowright\left\langle a_{1}, a_{3}\right\rangle \in \min J_{1,3}$ and $b_{2} \curvearrowright\left\langle b_{1}, b_{3}\right\rangle \in$ $\min J_{1,3}$ and not $a_{1} \wedge b_{1} R_{1} \perp$ and not $\top R_{3} a_{3} \vee b_{3}$. Then the following holds:

1. If $\left\langle a_{1} \wedge b_{1}, a_{3} \wedge b_{3}\right\rangle \in \min J_{1,3}$, then $a_{2} \wedge b_{2} \curvearrowright\left\langle a_{1} \wedge b_{1}, a_{3} \wedge b_{3}\right\rangle$.
2. If $\left\langle a_{1} \vee b_{1}, a_{3} \vee b_{3}\right\rangle \in \min J_{1,3}$, then $a_{2} \vee b_{2} \curvearrowright\left\langle a_{1} \vee b_{1}, a_{3} \vee b_{3}\right\rangle$.

Theorem 5.6 Suppose that $a_{2} \curvearrowright\left\langle a_{1}, a_{3}\right\rangle \in \min J_{1,3}$ and $b_{2} \curvearrowright\left\langle b_{1}, b_{3}\right\rangle \in$ $\min J_{1,3}$ and, furthermore, not $a_{1} \wedge b_{1} R_{1} \perp$ and not $\top R_{3} a_{3} \vee b_{3}$. Then there are $c_{2}, d_{2} \in B_{2}, c_{3} \in B_{3}$ and $d_{1} \in B_{1}$ such that

1. $c_{2} \curvearrowright\left\langle a_{1} \wedge b_{1}, c_{3}\right\rangle \in \min J_{1,3}$, where $c_{3} R_{3}\left(a_{3} \wedge b_{3}\right)$, and
2. $d_{2} \curvearrowright\left\langle d_{1}, a_{3} \vee b_{3}\right\rangle \in \min J_{1,3}$, where $\left(a_{1} \vee b_{1}\right) R_{1} d_{1}$.

Negations of intervenients

Negations of intervenients is an interesting subject. We will here give an overview. (For details and proofs, see [Lindahl and Odelstad, 2008a]). Suppose that a_{2} is an intervenient from \mathcal{B}_{1} to \mathcal{B}_{3} corresponding to the joining $\left\langle a_{1}, a_{3}\right\rangle \in J_{1,3}$ in the $B j s$-triple $\Psi=\left\langle\mathcal{S}_{1}, \mathcal{S}_{2}, \mathcal{S}_{3}\right\rangle$. Then there are two possibilities with regard to the negation a_{2}^{\prime} of a_{2} :

1. a_{2}^{\prime} is an intervenient from \mathcal{B}_{1} to \mathcal{B}_{3} in the $B j s$-triple Ψ.
2. a_{2}^{\prime} is not an intervenient from \mathcal{B}_{1} to \mathcal{B}_{3} in the $B j s$-triple Ψ.

If a_{2}^{\prime} is not an intervenient we can distinguish between three possibilities:
(i) a_{2}^{\prime} has a non-degenerated weakest ground in B_{1} but no non-degenerated strongest consequence in B_{3}.
(ii) a_{2}^{\prime} has no non-degenerated weakest ground in B_{1} but a non-degenerated strongest consequence in B_{3}.
(iii) a_{2}^{\prime} has neither a non-degenerated weakest ground in B_{1} nor a nondegenerated strongest consequence in B_{3}.

If a_{2}^{\prime} is an intervenient it is important to note the relation between the joining corresponding to a_{2} and to a_{2}^{\prime}. Suppose that $a_{2} \curvearrowright\left\langle a_{1}, a_{3}\right\rangle$ and $a_{2}^{\prime} \curvearrowright\left\langle b_{1}, b_{3}\right\rangle$. Then:
(I) $\left\langle a_{1}^{\prime}, a_{3}^{\prime}\right\rangle \unlhd\left\langle b_{1}, b_{3}\right\rangle$.
(II) If $\left\langle a_{1}, a_{3}\right\rangle \in \min J_{1,3}$, then $\left\langle a_{1}^{\prime}, a_{3}^{\prime}\right\rangle \simeq\left\langle b_{1}, b_{3}\right\rangle$.
(III) If $\left\langle a_{1}^{\prime}, a_{3}^{\prime}\right\rangle,\left\langle b_{1}^{\prime}, b_{3}^{\prime}\right\rangle \in J_{1,3}$, then $\left\langle a_{1}^{\prime}, a_{3}^{\prime}\right\rangle \simeq\left\langle b_{1}, b_{3}\right\rangle$.

Note that if a_{2}^{\prime} is an intervenient this constitutes a restriction on the possibility of narrowing a_{2} (see Section 5.2 .2 below), since a narrowing of a_{2} implies a widening of $\left\langle a_{1}^{\prime}, a_{3}^{\prime}\right\rangle$, and (I) above gives a restriction of how wide $\left\langle a_{1}^{\prime}, a_{3}^{\prime}\right\rangle$ can be. If $a_{2} \curvearrowright\left\langle a_{1}, a_{3}\right\rangle$ and $\left\langle a_{1}, a_{3}\right\rangle \in \min J_{1,3}$ and a_{2}^{\prime} is an intervenient, then a_{2} cannot be narrowed. The same holds if $a_{2} \curvearrowright$ $\left\langle a_{1}, a_{3}\right\rangle, a_{2}^{\prime} \curvearrowright\left\langle b_{1}, b_{3}\right\rangle$ and $\left\langle a_{1}^{\prime}, a_{3}^{\prime}\right\rangle,\left\langle b_{1}^{\prime}, b_{3}^{\prime}\right\rangle \in J$. The subject of negations of intervenients is important in connection with open intermediaries (see Section 5.2 .2 below).

5.2 cis' with intervenients

As appears from the foregoing, in TJS for intervenients, "intervenient" is a technical notion defined at the abstract algebraic level. The notion is intended as a tool for analyzing different kinds of what, informally, is called "intermediaries" and the aim is to provide tools for analyzing intermediaries as they appear in law, language, morals, and so on. For this reason cis' with intervenients is an important part of the chapter.

In the present Section 5.2, we assume that intervenients referred in the text are non-degenerated intervenients (see Definition 5.2).

5.2.1 Organic wholes

Attention should be drawn to the possible occurrence in normative systems of a phenomenon analogous to what G.E. Moore in Principia Ethica (first published in 1903) called an "organic unity" or "organic whole". Characteristic of an organic unity, according to Moore, is "that the value of
such a whole bears no regular proportion to the sum of the values of its parts" ${ }^{[M o o r e, ~ 1971, ~ p . ~ 27] . ~ U s i n g ~ a n o t h e r ~ t e r m i n o l o g y, ~ t h e ~ p h e n o m e n o n ~}$ can be called "synergy". In a context of norms, and within our algebraic framework of Boolean joining-systems, the idea of organic wholes refers to the normative impact of a Boolean compound of conditions rather than to "values" in Moore's sense. In the present section, this theme is dealt with as regards the normative impact of conjunction and disjunction of intervenients.

Definition 5.7 Let $a_{2} \curvearrowright\left\langle a_{1}, a_{3}\right\rangle, b_{2} \curvearrowright\left\langle b_{1}, b_{3}\right\rangle$, and $\left(a_{2} \wedge b_{2}\right),\left(a_{2} \vee b_{2}\right) \in$ $\operatorname{Iv}\left(B_{2}, B_{1}, B_{3}\right)$.
(i) If there is $c_{3} \in B_{3}$ such that $a_{2} \wedge b_{2} J_{2,3} c_{3}$ and $c_{3} P_{3} a_{3} \wedge b_{3}$, we say that $a_{2} \wedge b_{2}$ is a conjunctive organic whole of a_{2} and b_{2},
(ii) If there is $c_{1} \in B_{1}$ such that $c_{1} J_{1,2} a_{2} \vee b_{2}$ and $a_{1} \vee b_{1} P_{1} c_{1}$, we say that $a_{2} \vee b_{2}$ is a disjunctive organic whole of a_{2} and b_{2}.

Note that a disjunctive organic whole is constructed as the dual of a conjunctive organic whole.

A cis example of a conjunctive organic whole is a follows (cf. [Lindahl and Odelstad, 2003, sect. 5.1, p. 101]):

We imagine an athletic competition, where there are two events, running and high jumping. We consider three $B q{ }^{\prime}$'s where \mathcal{B}_{1} (with a_{1}, b_{1}, \ldots) concerns competition results in the two events, where \mathcal{B}_{2} (with a_{2}, b_{2}, \ldots) concerns winner's titles, and where \mathcal{B}_{3} (with $a_{3}, b_{3}, c_{3}, \ldots$) concerns rights to competition prizes.
a_{1} is to be the fastest runner, b_{1} is to jump the highest,
a_{2} is to be "master of running", b_{2} is to be "master of jumping", $a_{2} \wedge b_{2}$ is to be "twofold master".
a_{3} is to have the right of the running prize, b_{3} is to have the right of the jumping prize, $c_{3}=a_{3} \wedge b_{3} \wedge d_{3}$ is to have the right of the excellence prize, namely $\left(a_{3}\right)$ the right of the running prize, and $\left(b_{3}\right)$ the right of the jumping prize, and, in addition, $\left(d_{3}\right)$ the right of a special bonus prize for the twofold master. The example is illustrated in Figure 22.

In the example we have: $a_{2} \curvearrowright\left\langle a_{1}, a_{3}\right\rangle, b_{2} \curvearrowright\left\langle b_{1}, b_{3}\right\rangle, a_{2} \wedge b_{2} \curvearrowright\left\langle a_{1} \wedge\right.$ $\left.b_{1}, c_{3}\right\rangle$, where $c_{3} P_{3}\left(a_{3} \wedge b_{3}\right)$. Since we have $c_{3} P_{3}\left(a_{3} \wedge b_{3}\right)$, it holds in the $B j s^{-}$ triple $\left\langle\left\langle\mathcal{B}_{1}, \mathcal{B}_{2}, J_{1,2}\right\rangle,\left\langle\mathcal{B}_{2}, \mathcal{B}_{3}, J_{2,3}\right\rangle,\left\langle\mathcal{B}_{1}, \mathcal{B}_{3}, J_{1,3}\right\rangle\right\rangle$ that the intervenient $a_{2} \wedge b_{2}$ is an organic whole in relation to \mathcal{B}_{3}. In other words: $a_{2} \wedge b_{2}$ is an organic whole since the consequence $c_{3}=a_{3} \wedge b_{3} \wedge d_{3}$ of the intervenient $a_{2} \wedge b_{2}$ is "stronger" $\left(P_{3}\right)$ than the "sum" $a_{3} \wedge b_{3}$ of the consequence a_{3} of a_{2} and the consequence b_{3} of b_{2}.

A subset of the minimal joinings from B_{2} to B_{3} is depicted by the thick lines in Figure 22.

Figure 22

We observe that, in the sense of Theorem 3.34,

$$
\begin{aligned}
& \operatorname{glb}_{R_{2}} \pi_{1}\left\{\left\langle a_{2}, a_{3}\right\rangle,\left\langle b_{2}, b_{3}\right\rangle\right\}=\operatorname{glb}_{R_{2}}\left\{a_{2}, b_{2}\right\}=\left\{a_{2} \wedge b_{2}\right\}= \\
& \pi_{1}\left[\operatorname{glb}_{\precsim / \min J}\left\{\left\langle a_{2}, a_{3}\right\rangle,\left\langle b_{2}, b_{3}\right\rangle\right\}\right] .
\end{aligned}
$$

For a legal example concerning citizenship, see [Lindahl and Odelstad, 2003, sect. 5.1].

5.2.2 Open concepts and the narrowing of intervenients

Ground-narrowing We recall the issue of open legal concepts and the example of "relationship similar to being married" (Section 1.7.5 above). Let $\Psi=\left\langle\mathcal{S}_{1}, \mathcal{S}_{2}, \mathcal{S}_{3}\right\rangle$ be a Bjs-triple with

$$
\mathcal{S}_{1}=\left\langle\mathcal{B}_{1}, \mathcal{B}_{2}, J_{1,2}\right\rangle, \mathcal{S}_{2}=\left\langle\mathcal{B}_{2}, \mathcal{B}_{3}, J_{2,3}\right\rangle, \mathcal{S}_{3}=\left\langle\mathcal{B}_{1}, \mathcal{B}_{3}, J_{1,3}\right\rangle .
$$

Condition $a_{2} \in B_{2}$ (where B_{2} is the domain of stratum \mathcal{B}_{2}) is the condition of having a relationship similar to being married. The grounds for a_{2} are among the elements of the domain B_{1} of stratum \mathcal{B}_{1} which includes Boolean combinations of the following conditions $a_{1_{1}}, a_{1_{2}}, \ldots, a_{1_{11}}$:
$a_{1_{1}}$: cohabiting, $a_{1_{2}}$: housekeeping in common, $a_{1_{3}}$: having children in common, $a_{1_{4}}$: having sexual intercourse, $a_{1_{5}}$: having confirmed the relation
by a contract, $a_{1_{6}}$: living in emotional fellowship, $a_{1_{7}}$: being faithful, $a_{1_{8}}$: giving mutual support, $a_{1_{9}}$: sharing economic assets and debts, $a_{1_{10}}$: having no legal impediments to marriage, $a_{1_{11}}$: having no similar relationship to another person.

Let us suppose that the consequences of having a relationship similar to being married are among the Boolean combinations of conditions $a_{3_{1}}, \ldots, a_{3_{5}}$ belonging to the domain B_{3} of stratum \mathcal{B}_{3}.

We assume that in the Bjs-triple $\Psi, a_{2} \in B_{2}$ is an intervenient between $\left(a_{1_{1}} \wedge a_{1_{2}} \wedge \ldots \wedge a_{1_{11}}\right) \in B_{1}$ and $\left(a_{3_{1}} \wedge \ldots \wedge a_{3_{5}}\right) \in B_{3}$, i.e.,

$$
a_{2} \curvearrowright\left\langle\left(a_{1_{1}} \wedge a_{1_{2}} \wedge \ldots \wedge a_{1_{11}}\right),\left(a_{3_{1}} \wedge \ldots \wedge a_{3_{5}}\right)\right\rangle
$$

Thus we assume that in the Bjs-triple Ψ, the conjunction $a_{1_{1}} \wedge a_{1_{2}} \wedge \ldots \wedge a_{1_{11}}$ is the weakest ground in B_{1} for a_{2} and $a_{3_{1}} \wedge \ldots \wedge a_{3_{5}}$ is the strongest consequence in B_{3} of a_{2}.

Next we consider a Bjs-triple $\Psi^{*}=\left\langle\mathcal{S}_{1}^{*}, \mathcal{S}_{2}, \mathcal{S}_{3}^{*}\right\rangle$ where $\mathcal{B}_{1}, \mathcal{B}_{2}, \mathcal{B}_{3}$ are the same as in Ψ and where \mathcal{S}_{2} remains unchanged but where $J_{1,2}^{*}$ and $J_{1,3}^{*}$ in Ψ^{*} are different from $J_{1,2}$ and $J_{1,3}$ in Ψ. We assume that $\mathcal{S}_{1}^{*}=$ $\left\langle\mathcal{B}_{1}, \mathcal{B}_{2}, J_{1,2}^{*}\right\rangle$ and $\mathcal{S}_{3}^{*}=\left\langle\mathcal{B}_{1}, \mathcal{B}_{3}, J_{1,3}^{*}\right\rangle$ in Ψ^{*} are different from \mathcal{S}_{1} and \mathcal{S}_{3} in Ψ since in Ψ^{*},

$$
a_{2} \curvearrowright\left\langle\left(a_{1_{1}} \wedge a_{1_{2}} \wedge a_{1_{9}} \wedge a_{1_{11}}\right),\left(a_{3_{1}} \wedge \ldots \wedge a_{3_{5}}\right)\right\rangle .
$$

Thus in Ψ^{*}, the conjunction of $a_{1_{1}} \wedge a_{1_{2}} \wedge a_{1_{9}} \wedge a_{1_{11}}$ is the weakest ground for a_{2}. This means that in Ψ^{*}, the weakest ground for a_{2} is the conjunction of:
$a_{1_{1}}$: cohabiting, $a_{1_{2}}$: housekeeping in common, $a_{1_{9}}$: sharing economic assets and debts, $a_{1_{11}}$: having no similar relationship to another person.

Obviously, in both Ψ and Ψ^{*} it holds that $\left(a_{1_{1}} \wedge a_{1_{2}} \wedge \ldots \wedge a_{1_{11}}\right) R_{1}\left(a_{1_{1}} \wedge\right.$ $\left.a_{1_{2}} \wedge a_{1_{9}} \wedge a_{1_{11}}\right)$. Therefore, the joining $\left\langle\left(a_{1_{1}} \wedge a_{1_{2}} \wedge a_{1_{9}} \wedge a_{1_{11}}\right), a_{2}\right\rangle$ in $J_{1,2}^{*}$ is narrower than the joining $\left\langle\left(a_{1_{1}} \wedge a_{1_{2}} \wedge \ldots \wedge a_{1_{11}}\right), a_{2}\right\rangle$ in $J_{1,2}$. Accordingly, it also holds that the joining $\left\langle\left(a_{1_{1}} \wedge a_{1_{2}} \wedge a_{1_{9}} \wedge a_{1_{11}}\right),\left(a_{3_{1}} \wedge \ldots \wedge a_{3_{5}}\right)\right\rangle$ in $J_{1,3}^{*}$ is narrower than the joining $\left\langle\left(a_{1_{1}} \wedge a_{1_{2}} \wedge \ldots \wedge a_{1_{11}}\right),\left(a_{3_{1}} \wedge \ldots \wedge a_{3_{5}}\right)\right\rangle$ in $J_{1,3}$. We describe the situation by saying that the intervenient a_{2} is ground-narrower in Ψ^{*} than in Ψ. This means that the weakest ground for a_{2} in Ψ^{*} is less restricted than in Ψ.

In general terms we can say: If $\Psi=\left\langle\mathcal{S}_{1}, \mathcal{S}_{2}, \mathcal{S}_{3}\right\rangle, \Psi^{*}=\left\langle\mathcal{S}_{1}, \mathcal{S}_{2}^{*}, \mathcal{S}_{3}^{*}\right\rangle$ are Bjs-triples with $\mathcal{B}_{i}=\mathcal{B}_{i}^{*}(1 \leq i \leq 3)$ and $a_{2} \curvearrowright\left\langle a_{1}, a_{3}\right\rangle$ in $\Psi, a_{2} \curvearrowright\left\langle b_{1}, a_{3}\right\rangle$ in Ψ^{*} and $\left\langle b_{1}, a_{3}\right\rangle \triangleleft\left\langle a_{1}, a_{3}\right\rangle$, then a_{2} is ground-narrower in Ψ^{*} than in $\Psi .{ }^{24}$

[^18]As an illustrative elaboration of the example, let us consider a normative system such as "Swedish law" as a class of Bjs-triples $\Psi, \Psi^{*}, \Psi^{* *} \ldots$ etc. Then we might think of Ψ as a representation of "established Swedish law" and of $\Psi^{*}, \Psi^{* *} \ldots$ etc. as developments of Ψ, made by new authoritative court decisions. Referring to the example, a new court decision resulting in Ψ^{*} still respects the established law in Ψ insofar as the joining $\left\langle\left(a_{1_{1}} \wedge a_{1_{2}} \wedge\right.\right.$ $\left.\left.a_{1_{9}} \wedge a_{1_{11}}\right), a_{2}\right\rangle$ in established law Ψ still remains in system Ψ^{*}.

The possibility of narrowing an intervenient while respecting established law Ψ can be barred by a stipulation in Ψ that a certain combination of elements in B_{1} is not a ground for the intervenient a_{2}. As regards the handling of this case, see [Odelstad and Lindahl, 2002, sect. 3.4] (cf. [Lindahl and Odelstad, 1999b]).

If we say that "relationship similar to being married" is an "open" concept in Swedish law, this might be taken to mean that established law in Ψ represents only a part of what is considered to count as Swedish law, and that Ψ^{*} is a development of the first regulative step taken by establishing Ψ.

Consequence-narrowing

What has been said about ground-narrowing has an analogous application in consequence-narrowing. The outlines of an example might regard the consequences of the intervenient being the owner of an estate. Let $\Psi=$ $\left\langle\mathcal{S}_{1}, \mathcal{S}_{2}, \mathcal{S}_{3}\right\rangle$ be a Bjs-triple with

$$
\mathcal{S}_{1}=\left\langle\mathcal{B}_{1}, \mathcal{B}_{2}, J_{1,2}\right\rangle, \mathcal{S}_{2}=\left\langle\mathcal{B}_{2}, \mathcal{B}_{3}, J_{2,3}\right\rangle, \mathcal{S}_{3}=\left\langle\mathcal{B}_{1}, \mathcal{B}_{3}, J_{1,3}\right\rangle
$$

with
$a_{2}: x$ is the owner of an estate,
and where in Ψ it holds that a_{2} is an intervenient between the disjunction $\left(a_{1_{1}} \vee a_{1_{2}} \vee \ldots \vee a_{1_{m}}\right)$ of grounds for ownership and the conjunction $\left(a_{3_{1}} \wedge\right.$ $\left.a_{3_{2}} \wedge \ldots \wedge a_{3_{n}}\right)$ of consequences of ownership, i.e., where in Ψ it holds that

$$
a_{2} \curvearrowright\left\langle\left(a_{1_{1}} \vee a_{1_{2}} \vee \ldots \vee a_{1_{m}}\right),\left(a_{3_{1}} \wedge a_{3_{2}} \wedge \ldots \wedge a_{3_{n}}\right)\right\rangle
$$

Let $a_{3_{n+1}}$ be a consequence that is not a conjunct in the conjunction $\left(a_{3_{1}} \wedge a_{3_{2}} \wedge \ldots \wedge a_{3_{n}}\right)$; for example let $a_{3_{n+1}}$ be the condition
$a_{3_{n+1}}: x$ is permitted to erect a barbed-wire fence around the entire estate preventing others from entering.

In Ψ^{*} we have instead

$$
a_{2} \curvearrowright\left\langle\left(a_{1_{1}} \vee a_{1_{2}} \vee \ldots \vee a_{1_{m}}\right),\left(a_{3_{1}} \wedge a_{3_{2}} \wedge \ldots \wedge a_{3_{n}} \wedge a_{3_{n+1}}\right)\right\rangle
$$

where $a_{3_{n+1}}$ is a conjunct in the conjunction of consequences.

Since $\left(a_{3_{1}} \wedge a_{3_{2}} \wedge \ldots \wedge a_{3_{n}} \wedge a_{3_{n+1}}\right) R_{3}\left(a_{3_{1}} \wedge a_{3_{2}} \wedge \ldots \wedge a_{3_{n}}\right)$, it follows that the joining $\left\langle a_{2},\left(a_{3_{1}} \wedge a_{3_{2}} \wedge \ldots \wedge a_{3_{n}} \wedge a_{3_{n+1}}\right)\right.$ which is narrowest in Ψ^{*} for the consequences of a_{2} is narrower than the joining $\left\langle a_{2},\left(a_{3_{1}} \wedge a_{3_{2}} \wedge \ldots \wedge a_{3_{n}}\right)\right\rangle$ which is narrowest in Ψ. In this sense, the intervenient a_{2} is consequencenarrower in Ψ^{*} than in Ψ. This means that the strongest consequence of a_{2} in Ψ^{*} is richer than in Ψ.

In general terms: If $\Psi=\left\langle\mathcal{S}_{1}, \mathcal{S}_{2}, \mathcal{S}_{3}\right\rangle, \Psi^{*}=\left\langle\mathcal{S}_{1}, \mathcal{S}_{2}^{*}, \mathcal{S}_{3}^{*}\right\rangle$ are Bjs-triples with $\mathcal{B}_{i}=\mathcal{B}_{i}^{*}(1 \leq i \leq 3)$ and the joinings in Ψ, Ψ^{*} differ insofar as $a_{2} \curvearrowright$ $\left\langle a_{1}, a_{3}\right\rangle$ in $\Psi, a_{2} \curvearrowright\left\langle a_{1}, b_{3}\right\rangle$ in Ψ^{*} where $\left\langle a_{1}, b_{3}\right\rangle \triangleleft\left\langle a_{1}, a_{3}\right\rangle$, then a_{2} is consequence-narrower in Ψ^{*} than in Ψ.

What was said in the previous subsection of a normative system such as "Swedish law" as a class of Bjs-triples $\Psi, \Psi^{*}, \Psi^{* *} \ldots$ and of developing established law by narrowing an intervenient applies to consequence-narrowing in an analogous way.

5.2.3 A legal illustration of a network of strata

The present subsection (with Figure 23 on page 621) presents a cis example of joining-systems with intervenients for a network of Bqo strata. (Cf. [Lindahl and Odelstad, 2011]) The example is legal and concerns ownership and trust as intervenients. The legal rules in this example are expressed in terms of joinings between Bqo's $\mathcal{B}_{1}, \mathcal{B}_{2}, \mathcal{B}_{4}, \mathcal{B}_{5}$ for ownership, and between \mathcal{B}_{3}, \mathcal{B}_{4} and \mathcal{B}_{5} for trusteeship. ${ }^{25}$ Both of \mathcal{B}_{2} and \mathcal{B}_{4} are intermediate structures, where B_{4} is supposed to contain the intervenients ownership and trusteeship and B_{2} the intervenients purchase, barter, inheritance, occupation, specification, expropriation (for public purposes or for other reasons), which are grounds for ownership. B_{1} contains grounds for the conditions in B_{2}, such as making a contract for purchase or barter respectively, having particular kinship relationship to a deceased person, appropriating something not owned, creating a valuable thing out of worthless material, getting a verdict on disappropriation of property, either for public purposes or for other reasons. B_{3} contains different grounds for trusteeship. B_{5} contains the legal consequences of ownership and trusteeship, respectively, in terms of powers, permissions and obligations.

The example is a useful illustration in several ways. Thus it illustrates a TJS representation of a fairly complex normative system. Also, as will be shown in the nest subsection, it illustrates various properties of intervenients in terms of minimality.

[^19]

Figure 23

5.2.4 The typology of intervenient-minimality

The previous sections illustrate the role of intervenient concepts in the representation of a normative system. Of special interest is where intervenients exhibit different kinds of minimality. (To the following, see [Lindahl and Odelstad, 2011, pp. 132ff.]) Above, we have underlined the central role of minimal joinings and the formal structure of the set of minimal joinings. The previous sections provide tools for distinguishing between different kinds of intervenient minimality. We presuppose a Bjs-triple $\left\langle\mathcal{S}_{1}, \mathcal{S}_{2}, \mathcal{S}_{3}\right\rangle$ in the sense of Definition 5.1 and non-degenerated intervenients in the sense of Definition 5.2.

If $a_{2} \in \operatorname{Iv}\left(B_{2}, B_{1}, B_{3}\right)$ and $a_{2} \curvearrowright\left\langle a_{1}, a_{3}\right\rangle$, we say that,
a_{2} is correspondence-minimal if $\left\langle a_{1}, a_{3}\right\rangle \in \min J_{1,3}$,
a_{2} is ground-minimal if $\left\langle a_{1}, a_{2}\right\rangle \in \min J_{1,2}$,
a_{2} is consequence-minimal if $\left\langle a_{2}, a_{3}\right\rangle \in \min J_{2,3}$.
Combining the three cases,
(1) $\left\langle a_{1}, a_{3}\right\rangle \in \min J_{1,3}$,
(2) $\left\langle a_{1}, a_{2}\right\rangle \in \min J_{1,2}$,
(3) $\left\langle a_{2}, a_{3}\right\rangle \in \min J_{2,3}$,
with their negations $\left(1^{\prime}\right),\left(2^{\prime}\right),\left(3^{\prime}\right)$, eight $\left(2^{3}\right)$ cases are obtained. In the case $\left(1^{\prime}\right) \&\left(2^{\prime}\right) \&\left(3^{\prime}\right)$, the intervenient a_{2} will be called non-minimal.

Not all eight cases are possible to realize. If $J_{1,3}=J_{1,2} \mid J_{2,3}$, then (1) is implied by $(2) \&(3)$. Hence, under this supposition, the case $\left(1^{\prime}\right) \&(2) \&(3)$ is impossible to realize.

As regards the importance of minimality emphasized above, note that the following holds: Suppose that $X_{2} \subseteq B_{2}$ is such that for any $\left\langle x_{1}, x_{3}\right\rangle \in$ $\min J_{1,3}$ there is $x_{2} \in X_{2}$ such that $x_{2} \curvearrowright\left\langle x_{1}, x_{3}\right\rangle$. Then
$J_{1,3}=\left\{\left\langle a_{1}, a_{3}\right\rangle \in B_{1} \times B_{3} \mid \exists b_{2} \in X_{2}:\left\langle a_{1}, b_{2}\right\rangle \in J_{1,2}\right.$ and $\left.\left\langle b_{2}, a_{3}\right\rangle \in J_{2,3}\right\}$.
Hence, a set of correspondence-minimal intervenients can be a convenient way for characterizing a set of joinings.

However, intervenients can be useful even if they are not correspondenceminimal. A type worth considering is $\left(1^{\prime}\right) \&(2) \&\left(3^{\prime}\right)$, i.e., where a_{2} is groundminimal but neither correspondence-minimal nor consequence-minimal. For instance, murder and high treason can have the same legal consequence (life imprisonment) notwithstanding that these crimes have different grounds. ${ }^{26}$ Thus let
a_{1} : grounds for murder, b_{1} : grounds for high treason
a_{2} : murder, b_{2} : high treason,
a_{3} : life imprisonment
The example is illustrated by Figure 24.
We have $a_{2} \curvearrowright\left\langle a_{1}, a_{3}\right\rangle, b_{2} \curvearrowright\left\langle b_{1}, a_{3}\right\rangle, a_{2} \vee b_{2} \curvearrowright\left\langle a_{1} \vee b_{1}, a_{3}\right\rangle$. The intervenient $a_{2} \vee b_{2}$ is correspondence-minimal as well as ground- and consequenceminimal. Each of the intervenients a_{2} and b_{2}, however, though groundminimal, is neither consequence-minimal nor correspondence-minimal.

[^20]

Figure 24

Types of intervenient minimality in the ownership/trust example The ownership/trust example (Figure 23 on page 621) can be used for illustrating some types of intervenient minimality.

1. $a_{2}^{i}(1 \leq i \leq 7)$ is an intervenient from B_{1} to B_{4}. This holds since $\mathrm{WG}\left(a_{1}^{i}, a_{2}^{i}, B_{1}\right)$ and $\operatorname{SC}\left(a_{4}^{2}, a_{2}^{i}, B_{4}\right)$ and hence $a_{2}^{i} \curvearrowright\left\langle a_{1}^{i}, a_{4}^{2}\right\rangle$. Note that (it is assumed that) $\left\langle a_{1}^{i}, a_{2}^{i}\right\rangle \in \min J_{1,2}$. Hence, the intervenient a_{2}^{i} is ground-minimal. However, a_{2}^{i} is neither correspondence-minimal (since $\left\langle a_{1}^{i}, a_{4}^{2}\right\rangle \notin \min J_{1,4}$), nor consequence-minimal (since $\left\langle a_{2}^{i}, a_{4}^{2}\right\rangle \notin$ $\left.\min J_{2,4}\right)$.
2. $a_{2}^{1} \vee \ldots \vee a_{2}^{7}$ is an intervenient from B_{1} to B_{4}. This holds since

$$
\mathrm{WG}\left(a_{1}^{1} \vee \ldots \vee a_{1}^{7}, a_{2}^{1} \vee \ldots \vee a_{2}^{7}, B_{1}\right)
$$

and

$$
\operatorname{SC}\left(a_{4}^{2}, a_{2}^{1} \vee \ldots \vee a_{2}^{7}, B_{4}\right)
$$

and hence

$$
a_{2}^{1} \vee \ldots \vee a_{2}^{7} \curvearrowright\left\langle a_{1}^{1} \vee \ldots \vee a_{1}^{7}, a_{4}^{2}\right\rangle
$$

It is assumed that

$$
\left\langle a_{1}^{1} \vee \ldots \vee a_{1}^{7}, a_{2}^{1} \vee \ldots \vee a_{2}^{7}\right\rangle \in \min J_{1,2}
$$

and that $\left\langle a_{2}^{1} \vee \ldots \vee a_{2}^{7}, a_{4}^{2}\right\rangle \in \min J_{2,4}$. It then follows that $\left\langle a_{1}^{1} \vee \ldots \vee a_{1}^{7}, a_{4}^{2}\right\rangle \in$ $\min J_{1,4}$. (See the remark at the end of Section 3.7.) Hence, $a_{2}^{7} \vee \ldots \vee a_{2}^{7}$ is ground-, consequence- and correspondence-minimal.
3. a_{4}^{2} (being owner) is an intervenient from B_{2} to B_{5}. This holds since

$$
\mathrm{WG}\left(a_{2}^{1} \vee \ldots \vee a_{2}^{7}, a_{4}^{2}, B_{2}\right)
$$

and $\operatorname{SC}\left(a_{5}^{2} \wedge \ldots \wedge a_{5}^{6}, a_{4}^{2}, B_{5}\right)$ and hence

$$
a_{4}^{2} \curvearrowright\left\langle a_{2}^{1} \vee \ldots \vee a_{2}^{7}, a_{5}^{2} \wedge \ldots \wedge a_{5}^{6}\right\rangle .
$$

It is assumed that $\left\langle a_{2}^{1} \vee \ldots \vee a_{2}^{7}, a_{4}^{2}\right\rangle \in \min J_{2,4}$ and

$$
\left\langle a_{4}^{2}, a_{5}^{2} \wedge \ldots \wedge a_{5}^{6}\right\rangle \in \min J_{4,5}
$$

It follows that

$$
\left\langle a_{2}^{1} \vee \ldots \vee a_{2}^{7}, a_{5}^{2} \wedge \ldots \wedge a_{5}^{6}\right\rangle \in \min J_{2,5}
$$

Hence, the intervenient a_{4}^{2} is ground-, consequence- and correspondenceminimal.
4. a_{4}^{1} (being trustee) is an intervenient from B_{3} to B_{5}. This holds since

$$
\mathrm{WG}\left(a_{3}^{1} \vee a_{3}^{2}, a_{4}^{1}, B_{3}\right)
$$

and SC $\left(a_{5}^{1} \wedge a_{5}^{2} \wedge a_{5}^{3}, a_{4}^{1}, B_{5}\right)$ and hence

$$
a_{4}^{1} \curvearrowright\left\langle a_{3}^{1} \vee a_{3}^{2}, a_{5}^{1} \wedge a_{5}^{2} \wedge a_{5}^{3}\right\rangle
$$

It is assumed that $\left\langle a_{3}^{1} \vee a_{3}^{2}, a_{4}^{1}\right\rangle \in \min J_{3,4}$ and that

$$
\left\langle a_{4}^{1}, a_{5}^{1} \wedge a_{5}^{2} \wedge a_{5}^{3}\right\rangle \in \min J_{4,5}
$$

Once more it follows that

$$
\left\langle a_{3}^{1} \vee a_{3}^{2}, a_{5}^{1} \wedge a_{5}^{2} \wedge a_{5}^{3}\right\rangle \in \min J_{3,5}
$$

Hence, a_{4}^{1} is ground-, consequence- and correspondence-minimal. On the other hand, since

$$
\left\langle a_{4}^{1} \vee a_{4}^{2}, a_{5}^{2} \wedge a_{5}^{3}\right\rangle \in J_{4,5}
$$

it follows that $\left\langle a_{4}^{1}, a_{5}^{2} \wedge a_{5}^{3}\right\rangle \notin \min J_{4,5}$.
5. a_{4}^{2} (being an owner) is an intervenient from \mathcal{B}_{1} to \mathcal{B}_{5}. (Cf. 3 above.) This holds since

$$
\mathrm{WG}\left(a_{1}^{1} \vee \ldots \vee a_{1}^{7}, a_{4}^{2}, B_{1}\right)
$$

and

$$
\operatorname{SC}\left(a_{5}^{2} \wedge \ldots \wedge a_{5}^{6}, a_{4}^{2}, B_{5}\right)
$$

and hence

$$
a_{4}^{2} \curvearrowright\left\langle a_{1}^{1} \vee \ldots \vee a_{1}^{7}, a_{5}^{2} \wedge \ldots \wedge a_{5}^{6}\right\rangle
$$

Here, it is assumed that (i)

$$
\left\langle a_{1}^{1} \vee \ldots \vee a_{1}^{7}, a_{2}^{1} \vee \ldots \vee a_{2}^{7}\right\rangle \in \min J_{1,2}
$$

that (ii)

$$
\left\langle a_{2}^{1} \vee \ldots \vee a_{2}^{7}, a_{4}^{2}\right\rangle \in \min J_{2,4}
$$

and that (iii)

$$
\left\langle a_{4}^{2}, a_{5}^{2} \wedge \ldots \wedge a_{5}^{6}\right\rangle \in \min J_{4,5}
$$

From (iii) it follows that a_{4}^{2} is consequence minimal. From (i)-(iii) and (once more) the remark in Section 3.7 it follows that $\left\langle a_{1}^{1} \vee \ldots \vee a_{1}^{7}, a_{4}^{2}\right\rangle \in$ $\min J_{1,4}$ (ground minimality for a_{4}^{2}), and that

$$
\left\langle a_{1}^{1} \vee \ldots \vee a_{1}^{7}, a_{5}^{2} \wedge \ldots \wedge a_{5}^{6}\right\rangle \in \min J_{1,5}
$$

(correspondence minimality for a_{4}^{2}). Hence, a_{4}^{2} is ground-, consequenceand correspondence minimal.

6 Related work

6.1 Previous work of ours

In our first major joint work on the subject of intermediate concepts, viz. [Lindahl and Odelstad, 1999a], we presented a number of ideas to be further developed in subsequent papers of ours. ${ }^{27}$ Our concern with intermediaries originally was inspired by the Scandinavian legal and philosophical discussion of intermediate concepts in the law, a discussion started in the 1940's by Ekelöf and Wedberg. Other sources of inspiration were Dummett's theory of language, Gentzen's theory of natural deduction and the theory of normative systems of Alchourrón and Bulygin. (See Section 1.7 above.)

Our aim in [Lindahl and Odelstad, 1999a] was to provide tools for a rational reconstruction of a legal system with intermediaries; the formal framework was that of a lattice $\langle L, \leq\rangle$ of conditions and an implicative relation \wp over L such that $\left\langle L_{\wp}, \leq_{\wp}\right\rangle$ is generated by the equivalence relation

[^21]\approx_{\wp}. Within this framework, we defined the notion of a lattice joiningsystem $\langle\mathbf{A}, \mathbf{B}, \mathbf{C}\rangle$, with \mathbf{A} the under-lattice, \mathbf{B} the over-lattice and \mathbf{C} the background lattice. We defined two kinds of linking relations between \mathbf{A} and C, viz. the relations of "connection" and "coupling". We treated themes such as couplings satisfying a constraint, the relations "narrower" and "wider" for couplings, and the interrelation between coupling conditions and the notion of "intermediary".

In subsequent papers, we exchanged the main framework of lattices for a framework of Boolean quasi-orderings (Bqo's, cf. Section 4.1.1 above.) $)^{28}$ Connections and couplings now were thought of as relations between what we called "fragments" of a Bqo. A Bqo $\left\langle B, \wedge,{ }^{\prime}, R\right\rangle$ was thought of as the "closure" of a supplemented Boolean algebra $\left\langle B, \wedge,{ }^{\prime}, \rho\right\rangle .{ }^{29}$ Also, the algebraic framework was made more abstract, so as to consider "condition implication structures" as models of the more abstract framework. Within this framework, the theory was further developed in various respects. In [Lindahl and Odelstad, 1999b], we introduced the idea of a normative system as a set of Bqo's, among which a "core" and a number of "amplifications"; in [Lindahl and Odelstad, 2000], we treated the problem of intermediate legal concepts that (like disposition concepts) express hypothetical consequences; in [Odelstad and Lindahl, 2002], we further developed the theory of connections; in [Lindahl and Odelstad, 2003], we treated the idea of subtraction and addition of norms; in [Lindahl and Odelstad, 2004], we proposed a model for normative positions within the algebraic framework; and, in [Lindahl and Odelstad, 2006b], we dealt summarily with open and closed intermediaries.

A third stage of development with regard to the general framework appeared with the introduction of Boolean joining-systems (Bjs's, cf. above Section 4), first presented in [Odelstad and Boman, 2004]. Instead of considering connections and couplings between two fragments of one single $B q o$, we now introduced the idea of a $B j s\left\langle\mathcal{B}_{1}, \mathcal{B}_{2}, J\right\rangle$ with a joining relation J from one Bqo \mathcal{B}_{1} to another Bqo \mathcal{B}_{2}. We adjusted the analyses of the issues mentioned above to this framework and developed new themes. In particular, in [Lindahl and Odelstad, 2006a], we introduced the notion of "intervenient" as a formal tool for analyzing intermediaries in normative systems and began the development of a formal theory of intervenients. The theory of intervenients was further developed in [Lindahl and Odelstad, 2008a] and included topics such as "bases of intervenients", "extendable and non-extendable intervenients", and negations of intervenients. The formal

[^22]analysis of intervenients was continued in [Lindahl and Odelstad, 2008b; Lindahl and Odelstad, 2011]. The focus of the latter paper is on intervenient minimality, conjunctions and disjunctions of intervenients, organic wholes of intervenients, and a typology of different kinds of intervenients. Also [Lindahl and Odelstad, 2011] pays attention to the properties of intervenients in a network of several Bjs's, with "strata" of Bqo's $\mathcal{B}_{1}, \mathcal{B}_{2}, \mathcal{B}_{3}, \ldots$.

6.2 Recent work of others

6.2.1 A remark on the "Counts-as" theory

A logical analysis of external sentences of the kind " x counts-as y in s ", where s is an institution (s can be a normative system), was proposed by Jones and Sergot in [Jones and Sergot, 1996; Jones and Sergot, 1997]. The work of Jones and Sergot on "Counts-as" has been continued by a number of other authors. This subsequent work has many facets, developed over the past ten years. The book-length study [Grossi, 2007] by Grossi provides axiomatization and semantics of the different counts-as operators.

When a rule r of a legal system \mathcal{N} attaches an intermediary m, e.g., " x and y have made a contract to the effect that $z^{\prime \prime}$, to a conjunction a of facts, the rule r can be expressed in different ways, e.g. "if a then m ", " a is a ground for m " or, sometimes, " a counts as m ".

As appears from the foregoing, in our formal representation of \mathcal{N} by a cis model of Bjs-triples $\left\langle\mathcal{S}_{i}, \mathcal{S}_{j}, \mathcal{S}_{k}\right\rangle$ we represent such a statement by $a_{i} R_{i} b_{i}$, or (if different sorts of objects are in view) $a_{i} J_{i, j} a_{j}$, which statements are read " a_{i} implies b_{i} " and " a_{i} is a ground for a_{j} " respectively. In TJS, no countsas operator is introduced, and in the present chapter we do not examine the question in which cases the counts-as vocabulary might be appropriate. Rather, referring to the joint paper [Grossi et al., 2007] by Grossi, Meyer and Dignum, we will be content, by an example, merely to suggest how some of the material dealt with in the Counts-as theory might be represented in our theory. (Cf. [Lindahl and Odelstad, 2008a, sect. 3.5.3].)

In [Grossi et al., 2007, p. 2], the following example is given of three kinds of Counts-as:
"It is a rule of normative system Γ that conveyances transporting people or goods count as vehicles; it is always the case that bikes count as conveyances transporting people or goods but not that bikes count as vehicles; therefore, in the context of normative system Γ, bikes count as vehicles."

According to [Grossi et al., 2007, p. 2], the first premise states a rule of Γ and is a constitutive Counts-as, the second premise states a generally acknowledged classification, thus states a general classificatory Counts-as,
and the conclusion states a classification that holds in Γ and is a Counts-as brought about by Γ though it is not a constitutive Counts-as.

The example can be further developed by the assumption that in Γ vehicles are not admitted in public parks (cf. [Grossi et al., 2006, p. 615]).

If counts-as sentences are seen as internal to a normative system Γ, a representation of the example might be made in terms of Figure 25 on page 628. We can conceive of the example in such a way that "being a

Figure 25
vehicle" is an intervenient from B_{1} to B_{3} corresponding to the pair 〈being a conveyance, being prohibited in parks \rangle in $B_{1} \times B_{3}$.

In this chapter, there is no room for going into possible developments of the example. A brief comment should be made, however, on how we might represent something similar to the distinction between three kinds of Counts-as made by Grossi, Meyer and Dignum. We can assume that relation R_{1} (a subset of $B_{1} \times B_{1}$) represents implications that hold in an uncontro-
versial way independently of the instituted rules of Γ. In contrast, the set of minimal joinings min $J_{1,2}$ (a subset of $B_{1} \times B_{2}$) can be seen as expressing implications that are instituted by the rules in Γ. If this view is taken, distinctions can be made as follows. (We write b, c, v for "bicycle", "conveyance", "vehicle".) Firstly, the general classification of bicycles as conveyances is due to $\langle b, c\rangle \in R_{1}$ ("bikes always count as conveyances"). Secondly, the classification of conveyances as vehicles is due to $\langle c, v\rangle \in \min J_{1,2}$ ("Conveyances ... are to count as vehicles"). Thirdly, the classification of bicycles as vehicles is due to $\langle b, v\rangle \in R_{1} \mid \min J_{1,2}$ (the relative product).

6.2.2 Input-output logic

In a series of papers, Makinson and van der Torre have developed a theory called input-output logic, see for example [Makinson and van der Torre, 2000; Makinson and van der Torre, 2003]. Important similarities between input-output logic and our approach are that we study normative systems as deductive mechanisms yielding outputs for inputs and that norms are represented as ordered pairs. ${ }^{30}$ Other similarities worth mentioning are that neither the principal output operation in input-output logic, nor the relation J in a $B j s$, requires reflexivity or contraposition.

TJS, however, differs from input-output logic, as developed in [Makinson and van der Torre, 2000; Makinson and van der Torre, 2003], in a number of respects. Thus, in TJS,

1. if a pair $\left\langle a_{1}, a_{2}\right\rangle$ represents a norm, this is due to the normative character of a_{2} (see Sections 1 and 4.4);
2. a central theme is "intermediaries" (intermediate concepts) in the system;
3. a normative system is represented as a network of subsystems and relations between them; the study comprises stratification of a normative system with structures ("strata") that are intermediate;
4. emphasis is put on the analysis of minimality of joinings and of closeness between strata; representation by a base of minimal joinings is of special importance;
5. the strata of the kind of system called a Boolean joining-system are Boolean structures (Bqo's to be more precise); however, the strata of joining-systems of other kinds need not in TJS be Boolean structures. Thus, in Section 3 of the present chapter, there is a general algebraic

[^23]framework for joining-systems that need not be Boolean, for example joining-systems containing strata of lattice-like structures. (In inputoutput logic, the set of inputs constitutes a Boolean algebra and the same holds for the set of outputs.)

The following remark sheds some light on the relation between inputoutput logic and the theory of joining-systems. Suppose that $\left\langle\mathcal{B}_{1}, \mathcal{B}_{2}, J\right\rangle$ is a Bjs where $\mathcal{B}_{1}=\left\langle B_{1}, \wedge,^{\prime}, R_{1}\right\rangle$ and $\mathcal{B}_{2}=\left\langle B_{2}, \wedge,{ }^{\prime}, R_{2}\right\rangle$. Makinson and van der Torre state a number of rules for the so-called "basic" output operator (called out 2_{2}) that they define. Translated to a Bjs these rules are as follows (cf. Definitions 3.11 in Section 3.2):

Strengthening Input: From $\left\langle a_{1}, a_{2}\right\rangle \in J$ to $\left\langle b_{1}, a_{2}\right\rangle \in J$ whenever $b_{1} R_{1} a_{1}$.
Follows from condition (1) of a Bjs.
Conjoining Output: From $\left\langle a_{1}, a_{2}\right\rangle \in J$ and $\left\langle a_{1}, b_{2}\right\rangle \in J$ to $\left\langle a_{1}, a_{2} \wedge b_{2}\right\rangle \in J$.
Follows from condition (3) of a Bjs.
Weakening Output: From $\left\langle a_{1}, a_{2}\right\rangle \in J$ to $\left\langle a_{1}, b_{2}\right\rangle \in J$ whenever $a_{2} R_{2} b_{2}$.
Follows from condition (1) of a Bjs.
Disjoining Input: From $\left\langle a_{1}, a_{2}\right\rangle \in J$ and $\left\langle b_{1}, a_{2}\right\rangle \in J$ to $\left\langle a_{1} \vee b_{1}, a_{2}\right\rangle \in J$.
Follows from condition (2) of a Bjs.
There are three conditions on a joining space in a Boolean joining-system. The comparison with input-output logic above shows that it could be of interest to define weaker kinds of systems characterized by, for example, conditions (1) and (3).

In TJS the notion of completeness plays an important role. If in a joiningsystem the quasi-orderings are complete quasi-lattices, then the joiningsystem satisfies connectivity, one of the key feature in TJS. Even in the definition of a joining-system itself, the notion of completeness is in some sense present although in a concealed form. To see this, we recall condition (2) and (3) in the definition of a joining-system. In these conditions, least upper bounds (lub's) and greatest lower bounds (glb's) of arbitrary sets are called for, although such bounds are not required to exist. Instead certain things must hold for those lub's or glb's of infinite sets that exist. Admittedly, however, this may in certain contexts be regarded as too demanding a requirement: if so, it may seem reasonable to restrict attention to lub's and glb's of pairs of objects. This reasoning leads to the following definition of a kind of systems called prejoining-systems.

Definition 6.1 A prejoining-system, is an ordered triple $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}, J\right\rangle$ such that $\mathcal{A}_{1}=\left\langle A_{1}, R_{1}\right\rangle$ and $\mathcal{A}_{2}=\left\langle A_{2}, R_{2}\right\rangle$ are quasi-orderings and $J \subseteq A_{1} \times A_{2}$ and the following conditions are satisfied where \unlhd is the narrowness relation
determined by \mathcal{A}_{1} and \mathcal{A}_{2} :
(1) for all $b_{1}, c_{1} \in A_{1}$ and $b_{2}, c_{2} \in A_{2}$, if $\left\langle b_{1}, b_{2}\right\rangle \in J$ and $\left\langle b_{1}, b_{2}\right\rangle \unlhd\left\langle c_{1}, c_{2}\right\rangle$, then $\left\langle c_{1}, c_{2}\right\rangle \in J$,
(2) for all $b_{1}, c_{1} \in A_{1}$ and $b_{2} \in A_{2}$, if $\left\langle b_{1}, b_{2}\right\rangle \in J$ and $\left\langle c_{1}, b_{2}\right\rangle \in J$, then $\left\langle a_{1}, b_{2}\right\rangle \in J$ for all $a_{1} \in \operatorname{lub}_{R_{1}}\left\{b_{1}, c_{1}\right\}$,
(3) for all $b_{2}, c_{2} \in A_{2}$ and $b_{1} \in A_{1}$, if $\left\langle b_{1}, b_{2}\right\rangle \in J$ and $\left\langle b_{1}, c_{2}\right\rangle \in J$, then $\left\langle b_{1}, a_{2}\right\rangle \in J$ for all $a_{2} \in \operatorname{glb}_{R_{2}}\left\{b_{2}, c_{2}\right\}$.

Connectivity is not so firmly connected with prejoining-systems as with TJS joining-systems. The reason is roughly that the occurrence of lub's and glb's of infinite sets fits well with quasi-orderings satisfying completeness in the sense of being complete quasi-lattices. The importance of connectivity in TJS has been stressed several times.

A brief note on the role of the notion of closure system in TJS is in order. An important aspect of TJS is that it gives a method for representing a set of conditional norms in an elaborated way. Suppose that \mathcal{B}_{1} is a $B q o$ of grounds and \mathcal{B}_{2} is a $B q o$ of consequences. Let us suppose that K is a set of conditional norms with the antecedents taken from B_{1} and the consequences taken from B_{2}. Hence, $K \subseteq B_{1} \times B_{2}$ and K is a correspondence from B_{1} to B_{2}. K can be thought of as a "crude" representation of a normative system \mathcal{N}. Then, a set K^{*} can be generated by forming the "joining closure" of K such that $\left\langle\mathcal{B}_{1}, \mathcal{B}_{2}, K^{*}\right\rangle$ is a Bjs. This is an "elaborated" representation of \mathcal{N}.

The out-operations introduced by Makinson and van der Torre also use a closure-operation, viz. classical consequence. With some simplification one can say that Makinson and van der Torre form the closure of the input and of the output but leave the set of norms as it is. However, it turns out that, regarded only as deductive mechanisms, input-output logic and the theory of joining-systems give rather similar results in spite of their use of different closure-operations in different ways. As a conjecture we suggest the following. Suppose that the $B q o$'s \mathcal{B}_{1} and \mathcal{B}_{2} are Boolean algebras, i.e. for $i=1,2, R_{i}$ is the partial ordering determined by the Boolean algebra $\left\langle B_{i}, \wedge,{ }^{\prime}\right\rangle$. Then $J=$ out $_{1}(J)$. Furthermore, if \mathcal{B}_{1} is a complete Boolean algebra and some general conditions are satisfied, then $J=$ out $_{2}(J)$.

Acknowledgments

We want to thank the two referees for painstaking work och valuable comments. Financial support was given by the Swenson Foundation of the Faculty of Law, University of Lund, The Swedish Research Council, and the University of Gävle. ${ }^{31}$

[^24]
BIBLIOGRAPHY

[Alchourrón and Bulygin, 1971] C. E. Alchourrón and E. Bulygin. Normative Systems. Springer, Wien, 1971.
[Aristotle, Nicomachean Ethics] Aristotle, Nicomachean Ethics. Written 350 BC, translated by W. D. Ross, The Internet Classic Archive.
[Davey and Priestley, 2002] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge UP, Cambridge, 2nd edition, 2002.
[Dummett, 1973] M. Dummett. Frege: Philosophy of Language. Duckworth, London, 1973.
[Gentzen, 1934] G. Gentzen. Untersuchungen über das logische schließen, I. Mathematische Zeitschrift, 39:176-210, 1934.
[Grätzer, 1979] G. Grätzer. Universal Algebra. Springer-Verlag, New York, 2nd edition, 1979.
[Grätzer, 2011] G. Grätzer. Lattice Theory: Foundation. Birkhäuser, Basel, 2011.
[Grossi et al., 2006] D. Grossi, J-J. Ch. Meyer, and F. Dignum. Classificatory aspects of counts-as: An analysis in modal logic. Journal of Logic and Computation, 16:613-643, 2006.
[Grossi et al., 2007] D. Grossi, J.-J. Ch Meyer, and F. Dignum. On the logic of constitutive rules. Dagstuhl Seminar Proceedings 07122, Normative Multi-Agent Systems, http://drops.dagstuhl.de/opus/volltexte2007913, 2007.
[Grossi, 2007] D. Grossi. Designing Invisible Handcuffs. Formal Investigations in Institutions and Organizations for Multi-agent Systems. PhD thesis, Utrecht University, 2007. SIKS Dissertation Series No. 2007-16.
[Hedenius, 1977] I. Hedenius. Filosofien i ett föränderligt samhälle. Bonnier, Stockholm, 1977. (English title: Philosophy in a changing society).
[Hilpinen, 1971] R. Hilpinen, editor. Deontic Logic: Introductory and Systematic Readings. Reidel, Dordrecht, 1971.
[Holmström-Hintikka et al., 2001] G. Holmström-Hintikka, S. Lindström, and R. Sliwinski. Collected Papers of Stig Kanger with Essays on His Life and Work,, volume I-II. Kluwer, Dordrecht, 2001.
[Horty et al., 1990] J. F Horty, R. H. Thomason, and D. S. Touretzky. A skeptical theory of inheritance in nonmonotonic networks. Artificial Intelligence, 42:311-348, 1990.
[Jones and Sergot, 1993] A. J. I. Jones and M. Sergot. On the characterization of law and computer systems: The normative systems perspective. In J-J. Ch. Meyer and R. J Wieringa, editors, Deontic Logic in computer Science. Wiley, 1993
[Jones and Sergot, 1996] A. J. I. Jones and M. Sergot. A formal characterisation of institutionalised power. Journal of the IPGL, 3:427-443, 1996. Reprinted in [Jones and Sergot, 1997].
[Jones and Sergot, 1997] A. J. I. Jones and M. Sergot. A formal characterisation of institutionalised power. In E.G. Valdés, W. Krawietz, G. H. von Wright, and R. Zimmerling, editors, Normative Systems in Legal and Moral Theory. Festschrift for Carlos E. Alchourrón and Eugenio Bulygin. Duncker and Humblot, Berlin, 1997.
[Kanger and Kanger, 1966] S. Kanger and H. Kanger. Rights and parliamentarism. Theoria, 32:85-116, 1966. Reprinted in [Holmström-Hintikka et al., 2001, Vol. 1, pp. 120-145].
[Kanger, 1957] S. Kanger. New Foundations for Ethical Theory. Part 1. Almqvist and Wiksell, Stockholm, 1957. Reprinted, first, in [Hilpinen, 1971, pp. 36-58], second, in [Holmström-Hintikka et al., 2001, Vol. 1, pp. 99-119].
[Kanger, 1963] S. Kanger. Rättighetsbegreppet. In Sju Filosofiska Studier tillägnade Anders Wedberg den 30 mars 1963, number 9 in Philosophical Studies. Department of Philosophy, University of Stockholm, Stockholm, 1963. (English title: The concept of a right). Reprinted, in English translation, as the first part of [Kanger and Kanger, 1966].
[Kremer, 1988] M. Kremer. The philosophical significance of the sequent calculus. Mind, 97:50-72, 1988.
[Lindahl and Odelstad, 1999a] L. Lindahl and J. Odelstad. Intermediate concepts as couplings of conceptual structures. In H. Prakken and P. McNamara, editors, Norms, Logics and Informations Systems. New Studies on Deontic Logic and Computer Science, pages 163-179. IOS Press, Amsterdam, 1999.
[Lindahl and Odelstad, 1999b] L. Lindahl and J. Odelstad. Normative systems: Core and amplifications. In R. Sliwinski, editor, Philosophical Crumbs. Essays Dedicated to Ann-Mari Henschen-Dahlquist on the Occasion of Her Seventy-Fifth Birthday, Uppsala Philosophical Studies. Department of Philosophy, Uppsala, 1999.
[Lindahl and Odelstad, 2000] L. Lindahl and J. Odelstad. An algebraic analysis of normative systems. Ratio Juris, 13:261-278, 2000.
[Lindahl and Odelstad, 2003] L. Lindahl and J. Odelstad. Normative systems and their revision: An algebraic approach. Artificial Intelligence and Law, 11:81-104, 2003.
[Lindahl and Odelstad, 2004] L. Lindahl and J. Odelstad. Normative positions within an algebraic approach to normative systems. Journal Of Applied Logic, 2:63-91, 2004.
[Lindahl and Odelstad, 2006a] L. Lindahl and J. Odelstad. Intermediate concepts in normative systems. In L. Goble and J-J. Ch. Meyer, editors, Deontic Logic and Artificial Normative Systems (DEON 2006). Springer, Berlin, 2006.
[Lindahl and Odelstad, 2006b] L. Lindahl and J. Odelstad. Open and closed intermediaries in normative systems. In T. M. van Engers, editor, Legal Knowledge and Information Systems (Jurix 2006), pages 91-99. IOS Press, Amsterdam, 2006.
[Lindahl and Odelstad, 2008a] L. Lindahl and J. Odelstad. Intermediaries and intervenients in normative systems. Journal of Applied Logic, 6:229-250, 2008.
[Lindahl and Odelstad, 2008b] L. Lindahl and J. Odelstad. Strata of intervenient concepts in normative systems. In R. van der Meyden and L. van der Torre, editors, Deontic Logic in Computer Science - DEON 2008. Springer, Berlin, 2008.
[Lindahl and Odelstad, 2011] L. Lindahl and J. Odelstad. Stratification of normative systems with intermediaries. Journal of Applied Logic, 9:113-136, 2011.
[Lindahl, 1977] L. Lindahl. Position and Change: A Study in Law and Logic. Reidel, Dordrecht, 1977.
[Lindahl, 1985] L. Lindahl. Definitioner, begreppsanalys och mellanbegrepp i juridiken. In Rationalitet och Empiri i Rättsvetenskapen, number 6 in Juridiska Fakultetens i Stockholm skriftserie. Juridiska Fakulteten, Stockholm, 1985. (English title: Definitions, conceptual analysis and intermediate concepts in the law).
[Lindahl, 1994] L. Lindahl. Stig Kanger's theory of rights. In D. Prawitz, B. Skyrms, and D. Westerståhl, editors, Logic, Methodology, and Philosophy of Science IX. Elsevier Science B.V., 1994. Reprinted, with minor changes, in [Holmström-Hintikka et al., 2001, Vol. II].
[Lindahl, 1997] L. Lindahl. Norms, meaning postulates, and legal predicates. In E.G. Valdés, W. Krawietz, G. H. von Wright, and R. Zimmerling, editors, Festschrift for Carlos E. Alchourrón and Eugenio Bulygin. Duncker and Humblot, Berlin, 1997.
[Lindahl, 2000] L. Lindahl. De juridiska begreppens Janusansikte. In A. NumhauserHenning, editor, Normativa perspektiv : Festskrift till Anna Christensen. Juristförl, Lund, 2000. (English title: The Janus-face of legal concepts).
[Lindahl, 2004] L. Lindahl. Deduction and justification in the law: The role of legal terms and concepts. Ratio Juris, 17:182-202, 2004.
[Makinson and van der Torre, 2000] D. Makinson and L. van der Torre. Input-output logics. Journal of Philosophical Logic, 29:383-408, 2000.
[Makinson and van der Torre, 2003] D. Makinson and L. van der Torre. What is input/output logic? In B. Löwe, W. Malzkorn, and T. Räsch, editors, Foundations of the Formal Sciences II: Applications of Mathematical Logic in Philosophy and Linguistics, volume 17 of Trends in Logic, pages 163-174. Dordrecht, Kluwer, 2003.
[Moore, 1971] G. Moore. Principia Ethica. University Press, Cambridge, 1971.
[Odelstad and Boman, 2004] J. Odelstad and M. Boman. Algebras for agent normregulation. Annals of Mathematics and Artificial Intelligence, 42:141-166, 2004
[Odelstad and Lindahl, 2000] J. Odelstad and L. Lindahl. Normative systems represented by Boolean quasi-orderings. Nordic Journal of Philosophical Logic, 5:161-174, 2000.
[Odelstad and Lindahl, 2002] J. Odelstad and L. Lindahl. The role of connections as minimal norms in normative systems. In T. Bench-Capon, A. Daskalopulu, and R. Winkels, editors, Legal Knowledge and Information Systems (Jurix 2002). IOS Press, Amsterdam, 2002.
[Odelstad, 2002] J. Odelstad. Intresseavvägning. En beslutsfilosofisk studie med tillämpning på planering. Thales, Stockholm, 2002. (English title: Weighing of Interests. A Study in the Philosophy of Decision, with Applications in Planning).
[Odelstad, 2008] J. Odelstad. Many-Sorted Implicative Conceptual Systems. PhD thesis, KTH, School of Information and Communication Technology (ICT), Computer and Systems Sciences, DSV, Stockholm, 2008. http://urn.kb.se/resolve?urn=urn:nbn: se:kth:diva-9624.
[Odelstad, 2009] J. Odelstad. An essay on Msic-systems. In G. Boella, L. van der Torre, and H. Verhagen, editors, Normative Multi-Agent Systems, number 09121 in Dagstuhl Seminar Proceedings. Schloss Dagstuhl, 2009. http://drops.dagstuhl.de/ opus/volltexte/2009/1914/.
[Poincaré, 1907] H. Poincaré. The Value of Science. Science Press, London, 1907. (English translation of La Valeur de la Science, Paris 1905).
[Ross, 1951] A. Ross. Tû-Tû. In O.A. Borum and K. Illum, editors, Festskrift til Henry Ussing. København, Juristforbundet, 1951.
[Ross, 1956 and 1957] A. Ross. Tû-Tû. Harvard Law Review, 70:812-825, 1956 and 1957. (English translation of [Ross, 1951]).
[Sartor, 2007] G. Sartor. The nature of legal concepts: Inferential nodes or ontological categories?, 2007.
[Sartor, 2009] G. Sartor. Legal concepts as inferential nodes and ontological categories. Artificial Intelligence and the Law, 17:217-251, 2009.
[Sergot, 1999] M. J. Sergot. Normative positions. In P. McNamara and H. Prakken, editors, Norms, Logics and Information Systems, pages 289-310. IOS Press, Amsterdam, 1999.
[Sergot, 2001] M. J. Sergot. A computational theory of normative positions. ACM Transactions on Computational Logic (TOCL), 2:581-622, 2001.
[Talja, 1980] J. Talja. A technical note on Lars Lindahl's Position and Change. Journal of Philosophical Logic, 9:167-183, 1980.
[Wedberg, 1951] A. Wedberg. Some problems in the logical analysis of legal science. Theoria, 17:246-275, 1951.
[Wedberg, 1982] A. Wedberg. A History of Philosophy. Vol. 2, The Modern Age to Romanticism. Clarendon Press, Oxford, 1982.

Lars Lindahl
Lund University
Email: lars-lindahl@live.se
Jan Odelstad
University of Gävle
Email: jod@hig.se

[^0]: ${ }^{1}$ By an individual case is meant an element of the universe of discourse. See [Alchourrón and Bulygin, 1971, p. 28, and p. 10]. A generic case is described alternatively as a subset of the universe of discourse, defined by a property, or as this defining property itself. See [Alchourrón and Bulygin, 1971, p. 29].
 ${ }^{2}$ Cf. [Alchourrón and Bulygin, 1971, p. 49], and the comments in [Lindahl and Odelstad, 2004, sect. 1.1].
 ${ }^{3}$ [Makinson and van der Torre, 2000, p. 383 and p. 392].

[^1]: ${ }^{4}$ In the same year 1951, when Ross published his well-known essay "Tû-Tû" in a Danish Festschrift [Ross, 1951] (English translation [Ross, 1956 and 1957]), Wedberg published an essay on the same theme in the Swedish journal Theoria [Wedberg, 1951]. Possibly, the two authors arrived at these ideas independently of each other. Cf. [Wedberg, 1951, p. 266, n. 15], and [Ross, 1956 and 1957, p. 822, n. 6].

[^2]: ${ }^{5}$ The similarities between Wedberg's and Ross' ideas are striking. Both use the example of ownership. Central ideas propounded by both of them are: By use of the linking term, the number $p \cdot n$ of rules is reduced to $p+n$, and, the linking term has no independent meaning (Wedberg) or has no semantical reference (Ross).

[^3]: ${ }^{6}$ An earlier version of Sartor's paper is [Sartor, 2007].
 ${ }^{7}$ Cf. [Lindahl, 2000], in particular pp. 166f., on the reasoning of the German eighteenth century jurist Georg Friedrich Puchta. A systematization of concepts appears as well in the arrangement of norms in civil codes such as the German Bürgerliches Gesetzbuch and the French Code Civil.
 ${ }^{8}$ A recent development is the idea of semantic networks and inheritance, see [Horty et al., 1990], (referred to by [Sartor, 2009, p. 243, n. 27]. The focus in [Horty et al., 1990] is on defeasibility, in this case "multiple inheritance with exceptions".

[^4]: ${ }^{9}$ To exemplify, in German constitutional law there is a guarantee of protection for the "essential content" (Wesensgehalt) of the basic rights of the German Constitution. In an essay by the Swedish philosopher Ingemar Hedenius, Max Weber's idea of "ideal types" is applied to the concept of ownership, where normative systems are represented as different alternatives of fulfilment on each of several dimensions. (See [Hedenius, 1977, pp. 130-55].) According to Hedenius' proposal, the concept of ownership in particular normative systems can be critically assessed according to their degree of fulfilment on the dimensions introduced.

[^5]: ${ }^{10}$ In 2003, a new statute (SFS 2003: 376) on cohabitant partners ("sambor") was enacted in Sweden. In article 1, paragraph 1, there is a definition of "cohabitant partners", intended to be a little more precise: "By cohabitant partners is meant two persons who live together permanently in a partner relationship and have their housekeeping in common." (Translated here.)

[^6]: ${ }^{11}$ The original motivation of Jones and Sergot was, so it seems, to give a formal characterization of "institutionalized power", see [Jones and Sergot, 1997, pp. 349ff.]. For a comment on this matter, see [Lindahl and Odelstad, 2008a, sect.3.5.3, n. 22].

[^7]: ${ }^{12}$ Cf. the online Free Dictionary: "One of a number of layers, levels, or divisions in an organized system." Note that "stratum" as used here is not to be understood in the sense of: "one of several parallel layers of material arranged one on top of another."

[^8]: ${ }^{13}$ Note that we use calligraphic letters $\mathcal{A}_{1}, \mathcal{A}_{2}, \mathcal{A}_{3}$ for the quasi-orderings $\left\langle A_{1}, R_{1}\right\rangle,\left\langle A_{2}, R_{2}\right\rangle,\left\langle A_{3}, R_{3}\right\rangle$ and we use italics A_{1}, A_{2}, A_{3} for the domains of these quasi-orderings.

[^9]: ${ }^{14}$ Note that the concept of completeness for lattices, quasi-lattices, and quasi-orderings should not be confounded with completeness in the sense that an ordering relation R on a set A is called complete if for all $x, y \in A$ it holds that $x R y$ or $y R x$.

[^10]: ${ }^{15}$ For the notion of "up-set" in general, see for example [Davey and Priestley, 2002, p. 20].

[^11]: ${ }^{16}$ Obviously, the idea of J as a correspondence should be distinguished from the fact that there are ordering relations over the set J of ordered pairs. As we have seen, in TJS the relation of narrowness is an ordering relation over the ordered pairs in J. Another ordering relation over J (to be introduced later on) is the relation "at least as low as".
 ${ }^{17}$ If the triple $\langle X, Y, \gamma\rangle$ is a correspondence, it is sometimes more convenient to say that γ is a correspondence from X to Y and that γ^{-1} is a correspondence from Y to X. If γ is a correspondence from X to Y, Y is often called the image of X by γ, or, shorter, the γ-image of X.

[^12]: ${ }^{18}$ For definition and results of closure systems, see for example [Grätzer, 1979, p. 23f.].

[^13]: ${ }^{19}$ The triple is simple in the following sense. The presupposition of disjunct strata will make it possible in the present section to disregard the problem with "degenerated" weakest grounds and/or strongest consequences. This problem will be dealt with in connection with intervenients in Boolean joining systems.

[^14]: ${ }^{20}$ As usual, \leq is defined by $a \leq b$ if and only if $a \wedge b=a$.

[^15]: ${ }^{21}$ Basically, this was the system of Swedish legislation before 2003. That year, the law was changed so that, when the original owner has lost possession by theft, no ransom is required för getting the goods back.

[^16]: ${ }^{22} \mathrm{~A}$ state of affairs in Kanger's sense might be, for example, that Mr. Smith gets back the money lent by him to Mr. Black, or that Mr. Smith walks outside Mr. Black's shop.

[^17]: ${ }^{23}$ Letter E is to be regarded as a parameter, in the sense of a a quantity which is constant in a particular case considered, but which varies in different cases.

[^18]: ${ }^{24}$ In [Lindahl and Odelstad, 2008 a, sect. 3.5.1], we discuss the narrowing of "relationship similar to being married" with a different framework and terminology.

[^19]: ${ }^{25}$ Trust is where a person (trustee) is made the nominal owner of property to be held or used for the benefit of another. Trusteeship is the legal position of a trustee.

[^20]: ${ }^{26}$ See also [Lindahl and Odelstad, 2008a, sect.3.2], for the case of "Boche" in the "Boche-Berserk" example. "Boche" and "Berserk" have different grounds but the same consequence.

[^21]: ${ }^{27}$ [Lindahl and Odelstad, 1999a] was based on our presentation at DEON'98 in Bologna. Our joint theory was presented for the first time in 1996 at the workshop (a cura di V. A. A. Martino) Logica, Informatica, Diritto, Pisa, 1996, in honor of Carlos Alchourrón. For references to another preparatory joint work in 1996 see [Lindahl and Odelstad, 1999a]. An early paper in Swedish by Lindahl on intermediate concepts is [Lindahl, 1985].

[^22]: ${ }^{28}$ The idea of Boolean quasi-orderings and fragments was first presented already in 1998, see references in [Odelstad and Lindahl, 2000].
 ${ }^{29}$ Cf. [Lindahl and Odelstad, 1999b].

[^23]: ${ }^{30} \mathrm{Cf}$. [Lindahl and Odelstad, 1999b, sect. 1.1], with a reference to the work of Alchourrón and Bulygin in [Alchourrón and Bulygin, 1971].

[^24]: ${ }^{31}$ The chapter is the result of wholly joint work where the order of appearance of our author names has no significance.

