hig.sePublications
Change search
Link to record
Permanent link

Direct link
BETA
Nyoman, Indrawibawa I.
Alternative names
Publications (4 of 4) Show all publications
Haider, U., Nyoman, I. I., Kim, C., Masud, N., Virk, G. S. & Coronado, J. L. (2017). Modular EXO-LEGS for mobility of elderly persons. In: Advances in Cooperative Robotics: Proceedings of the 19th International Conference in CLAWAR 2016. Paper presented at 19th International Conference series on Climbing and Walking Robots and the Support Technologies for Mobile Machines (CLAWAR), 12-14 September 2016, London, UK (pp. 851-859). Singapore: World Scientific
Open this publication in new window or tab >>Modular EXO-LEGS for mobility of elderly persons
Show others...
2017 (English)In: Advances in Cooperative Robotics: Proceedings of the 19th International Conference in CLAWAR 2016, Singapore: World Scientific, 2017, p. 851-859Conference paper, Published paper (Refereed)
Abstract [en]

The paper presents details of the AAL Call 4 EXO-LEGS project aimed at developing and testing lower body assistive exoskeletons to help elderly persons perform daily living activities independently such as stable standing, sit-to-stand transfers and straight walking. The key components needed have been realized using mobility requirements and design preferences provided by an end user group comprising 118 members via 5 surveys. Modular human-centric concepts are followed for mechanical design, sensing and actuation, system integration, etc., to realize a BASIC exoskeleton prototype able to provide up to 30% power to assist the human perform the intended motions. Two ethical approvals have been obtained to involve end users in the research, development and test phases of the project. To date, 5 test subjects have tested the exoskeleton prototype in walking and the sit-to-stand test; summary results are presented in this paper.

Place, publisher, year, edition, pages
Singapore: World Scientific, 2017
National Category
Computer Vision and Robotics (Autonomous Systems)
Identifiers
urn:nbn:se:hig:diva-22835 (URN)10.1142/9789813149137_0099 (DOI)000386326300099 ()2-s2.0-84999806599 (Scopus ID)978-981-3149-12-0 (ISBN)978-981-3149-14-4 (ISBN)
Conference
19th International Conference series on Climbing and Walking Robots and the Support Technologies for Mobile Machines (CLAWAR), 12-14 September 2016, London, UK
Funder
EU, Horizon 2020Vinnova, 2012-03255
Available from: 2016-11-25 Created: 2016-11-25 Last updated: 2019-10-03Bibliographically approved
Virk, G. S., Haider, U., Nyoman, I. I., Masud, N., Mamaev, I., Hopfgarten, P. & Hein, B. (2016). Design of EXO-LEGS exoskeletons. In: Assistive Robotics: Proceedings of the 18th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, CLAWAR 2015: . Paper presented at 18th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, CLAWAR 2015, 6-9 September 2015, HangZhou, China (pp. 59-66).
Open this publication in new window or tab >>Design of EXO-LEGS exoskeletons
Show others...
2016 (English)In: Assistive Robotics: Proceedings of the 18th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, CLAWAR 2015, 2016, p. 59-66Conference paper, Published paper (Refereed)
Abstract [en]

The paper describes the design details for realising the EXO-LEGS assistive exoskeletons for Ambient Assisted Living (AAL) applications based on modelling and simulation studies performed for key mobility functionalities in activities for daily living such as stable standing in open space and straight walking. The results provide the basis for selecting sensors and actuators to develop the needed assistive exoskeletons to help the elderly to stay active and independent for as long as possible.

Keywords
Mobile robots; Walking aids, Ambient assisted living (AAL); Assistive; Daily living; Modelling and simulations; Sensors and actuators, Exoskeleton (Robotics)
National Category
Robotics
Identifiers
urn:nbn:se:hig:diva-23261 (URN)000391656500011 ()2-s2.0-84999837795 (Scopus ID)978-981-4725-23-1 (ISBN)
Conference
18th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, CLAWAR 2015, 6-9 September 2015, HangZhou, China
Funder
Vinnova, 2012-03255
Available from: 2017-01-09 Created: 2017-01-09 Last updated: 2019-10-03Bibliographically approved
Haider, U., Nyoman, I. I., Coronado, J. L., Kim, C. & Virk, G. S. (2016). User-centric Harmonized Control for Single Joint Assistive Exoskeletons. International Journal of Advanced Robotic Systems, 13(3), Article ID 115.
Open this publication in new window or tab >>User-centric Harmonized Control for Single Joint Assistive Exoskeletons
Show others...
2016 (English)In: International Journal of Advanced Robotic Systems, ISSN 1729-8806, E-ISSN 1729-8814, Vol. 13, no 3, article id 115Article in journal (Refereed) Published
Abstract [en]

The world is ageing and this poses a challenge to produce cost-effective solutions that can keep elderly people independent and active by assisting them in daily living activities. In this regard, this paper presents a new control method to provide physical assistance for any of the user joints (e.g., hip, knee, elbow, etc.) as needed by the wearer, by means of an assistive non-medical single joint exoskeleton with a "harmonized controller" capable of providing assistance in a natural way, and varying the assistance as needed by the user performing some activity. The control method is aimed at exoskeletons to provide assistance to users facing difficulty in any activity such as walking, sit-to-stand, etc., and, other than providing assistance as needed, it can also reduce the muscular effort for a completely healthy user. Harmonized control uses exoskeleton-integrated force sensors and motion sensors to identify the user's intentions and the assistance level required, generating appropriate control signals for the actuators by implementing a simple PID controller. To verify the proposed harmonized-control technique, simulations using MATLAB/SIMULINK were performed for a single joint system. An experimental test rig for a single joint was also developed using MATLAB Xpc Target for real-time control. User tests were also carried out for the knee joint and the results obtained from simulations, experimentation and user tests are reported and discussed here. The results achieved to date and reported here show harmonized control to be a promising user-centric solution for the development of single joint assistive exoskeletons for support as needed by the user in daily living activities.

Keywords
Assistive Exoskeleton, Control Method, User-centric Control, Harmonized Control
National Category
Robotics
Identifiers
urn:nbn:se:hig:diva-22110 (URN)10.5772/63791 (DOI)000377335500003 ()2-s2.0-84993971917 (Scopus ID)
Funder
Vinnova, 2014-05953
Available from: 2016-07-06 Created: 2016-07-06 Last updated: 2019-10-03Bibliographically approved
Virk, G. S., Haider, U., Indrawibawa, I. N., Thekkeparanipumadom, R. K. & Masud, N. (2014). Exo-legs for elderly persons. In: Krzysztof Kozłowski, Mohammad O. Tokhi, Gurvinder S. Virk (Ed.), Mobile service robotics: . Paper presented at 17th International Conference on Climbing and Walking Robots (CLAWAR), JUL 21-23, 2014, Poznan, Poland (pp. 85-92). Singapore: World Scientific
Open this publication in new window or tab >>Exo-legs for elderly persons
Show others...
2014 (English)In: Mobile service robotics / [ed] Krzysztof Kozłowski, Mohammad O. Tokhi, Gurvinder S. Virk, Singapore: World Scientific, 2014, p. 85-92Conference paper, Published paper (Refereed)
Abstract [en]

The paper presents a research update on the AAL Call 4 EXO-LEGS project aimed at developing lower-body mobility exoskeletons to assist elderly persons to stay independent in their normal daily living activities for as long as possible. The important movement functionalities and key design issues to be included in the process are identified via specifically developed questionnaires and responses from a pan-European end user group set up as part of the project. The user requirements are used together with the recently published ISO safety requirements for personal care robots to perform targeted technical research in the areas of human gait analysis, modelling and simulation, mechanical engineering, embedded system design, and ergonomic user interfacing.

Place, publisher, year, edition, pages
Singapore: World Scientific, 2014
National Category
Robotics
Identifiers
urn:nbn:se:hig:diva-18313 (URN)000342693100011 ()2-s2.0-84991754640 (Scopus ID)978-981-4623-34-6 (ISBN)
Conference
17th International Conference on Climbing and Walking Robots (CLAWAR), JUL 21-23, 2014, Poznan, Poland
Funder
Vinnova, 2012-03255
Available from: 2014-12-09 Created: 2014-12-09 Last updated: 2019-10-03Bibliographically approved
Projects
Exoskeleton legs for elderly persons (EXO-LEGS) [2012-03255_Vinnova]; University of Gävle; Publications
Singh Rupal, B., Rafique, S., Singla, A., Singla, E., Isaksson, M. & Singh Virk, G. (2017). Lower-limb exoskeletons: Research trends and regulatory guidelines in medical and non-medical applications. International Journal of Advanced Robotic Systems, 14(6), 1-27Haider, U., Nyoman, I. I., Kim, C., Masud, N., Virk, G. S. & Coronado, J. L. (2017). Modular EXO-LEGS for mobility of elderly persons. In: Advances in Cooperative Robotics: Proceedings of the 19th International Conference in CLAWAR 2016. Paper presented at 19th International Conference series on Climbing and Walking Robots and the Support Technologies for Mobile Machines (CLAWAR), 12-14 September 2016, London, UK (pp. 851-859). Singapore: World ScientificVirk, G. S., Haider, U., Nyoman, I. I., Masud, N., Mamaev, I., Hopfgarten, P. & Hein, B. (2016). Design of EXO-LEGS exoskeletons. In: Assistive Robotics: Proceedings of the 18th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, CLAWAR 2015: . Paper presented at 18th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, CLAWAR 2015, 6-9 September 2015, HangZhou, China (pp. 59-66). Virk, G. S., Haider, U., Indrawibawa, I. N., Thekkeparanipumadom, R. K. & Masud, N. (2014). Exo-legs for elderly persons. In: Krzysztof Kozłowski, Mohammad O. Tokhi, Gurvinder S. Virk (Ed.), Mobile service robotics: . Paper presented at 17th International Conference on Climbing and Walking Robots (CLAWAR), JUL 21-23, 2014, Poznan, Poland (pp. 85-92). Singapore: World ScientificIndrawibawa, I. N. & Virk, G. S. (2013). Exoskeleton for assisting human walking. In: Kenneth J Waldron, Mohammad O Tokhi and Gurvinder S Virk (Ed.), Nature-Inspired Mobile Robotics: Proceedings of the 16th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, CLAWAR 2013. Paper presented at 16th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, CLAWAR 2013, 14-17 July 2013, Sydney, NSW (pp. 117-124). World Scientific Publishing Co.
Assistive exoskeleton suitable for elderly persons [2014-05953_Vinnova]; University of Gävle; Publications
Christensen, S., Bai, S., Rafique, S., Isaksson, M., O'Sullivan, L., Power, V. & Virk, G. S. (2019). AXO-SUIT: A Modular Full-Body Exoskeleton for Physical Assistance. In: Alessandro Gasparetto and Marco Ceccarelli (Ed.), Alessandro Gasparetto and Marco Ceccarelli (Ed.), Mechanism Design for Robotics: Proceedings of the 4th IFToMM Symposium on Mechanism Design for Robotics. Paper presented at MEDER: IFToMM Symposium on Mechanism Design for Robotics,11-13 September 2018, Udine, Italy (pp. 443-450). Paper presented at MEDER: IFToMM Symposium on Mechanism Design for Robotics,11-13 September 2018, Udine, Italy. Cham: Springer Netherlands, 66Bai, S., Christensen, S., Islam, M., Rafique, S., Masud, N., Mattsson, P., . . . Power, V. (2019). Development and testing of full-body exoskeleton AXO-SUIT for physical assistance of the elderly. In: Maria Chiara Carrozza, Silvestro Micera, José L. Pons (Ed.), Wearable Robotics: Challenges and Trends: Proceedings of the 4th International Symposium on Wearable Robotics, WeRob2018, October 16-20, 2018, Pisa, Italy. Paper presented at 4th International Symposium on Wearable Robotics, WeRob2018, October 16-20, 2018, Pisa, Italy (pp. 180-184). Cham: Springer, 22Krishnan, R., Björsell, N. & Smith, C. (2017). Segmenting humeral submovements using invariant geometric signatures. In: Bicchi, A., Okamura, A. (Ed.), 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (Iros): . Paper presented at 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2017), 24–28 September 2017, Vancouver, Canada (pp. 6951-6958). IEEE, Article ID 8206619. Krishnan, R., Björsell, N. & Smith, C. (2016). Invariant Spatial Parametrization of Human Thoracohumeral Kinematics: A Feasibility Study. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS): . Paper presented at IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2016), 9-14 October 2016, Daejeon, Korea (pp. 4469-4476). IEEE Robotics and Automation Society, Article ID 7759658. Haider, U., Nyoman, I. I., Coronado, J. L., Kim, C. & Virk, G. S. (2016). User-centric Harmonized Control for Single Joint Assistive Exoskeletons. International Journal of Advanced Robotic Systems, 13(3), Article ID 115. O’Sullivan, L., Power, V., Virk, G. S., Masud, N., Haider, U., Christensen, S., . . . Voncke, K. (2015). End user needs elicitation for a full-body exoskeleton to assist the elderly. In: Ahram, T., Karwowski, W. and Schmorrow, D. (Ed.), 6TH International Conference on Applied Human Factors and Ergonomics (AHFE 2015) and the  affiliated conferences: . Paper presented at 6TH International Conference on Applied Human Factors and Ergonomics (AHFE 2015), 26-30 July 2015, Las Vegas, Neevada, USA (pp. 1403-1409). Amsterdam: Elsevier
Organisations

Search in DiVA

Show all publications