hig.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The spherical terrain correction and its effect on the gravimetric-isostatic Moho determination
Division of Geodesy and Satellite Positioning, Royal Institute of Technology (KTH), Stockholm, Sweden.
Division of Geodesy and Satellite Positioning, Royal Institute of Technology (KTH), Stockholm, Sweden.
Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad, GIS. Division of Geodesy and Satellite Positioning, Royal Institute of Technology (KTH), Stockholm, Sweden. (Geospatial Information Science)
2016 (engelsk)Inngår i: International Journal of Geophysics, ISSN 1687-885X, E-ISSN 1687-8868, Vol. 204, nr 1, s. 262-273Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In this study, the Moho depth is estimated based on the refined spherical Bouguer gravity disturbance and DTM2006 topographic data using the Vening Meinesz-Moritz gravimetric-isostatic hypothesis. In this context, we compute the refined spherical Bouguer gravity disturbances in a set of 1° × 1° blocks. The spherical terrain correction, a residual correction to each Bouguer shell, is computed using rock heights and ice sheet thicknesses from the DTM2006 and Earth2014 models. The study illustrates that the defined simple Bouguer gravity disturbance corrected for the density variations of the oceans, ice sheets and sediment basins and also the non-isostatic effects needs a significant terrain correction to become the refined Bouguer gravity disturbance, and that the isostatic gravity disturbance is significantly better defined by the latter disturbance plus a compensation attraction. Our study shows that despite the fact that the lateral variation of the crustal depth is rather smooth, the terrain affects the result most significantly in many areas. The global numerical results show that the estimated Moho depths by the simple and refined spherical Bouguer gravity disturbances and the seismic CRUST1.0 model agree to 5.6 and 2.7 km in RMS, respectively. Also, the mean value differences are 1.7 and 0.2 km, respectively. Two regional numerical studies show that the RMS differences between the Moho depths estimated based on the simple and refined spherical Bouguer gravity disturbance and that using CRUST1.0 model yield fits of 4.9 and 3.2 km in South America and yield 3.2 and 3.4 km in Fennoscandia, respectively.

sted, utgiver, år, opplag, sider
2016. Vol. 204, nr 1, s. 262-273
Emneord [en]
Crust and lithosphere; Gravity anomalies and Earth structure; Mantle; Mantle processes; Midocean ridge processes; Rheology; Rheology; Satellite gravity
HSV kategori
Identifikatorer
URN: urn:nbn:se:hig:diva-22698DOI: 10.1093/gji/ggv450ISI: 000368427000016Scopus ID: 2-s2.0-84958610069OAI: oai:DiVA.org:hig-22698DiVA, id: diva2:1044747
Forskningsfinansiär
Swedish National Space Board, 116/12Tilgjengelig fra: 2016-11-06 Laget: 2016-11-06 Sist oppdatert: 2018-03-13bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Bagherbandi, Mohammad

Søk i DiVA

Av forfatter/redaktør
Bagherbandi, Mohammad
Av organisasjonen
I samme tidsskrift
International Journal of Geophysics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 547 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf