hig.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Spectral asymptotics for a singularly perturbed fourth order locally periodic elliptic operator
Lomonosov Moscow State University, Moscow, Russia.
Narvik University College, Narvik, Norway.
Narvik University College, Narvik, Norway.
2015 (engelsk)Inngår i: Asymptotic Analysis, ISSN 0921-7134, E-ISSN 1875-8576, Vol. 93, nr 1-2, s. 141-160Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We consider the homogenization of a singularly perturbed self-adjoint fourth order elliptic operator with locally periodic coefficients, stated in a bounded domain. We impose Dirichlet boundary conditions on the boundary of the domain. The presence of large parameters in the lower order terms and the dependence of the coefficients on the slow variable lead to localization of the eigenfunctions. We show that the jth eigenfunction can be approximated by a rescaled function that is constructed in terms of the jth eigenfunction of fourth or second order effective operators with constant coefficients.

sted, utgiver, år, opplag, sider
2015. Vol. 93, nr 1-2, s. 141-160
HSV kategori
Identifikatorer
URN: urn:nbn:se:hig:diva-27150DOI: 10.3233/ASY-151291OAI: oai:DiVA.org:hig-27150DiVA, id: diva2:1223097
Tilgjengelig fra: 2018-06-25 Laget: 2018-06-25 Sist oppdatert: 2018-06-25bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Person

Pankratova, Iryna

Søk i DiVA

Av forfatter/redaktør
Pankratova, Iryna
I samme tidsskrift
Asymptotic Analysis

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 105 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf