hig.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Traffic signal optimization through discrete and continuous reinforcement learning with robustness analysis in downtown Tehran
Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Datavetenskap. (Geospatial Informationsvetenskap)
Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Datavetenskap. Faculty of Geodesy and Geomatics Engineering, K.N. Toosi University of Technology, Tehran, Iran. (Geospatial Informationsvetenskap)ORCID-id: 0000-0003-0085-5829
Division of Visual Information and Interaction, Department of Information Technology, Uppsala University, Uppsala, Sweden.
Institute of Artificial Intelligence and Cognitive Engineering, University of Groningen, Groningen, Netherlands.
2018 (engelsk)Inngår i: Advanced Engineering Informatics, ISSN 1474-0346, E-ISSN 1873-5320, Vol. 38, s. 639-655Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Traffic signal control plays a pivotal role in reducing traffic congestion. Traffic signals cannot be adequately controlled with conventional methods due to the high variations and complexity in traffic environments. In recent years, reinforcement learning (RL) has shown great potential for traffic signal control because of its high adaptability, flexibility, and scalability. However, designing RL-embedded traffic signal controllers (RLTSCs) for traffic systems with a high degree of realism is faced with several challenges, among others system disturbances and large state-action spaces are considered in this research.

The contribution of the present work is founded on three features: (a) evaluating the robustness of different RLTSCs against system disturbances including incidents, jaywalking, and sensor noise, (b) handling a high-dimensional state-action space by both employing different continuous state RL algorithms and reducing the state-action space in order to improve the performance and learning speed of the system, and (c) presenting a detailed empirical study of traffic signals control of downtown Tehran through seven RL algorithms: discrete state Q-learning(λ" role="presentation">), SARSA(λ" role="presentation">), actor-critic(λ" role="presentation">), continuous state Q-learning(λ" role="presentation">), SARSA(λ" role="presentation">), actor-critic(λ" role="presentation">), and residual actor-critic(λ" role="presentation">).

In this research, first a real-world microscopic traffic simulation of downtown Tehran is carried out, then four experiments are performed in order to find the best RLTSC with convincing robustness and strong performance. The results reveal that the RLTSC based on continuous state actor-critic(λ" role="presentation">) has the best performance. In addition, it is found that the best RLTSC leads to saving average travel time by 22% (at the presence of high system disturbances) when it is compared with an optimized fixed-time controller.

sted, utgiver, år, opplag, sider
2018. Vol. 38, s. 639-655
Emneord [en]
Reinforcement learning, System disturbances, Traffic signal control, Microscopic traffic simulation
HSV kategori
Identifikatorer
URN: urn:nbn:se:hig:diva-28333DOI: 10.1016/j.aei.2018.08.002ISI: 000454378700047Scopus ID: 2-s2.0-85054427837OAI: oai:DiVA.org:hig-28333DiVA, id: diva2:1256166
Tilgjengelig fra: 2018-10-16 Laget: 2018-10-16 Sist oppdatert: 2019-01-28bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Aslani, MohammadSeipel, Stefan

Søk i DiVA

Av forfatter/redaktør
Aslani, MohammadSeipel, Stefan
Av organisasjonen
I samme tidsskrift
Advanced Engineering Informatics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 132 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf