hig.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The drag force distribution within regular arrays of cubes and its relation to cross ventilation – Theoretical and experimental analyses
Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, University of Salento, Lecce, Italy.
Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för byggnadsteknik, energisystem och miljövetenskap, Energisystem och byggnadsteknik.ORCID-id: 0000-0003-1121-2394
Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för byggnadsteknik, energisystem och miljövetenskap, Energisystem och byggnadsteknik.
Department of Physics and Astronomy, University of Bologna, Bologna, Italy.
2019 (engelsk)Inngår i: Journal of Wind Engineering and Industrial Aerodynamics, ISSN 0167-6105, E-ISSN 1872-8197, Vol. 189, s. 91-103Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

A novel set of wind tunnel measurements of the drag force and its spatial distribution along aligned arrays of cubes of height H and planar area index λ p (air gap between cubes) equal to 0.028 (5H) to 0.69 (0.2H) is presented and analysed. Two different types of measurements are compared: one type where the drag force is obtained using the standard load cell method, another type where the drag force is estimated by measuring the pressure difference between windward and the leeward façades. Results show that the drag force is nearly uniformly distributed for lower λ p (0.028 and 0.0625), it decreases up to 50% at the second row for λ p = 0.11, and it sharply decreases for larger λ p (from 0.25 to 0.69) where the force mostly acts on the first row. It follows that for the lowest λ p the drag force typically formulated as a drag area corresponds to the total frontal area of the array, whereas for large λ p the drag area corresponds to the area of the first row. By assessing the driving pressure for ventilation from the drag force, the analysis is extended to estimate the cross ventilation as an example of application of this type of measurements. 

sted, utgiver, år, opplag, sider
Elsevier, 2019. Vol. 189, s. 91-103
Emneord [en]
Cross ventilation, Cubic building arrays, Drag area, Drag distribution, Interference factor, Standard load cell, Geometry, Ventilation, Wind tunnels, Aligned arrays, Cubic building, Experimental analysis, Pressure differences, Standard loads, Wind tunnel measurements, Drag
HSV kategori
Forskningsprogram
Hållbar stadsutveckling
Identifikatorer
URN: urn:nbn:se:hig:diva-30516DOI: 10.1016/j.jweia.2019.03.022ISI: 000467392500008Scopus ID: 2-s2.0-85064004026OAI: oai:DiVA.org:hig-30516DiVA, id: diva2:1343657
Forskningsfinansiär
EU, Horizon 2020, 689954Tilgjengelig fra: 2019-08-19 Laget: 2019-08-19 Sist oppdatert: 2021-02-17bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Sandberg, MatsWigö, Hans

Søk i DiVA

Av forfatter/redaktør
Sandberg, MatsWigö, Hans
Av organisasjonen
I samme tidsskrift
Journal of Wind Engineering and Industrial Aerodynamics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 283 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf