hig.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Low Cost Outdoors WSN Parking System for Metropolitan Areas Based on RSS
Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för elektroteknik, matematik och naturvetenskap, Elektronik.
2019 (engelsk)Inngår i: 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), IEEE, 2019, Vol. 1Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Finding a free parking space in the metropolitan areas during rush hour is time consuming and it leads to traffic congestions and air pollution. Wireless Sensor Network (WSN) can be used to obtain information related to the parking condition requiring very little installation and maintenance costs. In this work, we present the design and implementation of an outdoor parking system based on Wireless Sensor Networks (WSNs), received signal strength (RSS) and pattern recognition algorithms to effectively find free parking spaces. Simulation and experiment results show good performance in the verification of the parking system. XBee-PRO 900HP-S3B modules with high performance and low power consumption were used. These modules support the IEEE-802.15.4 protocol for communication in the 900 MHz band and can be configured in different network topologies. The received signal strength (RSS) was measured to form fingerprints for the parking spaces availability (busy or vacant). Kalman filters were implemented to improve RSS which varies due to the effects of short-term fading. The parking spaces availability was evaluated with different classification algorithms in the WEKA environment with results up to 85%.

sted, utgiver, år, opplag, sider
IEEE, 2019. Vol. 1
Emneord [en]
Fingerprints, Kalman filter, Pattern recognition algorithms, Wireless sensor network
HSV kategori
Identifikatorer
URN: urn:nbn:se:hig:diva-31273DOI: 10.1109/IDAACS.2019.8924422Scopus ID: 2-s2.0-85077076638ISBN: 978-1-7281-4069-8 (digital)OAI: oai:DiVA.org:hig-31273DiVA, id: diva2:1377502
Konferanse
10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS)
Tilgjengelig fra: 2019-12-12 Laget: 2019-12-12 Sist oppdatert: 2020-01-07bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Chilo, José

Søk i DiVA

Av forfatter/redaktør
Chilo, José
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 47 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf