hig.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Estimating and testing sequential causal effects based on alternative G-formula: an observational study of the influence of early diagnosis on survival of cardia cancer
Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för elektroteknik, matematik och naturvetenskap, Matematik.
2024 (engelsk)Inngår i: Communications in statistics. Simulation and computation, ISSN 0361-0918, E-ISSN 1532-4141, Vol. 53, nr 4, s. 1917-1931Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Cancer diagnosis is part of a complex stochastic process, in which patients' personal and social characteristics influence the choice of diagnosing methods, diagnosing methods in turn influence the initial assessment of cancer stage, cancer stage in turn influences the choice of treating methods, and treating methods in turn influence cancer outcomes such as cancer survival. To evaluate the performance of diagnoses, one needs to estimate and test the sequential causal effect (SCE) under a specified regime of diagnoses and treatments in such a complex observational study, where the data-generating mechanism is unknown and modeling is needed for statistical inference. In this article, we introduce a method of statistical modeling to estimate and test SCEs under regimes of treatments (diagnoses and treatments in cancer diagnosis) in complex observational studies. By applying the alternative G-formula, we express the SCE in terms of the point effects of treatments in the sequence, so that the modeling can be conducted via the point effects in the framework of single-point causal inference. We illustrate our method by a medical example of cancer diagnosis with data from a Swedish prognosis study of cardia cancer.

sted, utgiver, år, opplag, sider
Taylor & Francis , 2024. Vol. 53, nr 4, s. 1917-1931
Emneord [en]
Cancer diagnosis, G-formula, Point effect, Sequential causal effect, Statistical modeling
HSV kategori
Identifikatorer
URN: urn:nbn:se:hig:diva-38421DOI: 10.1080/03610918.2022.2060511ISI: 000781684200001Scopus ID: 2-s2.0-85129213832OAI: oai:DiVA.org:hig-38421DiVA, id: diva2:1652360
Forskningsfinansiär
Swedish Research Council Formas, 2019-02913Swedish Research CouncilTilgjengelig fra: 2022-04-19 Laget: 2022-04-19 Sist oppdatert: 2024-03-25bibliografisk kontrollert

Open Access i DiVA

fulltext(1775 kB)11 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1775 kBChecksum SHA-512
c8ba0de0bb6e79275059e9e6300703187e0b7a2ae859e2628491cabdcf4cad0112384a2eebb851a52eebf0872b06117f5ab621bdb425fdac50607b1bc3a407ee
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Person

Wang, Xiaoqin

Søk i DiVA

Av forfatter/redaktør
Wang, Xiaoqin
Av organisasjonen
I samme tidsskrift
Communications in statistics. Simulation and computation

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 11 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 86 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf