hig.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Detection of Line Features in Digital Images of Building Structures
Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Datavetenskap. (Datavetenskap)
Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Datavetenskap. (Datavetenskap)ORCID-id: 0000-0003-0085-5829
2012 (engelsk)Inngår i: Proceedings of IADIS International Conference Computer Graphics, Visualization, Computer Vision and Image Processing 2012 (CGVCVIP 2012) / [ed] Yingcai Xiao, 2012, s. 163-167Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

This paper describes method for detection of short line segments in digital images. It aims at identifying buildingsin images taken from the ground view. The process starts with the image edge map and is carried out in twodifferent levels. One is to detect long line segments usually stemming from façade edges and building silhouettes.The other one identifies shorter line segments which typically represent architectural details such as windows andentrances. Selected individual connected components in both vertical and horizontal gradient component mapsare used respectively as input to the Hough transform at this level. Our first result shows that this method iscapable of recognizing lines of interest but has also included many randomly oriented lines. The next step will beto eliminate the random line segments and correlate line segments of the two levels to classify high-level features ofbuildings in an image.

sted, utgiver, år, opplag, sider
2012. s. 163-167
Emneord [en]
Building images, Gradient edges, Hough transform, Line segment detection
HSV kategori
Identifikatorer
URN: urn:nbn:se:hig:diva-12940Scopus ID: 2-s2.0-84887314410ISBN: 978-972-8939-74-8 (tryckt)OAI: oai:DiVA.org:hig-12940DiVA, id: diva2:553134
Konferanse
IADIS International Conference Computer Graphics, Visualization, Computer Vision and Image Processing 2012 (CGVCVIP 2012), Lisbon, Portugal, 21-24 July 2012
Tilgjengelig fra: 2012-09-18 Laget: 2012-09-18 Sist oppdatert: 2018-03-13bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Scopus

Personposter BETA

Liu, FeiSeipel, Stefan

Søk i DiVA

Av forfatter/redaktør
Liu, FeiSeipel, Stefan
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 253 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf