hig.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Improved global crustal thickness modeling based on the VMM isostatic model and non-isostatic gravity correction
Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad/GIS-Institutet. (Geodesy)
Wuhan University, China.
Royal Institute of Technology (KTH), Stockholm, Sweden.
University of West Bohemia, Plzen, Czech Republic.
2013 (engelsk)Inngår i: Journal of Geodynamics, ISSN 0264-3707, E-ISSN 1879-1670, Vol. 66, s. 25-37Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In classical isostatic models for a gravimetric recovery of the Moho parameters (i.e., Moho depths and density contrast) the isostatic gravity anomalies are usually defined based on the assumption that the topographic mass surplus and the ocean mass deficiency are compensated within the Earth’s crust. As acquired in this study, this assumption yields large disagreements between isostatic and seismic Moho models. To assess the effects not accounted for in classical isostatic models, we conduct a number of numerical experiments using available global gravity and crustal structure models. First, we compute the gravitational contributions of mass density contrasts due to ice and sediments, and subsequently evaluate respective changes in the Moho geometry. Residual differences between the gravimetric and seismic Moho models are then used to predict a remaining non-isostatic gravity signal, which is mainly attributed to unmodeled density structures and other geophysical phenomena. We utilize three recently developed computational schemes in our numerical studies. The apparatus of spherical harmonic analysis and synthesis is applied in forward modeling of the isostatic gravity disturbances. The Moho depths are estimated globally on a 1 arc-deg equiangular grid by solving the Vening-Meinesz Moritz inverse problem of isostasy. The same estimation model is applied to evaluate the differences between the isostatic and seismic models. We demonstrate that the application of the ice and sediment density contrasts stripping gravity corrections is essential for a more accurate determination of the Moho geometry. We also show that the application of the additional non-isostatic correction further improves the agreement between the Moho models derived based on gravity and seismic data. Our conclusions are based on comparing the gravimetric results with the CRUST2.0 global crustal model compiled using results of seismic surveys.

sted, utgiver, år, opplag, sider
2013. Vol. 66, s. 25-37
Emneord [en]
Moho, non-isostatic effects, gravity, density
HSV kategori
Identifikatorer
URN: urn:nbn:se:hig:diva-14941DOI: 10.1016/j.jog.2013.01.002ISI: 000318381100003Scopus ID: 2-s2.0-84874568305OAI: oai:DiVA.org:hig-14941DiVA, id: diva2:638052
Tilgjengelig fra: 2013-07-25 Laget: 2013-07-25 Sist oppdatert: 2018-03-13bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Bagherbandi, Mohammad

Søk i DiVA

Av forfatter/redaktør
Bagherbandi, Mohammad
Av organisasjonen
I samme tidsskrift
Journal of Geodynamics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 618 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf