hig.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A New Framework and Application of Software Reliability Estimation Based on Fault Detection and Correction Processes
Department of Systems Engineering and Engineering Management, City University of Hong Kong, Hong Kong, Hong Kong .
Department of Systems Engineering and Engineering Management, City University of Hong Kong, Hong Kong, Hong Kong .
Faculty of Information Engineering, Guizhou Institute of Technology, Guiyang, China .
Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Industriell ekonomi. Högskolan i Gävle, Centrum för logistik och innovativ produktion.
2015 (Engelska)Ingår i: Proceedings: IEEE International Conference on Software Quality, Reliability and Security, QRS 2015, IEEE conference proceedings, 2015, s. 65-74, artikel-id 7272916Konferensbidrag, Publicerat paper (Refereegranskat)
Resurstyp
Text
Abstract [en]

Software reliability growth modeling plays an important role in software reliability evaluation. To incorporate more information and provide more accurate analysis, modeling software fault detection and correction processes has attracted widespread research attention recently. However, the assumption of the stochastic fault correction time delay brings more difficulties in modeling and estimating the parameters. In practice, other than the grouped fault data, software test records often include some more detailed information, such as the rough time when one fault is detected or corrected. Such semi-grouped dataset contains more information about fault removal processes than commonly used grouped dataset. Using the semi-grouped datasets can improve the accuracy of time delayed models. In this paper, a fault removal modelling framework for software reliability with semi-grouped data is studied and extended into multi-released software. Also, the corresponding parameter estimation is carried out with Maximum Likelihood estimation method. One test dataset with three releases from a practical software project is applied with the proposed framework, which shows satisfactory performance with the results.

Ort, förlag, år, upplaga, sidor
IEEE conference proceedings, 2015. s. 65-74, artikel-id 7272916
Nyckelord [en]
fault correction process, maximum likelihood estimation, Non-Homogenous Poisson Process, queuing model, Software reliability
Nationell ämneskategori
Systemvetenskap, informationssystem och informatik
Identifikatorer
URN: urn:nbn:se:hig:diva-21492DOI: 10.1109/QRS.2015.20ISI: 000380466800009Scopus ID: 2-s2.0-84962120863ISBN: 978-146737989-2 (tryckt)OAI: oai:DiVA.org:hig-21492DiVA, id: diva2:927863
Konferens
IEEE International Conference on Software Quality, Reliability and Security, QRS 2015, 3-5 August 2015, Vancouver, Canada
Tillgänglig från: 2016-05-13 Skapad: 2016-05-13 Senast uppdaterad: 2018-03-13Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Zhao, Ming

Sök vidare i DiVA

Av författaren/redaktören
Zhao, Ming
Av organisationen
Industriell ekonomiCentrum för logistik och innovativ produktion
Systemvetenskap, informationssystem och informatik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 189 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf