hig.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Copula-based reliability analysis for a parallel system with a cold standby
Department of Civil Aviation Engineering, College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing, China; Department of Applied Mathematics, School of Mathematics and Physics, Anhui University of Technology, Maanshan, China.
Department of Civil Aviation Engineering, College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
Department of Civil Aviation Engineering, College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Industriell ekonomi. Högskolan i Gävle, Centrum för logistik och innovativ produktion.
2018 (engelsk)Inngår i: Communications in Statistics - Theory and Methods, ISSN 0361-0926, E-ISSN 1532-415X, Vol. 47, nr 3, s. 562-582Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The traditional reliability models cannot well reflect the effect of performance dependence of subsystems on the reliability of system, and neglect the problems of initial reliability and standby redundancy. In this paper, the reliability of a parallel system with active multicomponents and a single cold-standby unit has been investigated. The simultaneously working components are dependent and the dependence is expressed by a copula function. Based on the theories of conditional probability, the explicit expressions for the reliability and the MTTF of the system, in terms of the copula function and marginal lifetime distributions, are obtained. Let the copula function be the FGM copula and the marginal lifetime distribution be exponential distribution, a system with two parallel dependent units and a single cold-standby unit is taken as an example. The effect of different degrees of dependence among components on system reliability is analyzed, and the system reliability can be expressed as the linear combination of exponential reliability functions with different failure rates. For investigating how the degree of dependence affects the mean lifetime, furthermore, the parallel system with a single cold standby, comprising different number of active components, is also presented. The effectiveness of the modeling method is verified, and the method presented provides a theoretical basis for reliability design of engineering systems and physics of failure.

sted, utgiver, år, opplag, sider
Taylor and Francis Inc. , 2018. Vol. 47, nr 3, s. 562-582
Emneord [en]
Copula-based reliability; Dependent component; Initial failure; Mean time to failure; Cold standby
HSV kategori
Identifikatorer
URN: urn:nbn:se:hig:diva-25588DOI: 10.1080/03610926.2017.1309432ISI: 000423624000005Scopus ID: 2-s2.0-85031398267OAI: oai:DiVA.org:hig-25588DiVA, id: diva2:1160065
Tilgjengelig fra: 2017-11-24 Laget: 2017-11-24 Sist oppdatert: 2018-03-13bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Ming, Zhao

Søk i DiVA

Av forfatter/redaktør
Ming, Zhao
Av organisasjonen
I samme tidsskrift
Communications in Statistics - Theory and Methods

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 98 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf