hig.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Developing adaptive traffic signal control by actor-critic and direct exploration methods
Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Datavetenskap. (Geospatial Informationsvetenskap)
Division of Visual Information and Interaction, Department of Information Technology, Uppsala University, Uppsala, Sweden.
Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Datavetenskap. Faculty of Geodesy and Geomatics Engineering, K.N. Toosi University of Technology, Tehran, Iran.
Institute of Artificial Intelligence and Cognitive Engineering, University of Groningen, Groningen, Netherlands.
2018 (Engelska)Ingår i: Proceedings of the Institution of Civil Engineers: Transport, ISSN 0965-092X, E-ISSN 1751-7710, Vol. 172, nr 5, s. 289-298Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Designing efficient traffic signal controllers has always been an important concern in traffic engineering. This is owing to the complex and uncertain nature of traffic environments. Within such a context, reinforcement learning has been one of the most successful methods owing to its adaptability and its online learning ability. Reinforcement learning provides traffic signals with the ability automatically to determine the ideal behaviour for achieving their objective (alleviating traffic congestion). In fact, traffic signals based on reinforcement learning are able to learn and react flexibly to different traffic situations without the need of a predefined model of the environment. In this research, the actor-critic method is used for adaptive traffic signal control (ATSC-AC). Actor-critic has the advantages of both actor-only and critic-only methods. One of the most important issues in reinforcement learning is the trade-off between exploration of the traffic environment and exploitation of the knowledge already obtained. In order to tackle this challenge, two direct exploration methods are adapted to traffic signal control and compared with two indirect exploration methods. The results reveal that ATSC-ACs based on direct exploration methods have the best performance and they consistently outperform a fixed-time controller, reducing average travel time by 21%.

Ort, förlag, år, upplaga, sidor
Thomas Telford, 2018. Vol. 172, nr 5, s. 289-298
Nyckelord [en]
communications & control systems; traffic engineering; transport management
Nationell ämneskategori
Samhällsbyggnadsteknik Data- och informationsvetenskap
Identifikatorer
URN: urn:nbn:se:hig:diva-28332DOI: 10.1680/jtran.17.00085ISI: 000485777800005Scopus ID: 2-s2.0-85051112937OAI: oai:DiVA.org:hig-28332DiVA, id: diva2:1256155
Tillgänglig från: 2018-10-16 Skapad: 2018-10-16 Senast uppdaterad: 2019-11-26Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Aslani, MohammadSeipel, Stefan

Sök vidare i DiVA

Av författaren/redaktören
Aslani, MohammadSeipel, Stefan
Av organisationen
Datavetenskap
I samma tidskrift
Proceedings of the Institution of Civil Engineers: Transport
SamhällsbyggnadsteknikData- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 21 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf