hig.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Traffic signal optimization through discrete and continuous reinforcement learning with robustness analysis in downtown Tehran
Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Datavetenskap. (Geospatial Informationsvetenskap)
Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Datavetenskap. Faculty of Geodesy and Geomatics Engineering, K.N. Toosi University of Technology, Tehran, Iran. (Geospatial Informationsvetenskap)ORCID-id: 0000-0003-0085-5829
Division of Visual Information and Interaction, Department of Information Technology, Uppsala University, Uppsala, Sweden.
Institute of Artificial Intelligence and Cognitive Engineering, University of Groningen, Groningen, Netherlands.
2018 (Engelska)Ingår i: Advanced Engineering Informatics, ISSN 1474-0346, E-ISSN 1873-5320, Vol. 38, s. 639-655Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Traffic signal control plays a pivotal role in reducing traffic congestion. Traffic signals cannot be adequately controlled with conventional methods due to the high variations and complexity in traffic environments. In recent years, reinforcement learning (RL) has shown great potential for traffic signal control because of its high adaptability, flexibility, and scalability. However, designing RL-embedded traffic signal controllers (RLTSCs) for traffic systems with a high degree of realism is faced with several challenges, among others system disturbances and large state-action spaces are considered in this research.

The contribution of the present work is founded on three features: (a) evaluating the robustness of different RLTSCs against system disturbances including incidents, jaywalking, and sensor noise, (b) handling a high-dimensional state-action space by both employing different continuous state RL algorithms and reducing the state-action space in order to improve the performance and learning speed of the system, and (c) presenting a detailed empirical study of traffic signals control of downtown Tehran through seven RL algorithms: discrete state Q-learning(λ" role="presentation">), SARSA(λ" role="presentation">), actor-critic(λ" role="presentation">), continuous state Q-learning(λ" role="presentation">), SARSA(λ" role="presentation">), actor-critic(λ" role="presentation">), and residual actor-critic(λ" role="presentation">).

In this research, first a real-world microscopic traffic simulation of downtown Tehran is carried out, then four experiments are performed in order to find the best RLTSC with convincing robustness and strong performance. The results reveal that the RLTSC based on continuous state actor-critic(λ" role="presentation">) has the best performance. In addition, it is found that the best RLTSC leads to saving average travel time by 22% (at the presence of high system disturbances) when it is compared with an optimized fixed-time controller.

Ort, förlag, år, upplaga, sidor
2018. Vol. 38, s. 639-655
Nyckelord [en]
Reinforcement learning, System disturbances, Traffic signal control, Microscopic traffic simulation
Nationell ämneskategori
Data- och informationsvetenskap Samhällsbyggnadsteknik
Identifikatorer
URN: urn:nbn:se:hig:diva-28333DOI: 10.1016/j.aei.2018.08.002ISI: 000454378700047Scopus ID: 2-s2.0-85054427837OAI: oai:DiVA.org:hig-28333DiVA, id: diva2:1256166
Tillgänglig från: 2018-10-16 Skapad: 2018-10-16 Senast uppdaterad: 2019-01-28Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Aslani, MohammadSeipel, Stefan

Sök vidare i DiVA

Av författaren/redaktören
Aslani, MohammadSeipel, Stefan
Av organisationen
Datavetenskap
I samma tidskrift
Advanced Engineering Informatics
Data- och informationsvetenskapSamhällsbyggnadsteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 143 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf