hig.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Mapping of roof types in orthophotos using feature descriptors
Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Samhällsbyggnad, GIS.
Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Datavetenskap. Uppsala University, Department of Information Technology, Sweden.
2018 (engelsk)Inngår i: International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM: Proceedings of the International Multidisciplinary Scientific GeoConference SGEM, 2018, Vol. 18, s. 285-291Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

In the context of urban planning, it is very important to estimate the nature of the roof of every building and, in particular, to make the difference between flat roofs and gable ones. This analysis is necessary in seismically active areas. Also in the assessment of renewable energy projects such solar energy, the shape of roofs must be accurately retrieved. In order to perform this task automatically on a large scale, aerial photos provide a useful solution. The goal of this research project is the development of algorithm for accurate mapping of two different roof types in digital aerial images. The algorithm proposed in this paper includes several components: pre-processing step to reduce illumination differences of individual roof surfaces, statistical moments calculation and color indexing. Roof models are created and saved as masks with feature specific descriptors. Masks are then used to mark areas that contain elements of the different roof types (e.g. gable and hip). The final orthophoto visualize an accurate position of each of the roof types. The result is evaluated using precision recall method.

sted, utgiver, år, opplag, sider
2018. Vol. 18, s. 285-291
Serie
Proceedings of the International Multidisciplinary Scientific GeoConference SGEM, ISSN 1314-2704 ; 2.2
Emneord [en]
URBAN planning, ROOFS, BUILDINGS, ALGORITHMS, AERIAL photography, classification, orthophoto, Roof types, segmentation
HSV kategori
Identifikatorer
URN: urn:nbn:se:hig:diva-28694DOI: 10.5593/sgem2018/2.2/S08.036Scopus ID: 2-s2.0-85058885965OAI: oai:DiVA.org:hig-28694DiVA, id: diva2:1266481
Konferanse
18th International Multidisciplinary Scientific GeoConference SGEM,30th June - 9th July 2018, Albena, Bulgaria
Tilgjengelig fra: 2018-11-28 Laget: 2018-11-28 Sist oppdatert: 2019-01-07bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Åhlén, JuliaSeipel, Stefan

Søk i DiVA

Av forfatter/redaktør
Åhlén, JuliaSeipel, Stefan
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 34 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf