hig.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Energy use and energy saving in buildings and asthma, allergy and sick building syndrome (SBS): a literature review
University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
2019 (English)Independent thesis Advanced level (degree of Master (One Year)), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

Energy use in buildings is an important contribution to global CO2 emissions and contributes to global warming. In recent years, there has been concern about creating energy efficiency buildings, green buildings and healthy buildings but this development needs guidance by multidisciplinary scientists and experts. Since energy saving can influence the indoor environment in different ways, epidemiological research is needed in different climate zones to evaluate the health consequences of making the buildings more energy efficient. Epidemiological studies and modelling studies are available on health effects and indoor effects of energy conversation, improved thermal insulation, increased air tightness and creating green buildings. The health-related literature on this issue was reviewed, by searching scientific articles in the medical Database PubMed and in the general database Web of Science as well as Nature database. In this literature review, 53 relevant peer reviewed articles on health effects of energy use and energy saving were found. Most of the studies had investigated residential buildings. One main conclusion from the review is that combined energy efficiency improvements in buildings can be associated with improvement of general health, such as less asthma, allergies, sick building syndrome (SBS) symptoms, respiratory symptoms, and reduced cold-related and heat-related mortality. Moreover, combined energy efficiency improvements can improve indoor air quality, increase productivity and satisfaction and reduce work leave and school absence. Effective heating of buildings can reduce respiratory symptoms and reduce work leave and school absence. However, some potential health problems can occur if increased energy efficiency will reduce ventilation flow. Energy saving by increasing air tightness or reducing ventilation is associated with impaired indoor air quality and negative health effects. In contrast, improved ventilation may reduce SBS, respiratory symptoms and increase indoor air quality. Installation of mechanical ventilation can solve the negative effects of making the building construction in dwellings more air tight. In future research, more studies are needed on health impacts of single energy efficiency improvement methods. Existing studies have mostly used a combination of improvement methods. In addition, modelling software programs should more often be used, since they can take into account effects of different energy efficiency improvement methods on indoor air quality in different types of buildings and in different climates.

Place, publisher, year, edition, pages
2019. , p. 30
National Category
Energy Systems Energy Engineering
Identifiers
URN: urn:nbn:se:hig:diva-30086OAI: oai:DiVA.org:hig-30086DiVA, id: diva2:1327717
Subject / course
Energy systems
Educational program
Energy engineering – master’s programme online (one year) (in eng)
Supervisors
Examiners
Available from: 2019-06-20 Created: 2019-06-19 Last updated: 2019-06-20Bibliographically approved

Open Access in DiVA

fulltext(385 kB)23 downloads
File information
File name FULLTEXT01.pdfFile size 385 kBChecksum SHA-512
e6a0548f1e62ecc59a9e05ac3cde617ea41a3a5e310297c965202539b23a519b93cc5fed72f8290f9f072b65f85ad571da0ae9ea8e751b96f87cf6b2b4b29c30
Type fulltextMimetype application/pdf

By organisation
Energy Systems and Building Technology
Energy SystemsEnergy Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 23 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 364 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf