hig.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Automatiserad mönsterigenkänning av stenmurar
University of Gävle, Faculty of Engineering and Sustainable Development, Department of Computer and Geospatial Sciences.
University of Gävle, Faculty of Engineering and Sustainable Development, Department of Computer and Geospatial Sciences.
2019 (Swedish)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Sustainable development
The essay/thesis is partially on sustainable development according to the University's criteria
Abstract [en]

Automated pattern recognition of stone walls, within both point cloud and image processing, can help identify previously inaccessible areas than with only image pro-cessing. This is important as stone walls are biotopes and serve as structures and have ecological functions for both plants and animals. An automated pattern recog-nition can also benefit Sweden with the fulfillment of the national environmental quality objectives, as well as several commitments from the EU which promote the preservation of biological diversity and cultural heritage. However, conventional airborne laser scanners, via airplanes, have not had a sufficiently high point density and penetration of dense forests. This study therefore aims to use an improved tech-nology in Light Detection and Ranging (LiDAR), where data is collected from Sin-gle Photon LiDAR (SPL). Then, the automated pattern recognition will be used to discover stone walls in varied terrain.

After the evaluation, two out of five stone walls were identified, one of which had rendered 99.99% of the target area and the other had a 75% target area, although both also displayed one false hit outside of the desired area. The remaining missing area, as well as the other stone walls, could not be identified because of nearby fac-tors such as shrubbery and trees, but even though the method selection for this study did not provide a 100% match on all stone walls, the data from the SPL tech-nology is still useful for pattern recognition with its point density and penetration. The conclusion of this work is that a point cloud filtering must be improved, if not adapted for each area of stone walls, to create better areas of interest before image processing of segmentation and pattern recognition can be implemented. However, the study shows that a combination of point cloud and image processing for auto-matic pattern recognition is a useful way of identifying stone walls.

Abstract [sv]

En automatiserad mönsterigenkänning av stenmurar, inom både punktmolns- och bildbehandling, kan bidra till att identifiera tidigare oåtkomliga områden än med endast bildbehandling. Detta är viktigt då stenmurar är biotoper och fungerar som strukturer och ekologiska funktioner för både växter och djur. En automatiserad mönsterigenkänning kan även bidra till att Sverige gynnar uppfyllandet av de nation-ella miljökvalitetsmålen, samt flera åtaganden från EU enklare inom bevarelse av den biologiska mångfalden och kulturarv. Däremot har konventionella flygburna la-serskanningar, med flygplan, inte haft en tillräcklig hög punkttäthet och genom-trängning av tät skog. Denna studie syftar därför till att använda sig av en förbättrad teknik inom Light Detection and Ranging (LiDAR), där data är insamlat från Single Photon LiDAR (SPL). Därefter ska den automatiserade mönsterigenkänningen an-vändas på dess data för att identifiera stenmurar i varierad terräng.

Efter utvärderingen identifierades två av fem stenmurar, varav den ena muren hade 99,99 % upphittad träffyta med en felträff och den andra muren hade en 75 % upp-hittad träffyta med en felträff. Resterande saknad träffyta, samt de övriga stenmu-rarna, kunde inte identifieras på grund av närliggande faktorer som buskage och träd, men även om metodvalet till den här studien inte gav en 100 % träffyta på alla samtliga stenmurar är data från SPL-tekniken fortfarande användbart för mönsteri-genkänning med dess punkttäthet och genomträngning. Slutsatsen av detta arbete är att en punktmolnsfiltreringen måste förbättras, om inte anpassas för varje område av stenmurar, för att på så sätt skapa bättre intresseområden av stenmurar innan bildbe-handling av segmentering och mönsterigenkänning kan implementeras. Däremot vi-sar studien att en kombination av punktmolns- och bildbehandling för automatisk mönsterigenkänning är ett användbart arbetssätt för identifiering av stenmurar.

Place, publisher, year, edition, pages
2019. , p. 45
Keywords [en]
Automatic Pattern Recognition, Stone Walls, Dense Forest, LiDAR, SPL100
Keywords [sv]
Automatisk mönsterigenkänning, Stenmurar, Tät skog, Li-DAR, SPL100
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:hig:diva-30286OAI: oai:DiVA.org:hig-30286DiVA, id: diva2:1331474
External cooperation
Lantmäteriet
Subject / course
Computer science
Educational program
Study Programme in Computer Science and Geographical Information Technology
Supervisors
Examiners
Available from: 2019-06-27 Created: 2019-06-26 Last updated: 2019-06-27Bibliographically approved

Open Access in DiVA

fulltext(2889 kB)10 downloads
File information
File name FULLTEXT01.pdfFile size 2889 kBChecksum SHA-512
5c5072e17d5514a618ecb8b990ef78d0aee8bcc0bc935e906badcd89744ebd42bd2266b3ccdc502729058897d3fc200c7f5577e75ad0441d5767fba8653bf55d
Type fulltextMimetype application/pdf

By organisation
Department of Computer and Geospatial Sciences
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 10 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 49 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf