hig.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Distributed detection with non-identical wireless sensors for industrial applications
University of Gävle, Faculty of Engineering and Sustainable Development, Department of Electrical Engineering, Mathematics and Science, Electronics. School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Sweden.ORCID iD: 0000-0001-8387-3779
University of Gävle, Faculty of Engineering and Sustainable Development, Department of Electrical Engineering, Mathematics and Science, Electronics.ORCID iD: 0000-0001-5429-7223
School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Sweden.
2019 (English)In: Proceedings of the IEEE International Conference on Industrial Technology, IEEE, 2019, p. 1403-1408Conference paper, Published paper (Refereed)
Abstract [en]

There has been very little exploration when it comes to design distributed detection techniques and data fusion rules with non-identical sensors. This concept can be utilized in many possible applications within industrial automation, surveillance and safety. Here, for a global event, some of the sensors/detectors in the network can observe the full set of the hypotheses, whereas the remaining sensors infer more than one hypotheses as a single hypothesis. The local decisions are sent to the decision fusion center (DFC) over a multiple access wireless channel. In this paper, a fusion rule based on minimization of variance of the local mis-detection is proposed. The presence of sensors with limited detection capabilities is found to have a positive impact on the overall system performance, both in terms of probability of detection and transmit power consumption. Additionally, when the DFC is equipped with a large antenna array, the overall transmit power consumption can be reduced without sacrificing the detection performance. 

Place, publisher, year, edition, pages
IEEE, 2019. p. 1403-1408
Keywords [en]
Large antenna array, Mac fusion rule, Multiple hypotheses, Non-identical local detectors, Wireless sensor network, Accident prevention, Antenna arrays, Data fusion, Electric power utilization, Detection performance, Distributed detection, Fusion rule, Industrial automation, Large antennas, Multiple hypothesis, Non-identical, Probability of detection, Wireless sensor networks
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Intelligent Industry
Identifiers
URN: urn:nbn:se:hig:diva-30587DOI: 10.1109/ICIT.2019.8755012ISI: 000490548300221Scopus ID: 2-s2.0-85069036657ISBN: 978-1-5386-6376-9 (electronic)OAI: oai:DiVA.org:hig-30587DiVA, id: diva2:1345636
Conference
2019 IEEE International Conference on Industrial Technology, ICIT 2019; Melbourne; Australia; 13-15 February 2019
Available from: 2019-08-26 Created: 2019-08-26 Last updated: 2023-02-17Bibliographically approved
In thesis
1. Unraveling the potential of Wireless Sensors in the age of Industry 4.0
Open this publication in new window or tab >>Unraveling the potential of Wireless Sensors in the age of Industry 4.0
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Human civilization is now staring at the fourth industrial revolution, where wireless technologies will play a pivotal role in its success. Wireless sensors’ role is also becoming more significant in the present day to facilitate industrial automation and manufacturing processes and address health, safety, and environmental concerns. However, wireless communication is primarily unreliable due to noise, interference, and channel fading. Several factors, like hardware quality of the sensors, imperfect calibration, harsh environment, and deployment locations, can also affect the sensors’ observation, which throws further challenges for information reliability and latency. These challenges must be addressed urgently for the success of Industry 4.0.

The scope of this Ph.D. research works is broadly divided into two research problems. The first research problem, this dissertation investigates, is how to retrieve and process the local detection of wireless sensors in critical industrial applications. Diversity techniques are known to improve the reliability of wireless communication. Therefore, various spatial diversity techniques using an antenna array with a large number of elements at the receiver are investigated first to find out the suitability of wireless communication for critical industrial applications. Moreover, in order to improve sensors’ detection performance, distributed detection methods are popularly used. This Ph.D.thesis proposes techniques and algorithms to transmit and fuse local decisions from non-identical wireless sensors, e.g., sensors with different detection capabilities. The fusion center utilizes the spatial diversity or spatial multiplexing based scheme to retrieve the sensors’ local decisions.

In order to design a reliable wireless communication system, it is highly desirable to understand the channel characteristics of the wireless medium. The second research problem this dissertation address is to characterize the radio propagation channel in one of the millimeter wave frequency bands. Millimeter wave wireless technologies bring several benefits, which can further revolutionize the industrial manufacturing and automation processes. In this.D. research work, the radio channel measurements were carried out at the24 GHz ISM band in various industrial environments within Gävle, Sweden, with the help of highly competent in-house assembled affordable testbeds. Several radio propagation aspects, like, the large scale fading, small scale fading, multipath propagation, and Doppler effect, are studied.

Abstract [sv]

Mänskligheten ser nu med tillförsikt fram emot den fjärde industriella revolutionen, där trådlös teknik kommer att spela en central roll i dess framgång. Trådlösa sensorer blir också allt viktigare för att underlätta industriell automatisering och tillverkningsprocesser men även hälsa, säkerhet och miljö. Tillförlitligheten hos trådlös kommunikation påverkas dock av brus, störningar och kanalfädning. Ytterligare faktorer, som sensorns hårdvarumässiga kvalitet, ofullständig kalibrering, tuff omgivande miljö och begränsade placeringsmöjligheter, kan också påverka sensorernas observation, vilket ger ytterligare utmaningar för latens och tillförlitlighet i informationsflödet. Dessa utmaningar måste hanteras snarast för att Industry 4.0 ska lyckas.

Innehållet i denna doktorsavhandling är generellt sett uppdelat i två forskningsfrågor. Den första forskningsfrågan som denna avhandling undersöker, är hur man kan hämta och bearbeta information från fristående lokala sensorer i kritiska industriella applikationer. Diversitetstekniker är kända för att förbättra tillförlitligheten hos trådlös kommunikation. Därför undersöks inledningsvis olika spatiella divsersitetstekniker med ett stort antal antennelement vid mottagaren för att ta reda på lämpligheten för trådlös kommunikation för kritiska industriella applikationer. För att förbättra sensorernas detekteringsprestanda används dessutom distribuerade detekteringsmetoder. Denna doktorsavhandling föreslår metoder och algoritmer för att överföra och kombinera lokala beslut från icke-identiska trådlösa sensorer, t.ex. sensorer med olika detekteringsfunktioner. Sensorernas lokala beslut samlas ihop med hjälp av spatiell diversitet eller multiplexering till ett centralt detektionsbeslutet

För att utforma ett pålitligt trådlöst kommunikationssystem är det nödvändigt att förstå kanalegenskaperna för den trådlösa miljön. Den andra forskningsfrågan, som denna avhandling behandlar, är att karakterisera radioutbredningskanaler i ett av frekvensbanden för millimetervågor. Trådlös kommunikation med millimetervågor ger flera fördelar, vilket kan revolutionera industriella tillverknings- och automatiseringsprocesser ytterligare. I denna doktorsavhandling utfördes radiokanalmätningarna vid 24 GHz i ISM-bandet vid olika industriella miljöer i Gävle, Sverige, med hjälp av prisvärda, internt designade, testbäddar baserade på högprestandainstrument. Flera radioutbredningsaspekter har studerats, så som flervägsutbredning, dopplereffekt samt storskalig och småskalig fädning.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2021
National Category
Signal Processing Telecommunications Communication Systems
Identifiers
urn:nbn:se:hig:diva-35230 (URN)978-91-7873-775-8 (ISBN)
Public defence
2021-02-26, 12:108 (Lilla Jadwigasalen), Högskolan i Gävle, Gävle, 13:00 (English)
Opponent
Supervisors
Available from: 2021-02-15 Created: 2021-02-08 Last updated: 2023-02-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Panigrahi, Smruti RanjanBjörsell, Niclas

Search in DiVA

By author/editor
Panigrahi, Smruti RanjanBjörsell, Niclas
By organisation
Electronics
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 222 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf