hig.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Exploring Interactions Between Fruit and Vegetable Production in a Greenhouse and an Anaerobic Digestion Plant—Environmental Implications
University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Environmental Science.ORCID iD: 0000-0001-8111-8921
University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.ORCID iD: 0000-0002-2838-6545
2021 (English)In: Frontiers in Sustainability, E-ISSN 2673-4524, Vol. 2, article id 770296Article in journal (Refereed) Published
Abstract [en]

Greenhouse fruit and vegetable production uses large amounts of energy and other resources, and finding ways of reducing its impact may increase sustainability. Outputs generated from solid-state anaerobic digestion (SS-AD) are suitable for use in greenhouses, which creates a need to investigate the consequences of the possible interactions between them. Connecting the fruit and vegetable production with the resource flows from an SS-AD process, e.g., biogas and digestate, could increase circularity while decreasing the total environmental impact. There are currently no studies where a comprehensive assessment of the material flows between greenhouses and SS-AD are analyzed in combination with evaluation of the environmental impact. In this study, material flow analysis is used to evaluate the effects of adding tomato related waste to the SS-AD, while also using life cycle assessment to study the environmental impact of the system, including production of tomatoes in a greenhouse and the interactions with the SS-AD. The results show that the environmental impact decreases for all evaluated impact categories as compared to a reference greenhouse that used inputs and outputs usually applied in a Swedish context. Using the tomato related waste as a feedstock for SS-AD caused a decrease of biomethane and an increase of carbon dioxide and digestate per ton of treated waste, compared to the digestion of mainly food waste. In conclusion, interactions between a greenhouse and an SS-AD plant can lead to better environmental performance by replacing some of the fertilizer and energy required by the greenhouse.

Place, publisher, year, edition, pages
Frontiers , 2021. Vol. 2, article id 770296
Keywords [en]
hydroponic process, greenhouse, life cycle assessment, industrial symbiosis, digestate, tomato, anaerobic digestion (AD)
National Category
Environmental Sciences
Identifiers
URN: urn:nbn:se:hig:diva-38892DOI: 10.3389/frsus.2021.770296Scopus ID: 2-s2.0-85158954566OAI: oai:DiVA.org:hig-38892DiVA, id: diva2:1667590
Available from: 2022-06-10 Created: 2022-06-10 Last updated: 2024-01-31Bibliographically approved
In thesis
1. Energy and Environmental Factors in Food and Beverage Production Systems: An Analysis of Tomatoes, Whisky, and Beer
Open this publication in new window or tab >>Energy and Environmental Factors in Food and Beverage Production Systems: An Analysis of Tomatoes, Whisky, and Beer
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Given the anticipated global population of approximately 10 billion by 2050, the task of ensuring adequate sustenance for all within the constraints of Earth's limited resources presents a significant challenge. The production of food and beverages demands considerable energy investment, as well as other essential resources such as water and nutrients. In addition to this, food production is associated with different kinds of environmental impact, such as global warming, eutrophication, acidification, and biodiversity loss.

This thesis analyzes energy and environmental factors in food and beverage production systems, focusing on tomatoes, whisky, and beer production. It aims to identify energy and environmental hotspots in these systems while also exploring the potential benefits of selected waste management practices, such as anaerobic digestion, for improving system circularity and environmental performance. The thesis uses several methods for energy and environmental systems analysis, including life cycle assessment and material flow analysis, as well as energy system simulation and optimization.

A key finding is the role of local resources, such as renewable energy and access to waste treatment facilities, in determining the environmental impact. Additionally, electricity use and production methods significantly influenced the environmental impact of the studied systems. The importance of transportation varied across the systems, due to differences in transport requirements of both inputs and outputs. Furthermore, this study evaluates various alternatives for increased circularity, particularly through waste treatment and improved resource efficiency. The results contribute to increased understanding of environmental performance across several production systems, offering insights for decision-makers aiming to enhance environmental sustainability of food and beverage production.

Abstract [sv]

Med tanke på den förväntade globala befolkningen på ungefär 10 miljarder människor år 2050 är det en stor utmaning att säkerställa tillräcklig matförsörjning inom jordens begränsade resurser. Mat- och dryckesproduktion kräver betydande energimängder, samt andra väsentliga resurser som vatten och näringsämnen, och är förknippad med miljöpåverkan som global uppvärmning, övergödning, försurning och förlust av biologisk mångfald.

Denna avhandling presenterar en analys av energi- och miljöfaktorer i system för produktion av mat och dryck, med fokus på produktion av tomater, whisky och öl. Den syftar till att identifiera energi- och miljöproblem i dessa system, samt utforska potentiella fördelar med utvalda avfallshanteringstekniker, såsom rötning, för att förbättra systemens cirkularitet och miljöprestanda. Avhandlingen använder flera olika metoder för energi- och miljösystemanalys, inklusive livscykelanalys, materialflödesanalys, samt simulering och optimering av energisystem.

En viktig upptäckt som visade sig för alla system är rollen som lokala resurser, såsom förnybar energi och tillgång till avfallshantering, spelar för produkternas miljöpåverkan. Även mängderna och produktionsmetoderna för elektricitet hade en avsevärd påverkan på miljöpåverkan för de studerade systemen. Transporternas betydelse varierade mellan systemen, på grund av olika transportbehov för insatsvaror, produkter och avfall. Denna studie utvärderar också flera alternativ där förbättrad cirkularitet ökade systemets miljömässiga hållbarhet, främst genom avfallsbehandling och förbättrad resursanvändning. Vidare visade denna studie på potentialen för ökad cirkularitet, särskilt genom avfallsbehandling och förbättrad resursanvändning. Resultaten bidrar till ökad förståelse för miljöprestanda för flera produktionssystem och ger insikter för beslutsfattare som syftar till att förbättra miljömässig hållbarhet vid produktion av mat och dryck.

Place, publisher, year, edition, pages
Gävle: Gävle University Press, 2024. p. 70
Series
Doctoral thesis ; 40
Keywords
environmental systems analysis, waste management, import, local resources, food production, beverage production, circularity
National Category
Energy Systems Environmental Sciences
Research subject
Sustainable Urban Development
Identifiers
urn:nbn:se:hig:diva-43365 (URN)978-91-89593-19-0 (ISBN)978-91-89593-20-6 (ISBN)
Public defence
2024-02-15, Lilla Jadwigasalen, 12108, Kungsbäcksvägen 47, Gävle, 13:00 (English)
Opponent
Supervisors
Available from: 2024-01-25 Created: 2023-12-04 Last updated: 2024-01-31Bibliographically approved
2. Renewable Energy and Nutrient Valorization from Anaerobic Digestion: Resource-Efficient Solutions
Open this publication in new window or tab >>Renewable Energy and Nutrient Valorization from Anaerobic Digestion: Resource-Efficient Solutions
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis presents a comprehensive analysis aimed at understanding process performance, methane yield, and key influencing factors within the context of solid-state anaerobic digestion (SS-AD). SS-AD is used to treat organic material with high solids content, which can be challenging to address by alternative methods. The investigation involves modelling and simulation exploring mass and energy balances and the associated environmental implications. To achieve this, a waste management tool, ORganic WAste REsearch (ORWARE) was adapted and validated to suit the unique parameters of SS-AD operating under a plug-flow reactor configuration, representing a specific case study. The search of an optimal feedstock mix that enhances the digestion process and energy performance is highlighted. Findings suggest that feedstock selection significantly affects methane yield in SS-AD systems, and optimizing substrate mixtures can enhance process efficiency. Key considerations include biodegradability and lignocellulosic content. Operational parameters, such as temperature variations, impact the results from the model, while responsiveness of hydraulic retention time and organic loading rate remains limited. A further comparison between a liquid anaerobic digestion (L-AD) vs SS-AD is made, despite similar methane yields, SS-AD outperforms due to higher energy turnover. Additionally, effective management of digestate nutrients is crucial for its biofertilizer use. Beyond the biogas system, the thesis explores interconnected relationships between SS-AD inputs and outputs and their subsequent use as resources for a hydroponic greenhouse production system. The examination of system interconnections and their broader implications emphasizes the importance of comprehensive assessments when integrating biogas systems beyond their conventional applications.

Abstract [sv]

Denna avhandling presenterar en omfattande analys som syftar till att förstå processprestanda, metanutbyte, och viktiga påverkande faktorer inom ramen för torrötning. Torrötning används för att behandla organiskt material med hög torrhalt, vilket kan vara svårt att hantera med alternativa metoder. Undersökningen omfattar modellering och simulering för att utforska mass- och energibalanser och därmed sammanhängande miljökonsekvenser. För att uppnå detta anpassades och validerades ett verktyg för avfallshantering ORganic WAste REsearch (ORWARE) för att passa en torrötnings-anläggning med pluggflödereaktor, vilket representerar en specifik fallstudie. En optimal råvarublandning som förbättrar rötningsprocessen och energiprestanda lyfts fram. Resultaten tyder på att valet av råmaterial avsevärt påverkar metanutbytet i torrötnings-system, och att optimera substratblandningar kan förbättra processeffektiviteten. Viktiga överväganden inkluderar biologisk nedbrytbarhet och lignocellulosahalt. Driftsparametrar, såsom temperaturvariationer, påverkar torrötning, medan känsligheten för hydraulisk retentionstid och organisk belastningshastighet i den modifierade pluggflödereaktor-konfigurationen förblir begränsad. I en jämförelse mellan våtrötning och torrötning så har både teknikerna liknande metanutbyten, men torrötning överträffar på grund av förbättrad energibalans. Avhandlingen undersöker dessutom aspekter bortom biogassystemet. Den utforskar de sammankopplade förhållandena mellan torrötning-utgångar och deras efterföljande användning som resursinsatser för ett hydroponiskt växthusproduktionssystem. Utforskningen av systemsammankopplingar och deras bredare implikationer belyser vikten av omfattande bedömningar när man integrerar biogassystem utöver deras konventionella tillämpningar.

Place, publisher, year, edition, pages
Gävle: Gävle University Press, 2023. p. 70
Series
Doctoral thesis ; 38
Keywords
Solid-state anaerobic digestion, methane yield, digestate, systems analysis, modelling, life cycle assessment, Torrötning, metanutbyte, biogödsel, systemanalys, modellering, livscykelanalys
National Category
Other Environmental Engineering Environmental Management
Identifiers
urn:nbn:se:hig:diva-43263 (URN)978-91-89593-15-2 (ISBN)978-91-89593-16-9 (ISBN)
Public defence
2024-01-18, 12:108, Gävle, 09:00 (English)
Opponent
Supervisors
Available from: 2023-12-20 Created: 2023-11-14 Last updated: 2023-12-20

Open Access in DiVA

fulltext(1393 kB)177 downloads
File information
File name FULLTEXT01.pdfFile size 1393 kBChecksum SHA-512
725fd800d151b2fa210af3e288d527588a18a4a621bb2266953551842dde8cd762efd1ff85907610876de58e1ca738c4c269702cc2dc33e9dc16ab95b51678ce
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Danevad, DanielCarlos-Pinedo, Sandra

Search in DiVA

By author/editor
Danevad, DanielCarlos-Pinedo, Sandra
By organisation
Environmental ScienceEnergy Systems and Building Technology
Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 177 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 299 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf