hig.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Computational and spatial analyses of rooftops for urban solar energy planning
University of Gävle, Faculty of Engineering and Sustainable Development, Department of Computer and Geospatial Sciences, Computer Science.
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Description
Abstract [en]

In cities where land availability is limited, rooftop photovoltaic panels (RPVs) offer high potential for satisfying concentrated urban energy demand by using only rooftop areas. However, accurate estimation of RPVs potential in relation to their spatial distribution is indispensable for successful energy planning. Classification, plane segmentation, and spatial analysis are three important aspects in this context. Classification enables extracting rooftops and allows for estimating solar energy potential based on existing training samples. Plane segmentation helps to characterize rooftops by extracting their planar patches. Additionally, spatial analyses enable the identification of rooftop utilizable areas for placing RPVs. This dissertation aims to address some issues associated with these three aspects, particularly (a) training support vector machines (SVMs) in large datasets, (b) plane segmentation of rooftops, and (c) identification of utilizable areas for RPVs. SVMs are among the most potent classifiers and have a solid theoretical foundation. However, they have high time complexity in their training phase, making them inapplicable in large datasets. Two new instance selection methods were proposed to accelerate the training phase of SVMs. The methods are based on locality-sensitive hashing and are capable of handling large datasets. As an application, they were incorporated into a rooftop extraction procedure, followed by plane segmentation. Plane segmentation of rooftops for the purpose of solar energy potential estimation should have a low risk of overlooking superstructures, which play an essential role in the placement of RPVs. Two new methods for plane segmentation in high-resolution digital surface models were thus developed. They have an acceptable level of accuracy and can successfully extract planar segments by considering superstructures. Not all areas of planar segments are utilizable for mounting RPVs, and some factors may further limit their useability. Two spatial methods for identifying RPV-utilizable areas were developed in this realm. They scrutinize extracted planar segments by considering panel installation regulations, solar irradiation, roof geometry, and occlusion, which are necessary for a realistic assessment of RPVs potential. All six proposed methods in this thesis were thoroughly evaluated, and the experimental results show that they can successfully achieve the objectives for which they were designed.

Abstract [sv]

I städer där marktillgången är begränsad erbjuder takmonterade solpaneler (eng. rooftop photovoltaic panels) ett attraktivt alternativ för att tillfredsställa höga energibehov. Noggrann värdering av deras potantial f förhållande till spatial utbredning och variation är dock oumbärlig för framgångsrik energi planering. För detta krävs klassificering och segmentering av plana ytor samt spatial analys. Klassificering möjliggör extrahering av hustak och uppskattning av solenergipotentialen baserat på befintliga träningsprov. Segmentering i plan hjälper till att karakterisera hustaken genom extrahering av deras plana segment och spatial analys möjliggör identifiering av användbara takytor för placering av takmonterade solpaneler. Denna avhandlings syfte ät att adressera olika problem associerade med dessa; särskilt: (a) träning av stödvektormaskiner (eng. support vector machines) för stora datamängder, (b) segmentering i plan av hustakspunkter och (c) identifiering av lämpliga ytor för placering av takmonterade solpaneler. Stödvektormaskiner tillhör de mest kraftfulla klassificeringsmetoderna och vilar på en solid teoretisk grund. Men på grund av högkomplexitet under träningsfasen är de tidskrävande, vilket gör dem olämpliga för stora datamängder. Två nya initiala urvalsmetoder (eng. instance selection methods) för data föresås för att påskynda träningsfasen i stödvektormaskiner. Metoderna är baserade på lokalitetskänslig hashning och kan hantera stora datamängder. De inkorpooreras i en applikation i form av extrahering av takyta föjlt av segmentering i plan. Segmentering av hustak för uppskattning av solenergipotential bör inkludera låg risk att förbise överbyggnader, som spelar en viktig roll vid placering av takmonterade solpaneler. Två nya metoder för segmentering i plan för högupplösta digitala ytmodeller har därför utvecklats. De har en acceptabel nivå av noggrannhet och kan framgångsrikt extrahera plana segment genom att ta hänsyn till överbyggnader. Alla ytor med extraherade plana segment är dock inte användbara för montering av takmonterade solpaneler, samtidigt som andra faktorer ytterligare kan begränsa ytornas användbarhet. Två spatiala metoder för att identifiera användbara takmonterade solpanelytor har utvecklats för detta ändamål. De granskar extraherade plana segment genom att ta hänsyn till regler för panelinstallationer, solinstrålning, takgeometri och ocklusion, vilket är nödvändigt för en realistisk bedömning av potentialen av takmonterade solpaneler. Samtliga sex föreslagna metoder i denna studie har utvärderats noggrant och de experimentella resultaten visar att de framgångsrikt kan uppnå de mål som de utformades för.

Place, publisher, year, edition, pages
Gävle: Gävle University Press , 2022. , p. 103
Series
Doctoral thesis ; 31
Keywords [en]
Machine learning, Classification, Segmentation, Support vector machines, Instance selection, Rooftop plane segmentation, Photovoltaic panels, Utiliz-able rooftop areas, Geoinformatics
Keywords [sv]
maskininlärning, klassificering, segmentering, stödvektormaskiner, urval av träningsdata, segmentering av takytor, solcellspaneler, utnyttjande av takytor, geoinformatik
National Category
Other Earth and Related Environmental Sciences Geosciences, Multidisciplinary Other Computer and Information Science
Research subject
Sustainable Urban Development
Identifiers
URN: urn:nbn:se:hig:diva-39741ISBN: 978-91-88145-93-2 (print)ISBN: 978-91-88145-94-9 (electronic)OAI: oai:DiVA.org:hig-39741DiVA, id: diva2:1688644
Public defence
2022-11-18, Krusenstjernasalen. 23:213, Kungsbäcksvägen 47, Gävle, 09:00 (English)
Opponent
Supervisors
Available from: 2022-10-27 Created: 2022-08-19 Last updated: 2023-02-17
List of papers
1. A fast instance selection method for support vector machines in building extraction
Open this publication in new window or tab >>A fast instance selection method for support vector machines in building extraction
2020 (English)In: Applied Soft Computing, ISSN 1568-4946, E-ISSN 1872-9681, Vol. 97, no B, article id 106716Article in journal (Refereed) Published
Abstract [en]

Training support vector machines (SVMs) for pixel-based feature extraction purposes from aerial images requires selecting representative pixels (instances) as a training dataset. In this research, locality-sensitive hashing (LSH) is adopted for developing a new instance selection method which is referred to as DR.LSH. The intuition of DR.LSH rests on rapidly finding similar and redundant training samples and excluding them from the original dataset. The simple idea of this method alongside its linear computational complexity make it expeditious in coping with massive training data (millions of pixels). DR.LSH is benchmarked against two recently proposed methods on a dataset for building extraction with 23,750,000 samples obtained from the fusion of aerial images and point clouds. The results reveal that DR.LSH outperforms them in terms of both preservation rate and maintaining the generalization ability (classification loss). The source code of DR.LSH can be found in https://github.com/mohaslani/DR.LSH.

Place, publisher, year, edition, pages
Elsevier, 2020
Keywords
Support vector machines, Data reduction, Instance selection, Big data, Building extraction
National Category
Computer and Information Sciences
Identifiers
urn:nbn:se:hig:diva-34022 (URN)10.1016/j.asoc.2020.106716 (DOI)000603366700004 ()2-s2.0-85090959233 (Scopus ID)
Available from: 2020-09-28 Created: 2020-09-28 Last updated: 2022-10-11Bibliographically approved
2. Efficient and decision boundary aware instance selection for support vector machines
Open this publication in new window or tab >>Efficient and decision boundary aware instance selection for support vector machines
2021 (English)In: Information Sciences, ISSN 0020-0255, E-ISSN 1872-6291, Vol. 577, p. 579-598Article in journal (Refereed) Published
Abstract [en]

Support vector machines (SVMs) are powerful classifiers that have high computational complexity in the training phase, which can limit their applicability to large datasets. An effective approach to address this limitation is to select a small subset of the most representative training samples such that desirable results can be obtained. In this study, a novel instance selection method called border point extraction based on locality-sensitive hashing (BPLSH) is designed. BPLSH preserves instances that are near the decision boundaries and eliminates nonessential ones. The performance of BPLSH is benchmarked against four approaches on different classification problems. The experimental results indicate that BPLSH outperforms the other methods in terms of classification accuracy, preservation rate, and execution time. The source code of BPLSH can be found in https://github.com/mohaslani/BPLSH. 

Place, publisher, year, edition, pages
Elsevier, 2021
Keywords
Big data, Data reduction, Instance selection, Machine learning, Support vector machines, Classification (of information), Large dataset, % reductions, Border points extraction, Decision boundary, Effective approaches, Large datasets, Locality sensitive hashing, Machine-learning, Support vectors machine, Training phasis
National Category
Computer Sciences
Identifiers
urn:nbn:se:hig:diva-36914 (URN)10.1016/j.ins.2021.07.015 (DOI)000709264000011 ()2-s2.0-85111026999 (Scopus ID)
Funder
European Commission, 20201871
Available from: 2021-08-19 Created: 2021-08-19 Last updated: 2022-10-11Bibliographically approved
3. Automatic identification of utilizable rooftop areas in digital surface models for photovoltaics potential assessment
Open this publication in new window or tab >>Automatic identification of utilizable rooftop areas in digital surface models for photovoltaics potential assessment
2022 (English)In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 306, article id 118033Article in journal (Refereed) Published
Abstract [en]

The considerable potential of rooftop photovoltaics (RPVs) for alleviating the high energy demand of cities has made them a proven technology in local energy networks. Identification of rooftop areas suitable for installing RPVs is of importance for energy planning. Having these suitable areas referred to as utilizable areas greatly assists in a reliable estimate of RPVs energy production. Within such a context, this research aims to propose a spatially detailed methodology that involves (a) automatic extraction of buildings footprint, (b) automatic segmentation of roof faces, and (c) automatic identification of utilizable areas of roof faces for solar infrastructure installation. Specifically, the innovations of this work are a new method for roof face segmentation and a new method for the identification of utilizable rooftop areas. The proposed methodology only requires digital surface models (DSMs) as input, and it is independent of other auxiliary spatial data to become more functional. A part of downtown Gothenburg composed of vegetation and high-rise buildings with complex shapes was selected to demonstrate the methodology performance. According to the experimental results, the proposed methodology has a high success rate in building extraction (about 95% correctness and completeness) and roof face segmentation (about 85% completeness and correctness). Additionally, the results suggest that the effects of roof occlusions and roof superstructures are satisfactorily considered in the identification of utilizable rooftop areas. Thus, the methodology is practically effective and relevant for the detailed RPVs assessments in arbitrary urban regions where only DSMs are accessible.

Place, publisher, year, edition, pages
Elsevier, 2022
Keywords
Solar energy, Rooftop photovoltaics, Utilizable rooftop areas, Building extraction, Roof face segmentation, Digital surface models
National Category
Energy Engineering
Identifiers
urn:nbn:se:hig:diva-37312 (URN)10.1016/j.apenergy.2021.118033 (DOI)000711977900008 ()2-s2.0-85117365051 (Scopus ID)
Funder
European Commission, 20201871
Available from: 2021-11-01 Created: 2021-11-01 Last updated: 2022-10-11Bibliographically approved
4. A Spatially Detailed Approach to the Assessment of Rooftop Solar Energy Potential based on LiDAR Data
Open this publication in new window or tab >>A Spatially Detailed Approach to the Assessment of Rooftop Solar Energy Potential based on LiDAR Data
2022 (English)In: Proceedings of the 8th International Conference on Geographical Information Systems Theory, Applications and Management - GISTAM, ScitePress , 2022, p. 56-63Conference paper, Published paper (Refereed)
Abstract [en]

Rooftop solar energy has long been regarded as a promising solution to cities’ growing energy demand and environmental problems. A reliable estimate of rooftop solar energy facilitates the deployment of photovoltaics and helps formulate renewable-related policies. This reliable estimate underpins the necessity of accurately pinpointing the areas utilizable for mounting photovoltaics. The size, shape, and superstructures of rooftops as well as shadow effects are the important factors that have a considerable impact on utilizable areas. In this study, the utilizable areas and solar energy potential of rooftops are estimated by considering the mentioned factors using a three-step methodology. The first step involves training PointNet++, a deep network for object detection in point clouds, to recognize rooftops in LiDAR data. Second, planar segments of rooftops are extracted using clustering. Finally, areas that receive sufficient solar irradiation, have an appropriate size, and fulfill photovoltaic installation requirements are identified using morphological operations and predefined thresholds. The obtained results show high accuracy for rooftop extraction (93%) and plane segmentation (99%). Moreover, the spatially detailed analysis indicates that 17% of rooftop areas are usable for photovoltaics.

Place, publisher, year, edition, pages
ScitePress, 2022
Keywords
Deep Learning, Clustering, Segmentation, Solar Energy, LiDAR
National Category
Computer and Information Sciences Other Earth and Related Environmental Sciences
Research subject
Sustainable Urban Development
Identifiers
urn:nbn:se:hig:diva-38510 (URN)10.5220/0011108300003185 (DOI)000803076800005 ()2-s2.0-85141048924 (Scopus ID)978-989-758-571-5 (ISBN)
Conference
Geographical Information Systems Theory, Applications and Management - GISTAM
Funder
European Regional Development Fund (ERDF), 20201871
Available from: 2022-05-18 Created: 2022-05-18 Last updated: 2022-12-05Bibliographically approved

Open Access in DiVA

fulltext(18604 kB)241 downloads
File information
File name FULLTEXT01.pdfFile size 18604 kBChecksum SHA-512
31b2b554c30484687ff43e0bd101d297b9de0d6835971b6a0531bb97366f017d08a94b3037c0b61175b868dd3c9b86f4a4fa01d488969ad7645ff16c32e964a2
Type fulltextMimetype application/pdf

Authority records

Aslani, Mohammad

Search in DiVA

By author/editor
Aslani, Mohammad
By organisation
Computer Science
Other Earth and Related Environmental SciencesGeosciences, MultidisciplinaryOther Computer and Information Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 241 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1848 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf